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Abstract

Stepans provided a characterizationgif\N in the R>-Cohen model that is much in the spirit of
Parovienko'’s characterization of this space under CH. A variety of the topological results established
in the Cohen model can be deduced directly from the propertig8igN or P (N) /fin that feature in
Stepans’ resultd 2002 Elsevier Science B.V. All rights reserved.
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Introduction

Topological problems that involve the behaviour of families of subsets of the set of nat-
ural numbers tend to have (moderately) easy solutions if the Continuum Hypothesis (CH)
is assumed. The reason for this is that one’s inductions and recursions lasi stdyps and
that at each intermediate step only countably many previous objects have to be dealt with.

An archetypal example is Par@einko’s characterization, see [22], of the sp&Ceas
the only compact zero-dimension&tspace of weight without isolated points in which
non-emptyGs-sets have non-empty interiors. The proof actually shows @) /fin is
the unique atomless Boolean algebra of sizéth a certain property,, and then applies
Stone duality to establish uniquenessNdf. It runs as follows: consider two Boolean
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algebrasA and B with the properties ofP(N) /fin just mentioned and well-order both in
typew1. Assume we have an isomorphignbetween subalgebraf, and B,, that contain
{ag: B <a}and{bg: B < a} respectively. We need to definga, ) (if a, ¢ Ay); consider

S=f{acAq:a<ay} and T={ac Ay a<al}.

We must findb € B such that

(1) h(a) <bifacs;

(2) h(a)<b'ifaeT,;

(3) h(@)Ab#0andh(a) AL #0ifac Ay buta ¢ SUT.

PropertyR,, says exactly that this is possible—its proper formulation can be found after
Definition 2.9.

This paper grew out of observations that in the Cohen model the Boolean algebra
P(N)/fin retains much of the properties that were used above. In a sense to be made pre-
cise later, in Definition 2.3P(N)/fin contains many subalgebras that are likg and B,
above Ro-ideal subalgebras); even though these will not be countable the important sets
S andT will be. We also define a cardinal invariamt,, that captures just enough &f,
to allow a Parowienko-like characterization ¢?(N) /fin in the X2-Cohen model—this is
Stepans’ result alluded to in the abstract (Theorem 2.13). During the preparation of this
paper we became aware of recent work on the weak Freese—Nation property in [14,15,13].
Although the weak Freese—Nation property is stronger than our properties the proofs of
the consequences are very similar; therefore we restrict, with few exceptions, ourselves
to more topological (and new) applications. Perhaps the difference in approach (weak
Freese—Nation versu®i, Rp)-ideal) is mostly a matter of taste but ours arose directly
out of Stepans original results and the essentially folklore facts about the effects of adding
Cohenreals.

In Section 2 we shall formulate the properties alluded to above and prove that in the
Cohen modeP(N)/fin does indeed satisfy them. In Section 3 we select some results about
P(N)/fin (or N*) that are known to hold in the Cohen model and derive them directly from
the new properties—whenever we credit a result to some author(s) we mean to credit them
with establishing that it holds in the Cohen model. In Sections 4 and 5 we investigate
the properties themselves and their behaviour with respect to subalgebras and quotients.
Finally, in Section 6 we investigate how much of an important phenomenon rega¥tiing
persists; we are referring to the fact that under CH for every compact zero-dimensional
spaceX of weightc or less theCech—Stone remaindép x X)* is homeomorphic tiN*,

We would like to take this opportunity to thank the referee for a very insightful remark
concerning our version of Bell's example (see Definition 3.7), which enabled us to simplify
the presentation considerably.

1. Preliminaries

Boolean algebras. Our notation is fairly standard’ invariably denotes the complement
of b.

For a subse$ of a Boolean algebra&, let S+ denote the ideal of members Bfthat are
disjoint from every element of, i.e.,S* = {b € B: (Vs € S)(b As = 0)}. For convenience,
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we useb™ in place of{b}*. Also, letb¥ be the principal ideal generated by namely
{a € B: a < b}. Clearly b is equal to(b')*. Also, for subsetsS and T we letS LT
abbreviatgVs € S)(Vt € T)(s At = 0); in fact we shall often abbreviatenr =0 bys L ¢.

Cohen reals. ‘The Cohen model’ is any model obtained from a model of the GCH by
adding a substantial quantity of Cohen reals—more tharn particular ‘theX,-Cohen
model’ is obtained by adding> many Cohen reals. Actually, since we are intent on
proving our results using tharoperties of P(N)/fin only, many readers may elect to take
Lemma 2.2, Theorem 2.7 and the remark made after Proposition 2.12 on faith or else
consult [18] for the necessary background on Cohen forcing.

The weak Freese—Nation property. A partially ordered setP is said to have theveak
Freese—Nation property if there is a functionF : P — [P]¥ such that whenevep < ¢
thereisr € F(p) N F(q) with p <r <gq.

Elementary substructures. Consider two structures/ and N (groups, fields, Boolean
algebras, models of set theory.), whereM is a substructure oV. We say thatM is
an elementary substructure ofv, and we writeM < N, if every equation, involving the
relations and operations of the structures and constants #othat has a solution itV
has a solution inv as well.

The Léwenheim—-Skolem theorem says that every sulisef a structureN can be
enlarged to an elementary substructdfeof whose cardinality is the maximum ¢f|
and ®g. The construction proceeds in the obvious way: in a recursion of lengthe
keeps adding solutions to equations that involve ever more constants.

We prefer to think of an argument that uses elementary substructures as the lazy man’s
closing off argument; rather than setting up an impressive recursive construction we say
“let 6 be a suitably large cardinal and &t be an elementary substructuref{6)” and
add some words that specify whit should certainly contain.

The pointis that the impressive recursion is carried out inside), whered is ‘suitably
large’ (most of the time& = ¢™ is a good choice as everything under consideration has
cardinality at most), and that it (or a nonessential variation) is automatically subsumed
when one constructs an elementary substructuvé ©f.

In this paper we shall be working mostly with -sized elementary substructures, most
of which will be Xg-covering. The latter means that every countable subsef M is a
subset of a countable elemeBitof M. This is not an unreasonable property, considering
that the ordinalv; has it: every countable subsetwf is a subset of a countable ordinal.

An Rg-covering structure can be constructed in a straightforward way. One recursively
constructs a chaifW,: a < w1) of countable elementary substructuregb®) with the
property thatMg: 8 < ) € My1 forall . Inthe endM = M, is as required: if
A C M is countable thed € M,, for somex andM, € M.

For just a few of the results we indicate two proofs: a direct one and one via elemen-
tarity—we invite the reader to compare the two approaches and to reflect on their efficacy.

a<wy
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2. Two new propertiesof P(N)/fin

In this section we introduce two properties that Boolean algebras may have. We shall
prove that in the Cohen mod@l(N)/fin has both and that in th#,-Cohen model their
conjunction actually characterizgyN) /fin.

(R1, Rp)-ideal algebras. We begin by defining th8p-ideal subalgebras alluded to in the
introduction.

Definition 2.1. For a Boolean algebrA, we will say that a subalgebra of B is Rg-ideal
if for eachb € B\ A the ideal{a € A: a < b} = AN b' has a countable cofinal subset.

Of course, by duality, the ide&t- N A is countably generated as well; thusig-ideal
subalgebras the phras§ ‘and T are countable” from the introduction is replaced I8y “
andT have countable cofinal subsets”.

The main impetus for this definition comes from following result.

Lemma 2.2 [23, Lemma 2.2]If G is Fn(I, 2)-generic over V then P(N) NV isan Rp-
ideal subalgebra of P(N) in V[G].

Proof. Let X be an Fiil, 2)-name for a subset &{. It is a well-known fact about R, 2)
that there is a countable subskebf I such thatX is completely determined by E#, 2).
This means that for eveny € Fn(1, 2) and every: e Nwe havep - n e X (or p I n ¢ X)
if and only if p [ J does.

For everyp € Fn(J, 2) defineX, = {n: plFne X}; the countable family of thesk,
is as required. O

The factoring lemma for Cohen forcing [18, p. 255] implies that for every subsét/
the subalgebra ; = P(N) N V[G | J] is Rp-ideal in the finalP(N). Using the fact, seen
in the proof above, that names for subset® afre essentially countable one can verify that
Aug =, e As forevery chaing of subsets of of uncountable cofinality. This shows
that in the Cohen modé?(N) has manyp-ideal subalgebras and also that the family of
these subalgebras is closed under unions of chains of uncountable cofinality.

What we callkp-ideal is called ‘good’ in [23] and in [14] the termsubalgebra is used.
In the latter paper it is also shown thatAf: B — [B]*° witnesses the weak Freese—Nation
property of B then every subalgebra that is closed undeis an Ng-ideal subalgebra;
therefore an algebra with the weak Freese—Nation property hasigadgal subalgebras
and the family of these subalgebras is closed under directed unions.

We are naturally interested in Boolean algebras with m&gydeal subalgebras. Most
of our results only require that there are manysizedXp-ideal subalgebras.

Definition 2.3. We will say that a Boolean algebia is (X1, Rp)-ideal if the set oft¥1-
sizedRop-ideal subalgebras aB contains ar;-cub of [B]XL. That is, there is a family
A consisting of1-sizedRp-ideal subalgebras a8 such that every subset of sirg is
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contained in some member gf and the union of each chain frop of cofinality w1 is
again inA.

We leave to the reader the verification tigiN) is an(X1, Rp)-ideal algebra if and only
if P(N)/finis an (X1, Rp)-ideal algebra (but see Corollary 5.12). It is also worth noting
thatP(w1) is not(R1, Rp)-ideal (see [14, Proposition 5.3]).

Since the definition ofX1, Xg)-ideal requires that we have sorde-cub consisting of
Ro-ideal subalgebras, it is a relatively standard fact that e¥ergovering elementary
substructure of siz&1 of a suitableH (9) induces amfkg-ideal subalgebra. We shall use
the following lemma throughout this paper, not always mentioning it explicitly—it is an
instance of the rule-of-thumb that saysXf.4 € M, whereM is suitably closed andl
some sort of cub iP(X), thenX N M e A.

Lemma24. Let B bean (X1, Ro)-ideal algebra, let 6 be a suitably large cardinal and let
M be an Rg-covering elementary substructure of size X1 of H () that contains B. Then
B N M isan Rp-ideal subalgebra of B.

Proof. Note first thatM contains anki-cub A as in Definition 2.3: it must contain a
solution to the equation

x is an®1-cub in[B]™ that consists oRo-ideal subalgebras.

Let f:w1 — AN M be a surjection, not necessarily fravh. BecauseV is Xp-covering
we can find, for every € w1, a countable elemerX, of M that containsf[«]. Consider
the equation

xeA and U(XaﬂA)gx.

This equation has a solution i (0) and hence irM; we may taked, € AN M such that
U(Xo N A) € A,. Thus we construct an increasing chaity,: o < w1) in AN M that
is cofinal in. AN M. It follows that (AN M) = U, _,, A« belongs toA. Now check
carefully thatB N M = | J(A N M)—use thatA is unbounded inB]1™. O

The remarks preceding Definition 2.3 show that an algebra with the weak Freese—Nation
property is(R1, Rp)-ideal. The converse is almost true—the difference is that we do not
require closure under countable unions. In the notation used after Lemma 2.2 the family
A={A;: J e [I1"1} witnesses that in the Cohen mode{N) is always (81, Ro)-ideal.
HoweverA is not closed under unions of countable chains. Indeed, in [12] one finds the
theorem that ifV satisfies the GCH and the instange, 1, 8,) — (X1, Rg) of Chang’s
conjecture then after adding one dominating eand thenX,, Cohen reals?(N) does
not have the weak Freese—Nation property-¥&8] still satisfies the GCH the final model
is a ‘Cohen model'.

Many properties ofP(N) that hold in the Cohen model can be derived from the weak
Freese—Nation property—see [15,13], for example—and many of these can be derived
from the fact thatP(N) is (X1, Rp)-ideal. It is not our intention to duplicate the effort
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of [13]; we will concentrate on topological applications. However, to give the flavour, and
because we shall use the result a few times, we consider Kunen’s theorem from [17] that
in the Cohen model the Boolean algelféN) /fin does not have a chain of order type.

Itis quite straightforward to show that an algebra with the weak Freese—Nation property
does not have any well-ordered chains of order typewith a bit more effort the same
can be said ofX, Rp)-ideal algebras.

Proposition 2.5. An (X1, Rp)-ideal Boolean algebra does not have any chains of order
type wo.

Proof. Assume that{c,: @ < w2} is an increasing chain irB and let A be as in
Definition 2.3. Recursively construct a chdify,: « € w1} in A and an increasing sequence
{ya: a € w1} of ordinals inw, as follows. Letyp = 0 and, givendg andyg for 8 < «, let
A= Uﬁ<a Ay andy = SURs ¢ V8- ChooseA, € A such that, € A, and such that for
everya € A, if there is g8 with a < cg thenthere is 88 such that: < cg and cg € Aq; let

Yo be the firsty for whichc, ¢ A,.

In the end setd = | J{Aq: o € w1} and A = suflys: o € w1}. Now we have a
contradiction because althougb N A should be countably generated it is not. Indeed,
let C be a countable subset of N A; by construction we have for everye C a g <
such thate < cg. Let y be the supremum of theges; theny + 1 < A and soc, 41 < 3,
butnoc € C is abover, 11. O

A proof using elementary substructures runs as followsMekt H(0) be Xo-covering
and of cardinality?1, whered is suitably large, and assume ttiaand the chaidcy: o <
w2} belong toM. Next leté be the ordinalM N w»; observe that c8 = X1 if cf § were
countable then, becausé is Rg-covering,s would be the supremum of an elementidf
and hence inM. Consider the element. By Lemma 2.4 there is a countable subfet
of ci N B N M that is cofinal in it. There is then (at least) one elemenf 7" such that
{a <8 ¢y < a}iscofinal ins. However§ is a solution to

x€wy and a <cy

hence there must be a solutigrin M but theng < § anda < cg, so that{a < §: ¢, < a}
is not cofinal ing.

The reader is invited to supply a proof of the following proposition, which was
established in [15] for algebras with the weak Freese—Nation property.

Proposition 2.6. An (X1, Rp)-ideal algebra contains no K»-Lusin families.

An Ro-Lusin family is a subsefd of pairwise disjoint elements with the following
property: for everyx at least one of the sefa € A: a < x} or {a € A: anx =0} has
size less thaty,.
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In the Cohen model P(N)/fin is (X1, Rp)-ideal. We have already indicated that in the
Cohen modeP(N) /fin is an (X1, Rp)-ideal algebra. We state it as a separate theorem for
future reference.

Theorem 2.7. Let V be a model of CH and let « be any cardinal. If G is generic on
Fn(k, 2) thenin V[G] thealgebra P(N) is (X1, Rp)-ideal.

As it is clear thatw, is the union of an increasing sequencerafsized subsets the
following Proposition, which is Stepns’ Lemma 2.3, now follows.

Proposition 2.8. In the X,-Cohen model there is an increasing sequence of Rp-ideal
subalgebras of P(N), each of size R, which is continuous at limits of uncountable co-
finality and whose unionis all of P(N).

Generalizing R,,. The following definition generalizes Pardanko’s propertyRr,,. After

the definition we discuss it more fully and indicate why it is the best possible generalization
of R,. The new property is actually a cardinal invariant which somehow quantifies some,
but not all, of the strength of M&untable—See Proposition 2.12 and Remark 4.6.

Definition 2.9. For a Boolean algebrg, say that a subset is Rg-ideal complete, if for
any two countable subsessandT of A with S L T there is a € B\ A such that' N A
is generated by andb N A is generated by'. We will let m.(B) denote the minimum
cardinality of a subset aB that is notXg-ideal complete. Alsen, denotesn. (P (N)/fin).

A remark about the previous definition might be in order. In the definitiorgideal
completeness the sdtis divided into three subsetd:s, the set of elements for which
there is a finite subsef of S such thate < \/ F; the setAr, defined similarly, and
A,, the rest ofA. The elemenb must effect the same division of: we demand that
As={a€ A a<b}, Ar={ace A a<b'}andA, ={a € A: atbanda £ b'}.
Observe that one can also write = {a € A: b Aa # 0 andd’ A a # 0}; one says that
b reapsthe setA,. We see that every subset of size less tha(B) can always be reaped;
we shall come back to this in Section 4.

Thus Parowienko’s propertyR,, has become the statement that countable subsets are
Ro-ideal complete, in other words that. (B) > Ro.

Remark 2.10. In Definition 2.9 we explicitly do not exclude the possibility thaor T

is finite or even empty. Thus ifi.(B) > 8o then there is no countable strictly increasing
sequence with 1 as its supremum: for§die such a sequence and tdke- {0}, then there
must apparently bela< 1 such thatt < b foralla € S.

Remark 2.11. In the case ofP(N)/fin one cannot relax the requirements Snand
T: consider a Hausdorff gap; this is a pair of increasing sequeficesa € w1} and
{ba: o € w1} such thata, A bg =0 for all « and g, and for which there is na such
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thata, < x for all @ andbg < x* for all . Thus there are cases with| = |T| = X1
where naob can be found.

In an (X1, Rp)-ideal algebra withm.(B) > R this can be sharpened, as follows. By
recursion one can construct a strictly increasing cligin « < §) in B with 0 < s, <1
for all «, until no further choices can be made. BecaBses (X1, 8g)-ideal this must stop
beforew, and becausei.(B) > ¥g we have cf§ = R1. Thus we have a situation where
no b be found with|S| =81 and|T| =1 (takeT = {0}). This shows that ifP(N)/fin is
(R1, Rp)-ideal then the cardinal numbg(see [6]) is equal t&;.

The following proposition shows why we are interestecehin
Proposition 2.12. MA countableimpliesthat m, = c.

Proof. Let A, S andT be given, where, without loss of generality, we assume Shetd
T are increasing sequences of lengthnd|A| < ¢. There is a natural countable poset that
produces an infinite sét such thats < b andr < b’ for all s € § andr € T: it consists
of triples (p, s, t), wherep e Fn(w, 2), s € S,t € T ands Nt € dom(p). The ordering is
(p,s,t) <{q,u,v) iff p2Dg,s Du,t 2vandifn edom(p)\dom(g) thenpn) =1 if
neuandpn)=0ifn ev.

Itis relatively straightforward to determine a familyof fewer thanc dense sets so that
anyD-generic filter produces an elemeénas required. O

It is well known that MAcguntanicholds in any extension by a ccc finite-support iteration
whose length is the final value of the continuum and hence in any model obtained by adding
¢ or more Cohen reals.

So in the Cohen modé& (N) /fin is an(R1, Rp)-ideal algebra in whiclm, is c¢. Note that
this is then consistent with most cardinal arithmetic. However if &t¥yCohen reals are
added then this provides our characterization® @f)/fin andN* (see also the results 5.3
through 5.5).

Theorem 2.13. In the KX2-Cohen model the algebra P(N)/fin is characterized by the
properties of being an (X1, Rp)-ideal Boolean algebra of cardinality ¢ in which m. has
value c.

The proof is quite straightforward: we use Proposition 2.8 to express any algebra with
the properties of the Theorem as the union @bachain of (X1, Rg)-ideal subalgebras and
we applym, = ¢ to construct an isomorphism between it gaN) /fin by recursion. This
result and its proof admit a topological reformulation that is quite appealing.

Theorem 2.14. Inthe X2-Cohen model N* isthe unique compact space that is expressible
asthelimit of an inverse system ({X,: « < wa}, {ff: a < B < w2}) such that

(1) each X, isa compact zero-dimensional space of weight less than c;

(2) for eachlimit 1 < wp, X;, isequal tolim 5., X and £ = L@Mﬁdﬁf;
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(3) foreachw < 8 < wa, ff sends zero-set subsets of X g to zero-sets of X, (i.e., clopen
sets are sent to G s-sets);

(4) for each @ < w2 and each pair, Co, C1 of digoint cozero-sets of X, (possibly
empty), therearea 8 < w, and a clopen subset b of Xg such that

P(b)=Xo\Co and fF(Xp\b) = X4\C1.

Remark 2.15. It is our (subjective) feeling that th@i1, Rp)-ideal property together with

m, captures the essence of the behaviouP@R) and P (N)/fin in the Cohen model. By
Theorem 2.13 this is certainly the case for theCohen model. Evidence in support of
our general feeling will be provided in the next section, where we will derive a number
of results from P(N) is (X1, Rp)-ideal” that were originally derived in the Cohen model.
Apparently it is unknown whether these properties charact@r{2® /finin Cohen models
with ¢ > Xo.

Other cardinals. We may generalize Definition 2.3 to cardinals other tikanwe can
call a Boolean algebré, Rp)-ideal if the family ofx-sizedRo-ideal subalgebras contains
a x-cub, meaning a subfamily closed under unions of chains of length atsn@sit of
uncountable cofinality). Similarly we can defieto be (x, Ro)-ideal if it is (k, Ro)-ideal
for every (regulark below|Bj|.
The discussion after Lemma 2.2 establishes that every Boolean algebra with the weak
Freese—Nation propertgx, Ro)-ideal and in any Cohen model the algeli?aN) /fin is
(*, Rp)-ideal. One can also prove a suitable version of Lemma 2.4.

Lemma2.16. Let B bean («, 8g)-ideal algebra, let 6 be a suitably large cardinal and let
M be an elementary substructure of size ¥ of H(#) that contains B. Then BN M is an
Ro-ideal subalgebra of B, provided M can bewrittenas| J,, ., My, where (Mg: 8 < a) €
My 41 for all a.

a<kK

In applications one also needis to beRg-covering; this is possible only if the structure
([« 1%, ©) has cofinalityk. This accounts for the assumptiorikcf*o = « in Theorem 5.6.

3. Theaxiom “P(N) isan (81, 8g)-ideal algebra”

Throughoutthis section we assume tRglN) is an(X1, 8p)-ideal algebra and show how
useful this can be as an axiom in itself. We fixancub A in [P(N)]™1 that consists of
No-ideal subalgebras.

Mappings onto cubes. In order to avoid additional definitions we state, in the rest

of this section, some of the results in their topological, rather than Boolean algebraic,
formulations. We shall also use elementary substructures to our advantage; we shall use
the phrase ‘by elementarity’ to indicate that a judicious choice of equation would give the
desired result.
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The first result we present is due to Baumgartner and Weese [2].

Theorem 3.1. If X isacompact spacewith a countable dense set D such that every infinite
subset of D contains a converging subsequence, then X does not map onto [0, 1]%2.

Proof. If f were a mapping oX onto [0, 1]“2 then f[D] would be a countable dense
subset 0f0, 1]“2 with the same property aB. Therefore we are done once we show that
[0, 1]®2 has no countable dense subset every infinite subset of which contains a converging
sequence. So we take a countable dense subgetif’2, which we identify withN, and
exhibit an infinite subset of it that does not contain a converging sequence.

To this end we fix a suitably large cardinaland consider ar1-sizedXg-covering
elementary substructurd of H(0). We puté = M Nwy and letc =N N ny[[%l, 1]] and
d=Nnmn;7[[0, %]], where, generallyr, denotes the projection onto theth coordinate.

Let C € M be a countable set such thatn M is generated by'; = ¢t N C; similarly
choose a countable elemadtof M for d and putD; = d¥ N D. This can be done because
M is Ro-covering.

ForxeCletS, ={a: x C* n(;_[[%, 1]1}. Observe that if € S, thenS, is cofinal inw»
because, apparently, there is then no solukioo (1 € w2) A Vo € Sy)(a < n) in M and
hence not inH (9) either. It follows thatC; is contained in the set

Cy={x e C: S, is cofinal inwy},

which, by elementarity, is in/. We defineT,, for y € D, in an analogous way and find the
set

D> ={y € D: Ty is cofinal inwy},

which is in M and which contain®;. We claim that the ideal generated 6y U D, does
not contain a cofinite subset b

Indeed, takery, ..., xx in Co andys, ..., yx in D2. We can find distinctvg, . . ., ax, B1,
..., Br with o; € S, and; € T, for all i. The setl/ = ([_y (r, (10, 1) N5 [(3, 11D)
is disjoint frome-‘zl(x,- U y;) and its intersection witly is infinite.

Because& > U D is countable we can, by elementarity, find an infinite subs$tN in M
that is almost disjoint from every one of its elements. Now ffad an infinite converging
subset then, again by elementarity, it would have éregy, that belongs téf. However,
if b €* ¢ thenb C* x for somex € C1, which is impossible; likewisé C* d is impossible.
It follows thatns[b] does not converge if0, 1]. O

Remark 3.2. A careful study of the proof of Theorem 3.1 shows how one can reach
8 by a traditional recursion. Build an increasing sequetkg: o < w1) in A and a
sequencés,: o < w1) in wp by doing the following at successor steps. Enumesatas

(ag: B < w1) and choose, whenever possible, a subgeif ag that converges if0, 1%z,

Next choose, for each < w1, a subseily as follows: letC = {y < g: S, is cofinal inwa}
andD = {y < g: T,, is cofinal inwz} (hereS, and7, are defined as in the proof); as in the
proof we can find a nonzewdg in (C U D)L. Let A1 be an element off that contains
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Aq U{bg}gew U {dg}pew, and choosé, 1 so large that sufl, < 81 Or suply, < dg41
whenever € A,+1 andsS, or T, is bounded invz. The rest of the proof is essentially the
same.

The next result, from [8], provides a nice companion to Theorem 3.1.

We prove the result for the case= X, only—basically the same proof will work when
¢ =R, for somen € w. For larger values of we need assumptions liké to push the
argument through.

Theorem 3.3 (2% = ¢ = Ry). If X is compact, separable and of cardinality greater than
¢ then X mapsonto /°.

Proof. Suppose thatX is compact and thalN is dense inX. Fix a suitably large
cardinald and construct an increasing sequelidg,: o < wy) of Ri-sized elementary
substructures off (6) that areRo-covering and where alwayg: < a) € M1, put
M= Ua<w2 M,,. Furthermore by the cardinality assumptions we can ensur@fHand
M*©! are subsets af1.

Fix any pointx in X\M (becausgM| < |X|). Foreachw < wz letZ, ={F CN: F €
M, andx ¢ cl F}. BecauseZ,| < c we haveZ, € M and so by elementarity there is a point
Xq € XNM suchthafZ, = {F C N: F € M, andx,, ¢ cl F}. Fixafunctionf, : X — [0, 1]
s0 thatfy (xe) = 0 and fy (x) = 1, and seti, = {n: fo(n) < 3} andby = {n: fo(n) > 3}.
There is ag(a) < wy such that,, f,, ay andb, belong toM, ). Finally, fix a cubC in
w2 such thatx < A impliesg(a) < A wheneven € C. SetS = {1 € C: cfA = w1}.

Now apply the Pressing—Down lemma to find a stationaryrset S and a € wz so
that, for every. € T, each ofa} N My, ai- N My, b} N M; and,bi- N M, is generated by
a countable subset df/g.

By induction on. € T we prove that

{(aq.be): @ € TNA 41}

is a dyadic family. In fact, iff andK are disjoint finite subsets df then

m ag N ﬂ by

aeH aek
is not in the ideal generated . Let A = max(H U K) and suppose first thate K. Put
¥ =gen a9« N[ aek\(2) bo; theny is not contained in any member Bf.

Assume there is ahe Zg such thaty N b;, C I; theny\I belongs ta\;, ﬂbkl and hence
it is contained in & € Mg N bkl. Becauser L b, we havef,[c] C [O, %] and sox ¢ cl ¢
whencec € Zg. We have a contradiction since it now follows that 7 U c € Zg.

Next suppose. € H and puty = ﬂaeH\m ag N (Nyek be; @gain,y is not contained
in any element ofZg. Assume there i$ € Zg such thaty Na, C I; now y\I belongs to
M; Na;- and hence itis contained incee Mg Na;-. Because La; we havef[c] € [3, 1]
and sox, ¢ clc; because € M, this meansc € cl c whencec € Zg. Again we have a
contradiction because we hayec I U ¢ € Zg.



116 A. Dow, K.P. Hart / Topology and its Applications 122 (2002) 105-133

It now follows thatA{ f;.: A € T} is a continuous map fror into /7 and that the image
of X contains{0, 1}7, which in turn can be mapped oni@, 1]7. O

This result is optimal: in [11] Fedouk constructed, in the,-Cohen model, a separable
compact space of cardinality= 2*1 that does not map onttf because its weight is;.

The size of sequentially compact spaces. The next result arose in the study of compact
sequentially compact spaces (see [9] for the applications). Recall that a filter (base) of sets
in a spaceX is said toconverge to a point if every neighbourhood of the point contains an
element of the filter (base).

Lemma3.4. If X isaregular spaceand N C X hasthe property that every infinite subset
contains a converging sequence then for each ultrafilter u on N that converges to some
point of X thereisan 81-sized filter subbase, v, that converges (to the same point).

Proof. Letu be an ultrafilter orN that converges to a pointof X. Let M < H (6) be any
R1-sizedRo-covering model such that, X andx are inM. We shall prove that = M Nu
also converges to.

Since M is Xp-covering andu € M, there is an increasing chaim,: « € w1} of
countable subsets afsuch that each, is a member oM andu N M = J{uq: a € w1}.
For each € w1, there is ami, € N such thati, € M anda,\U is finite for eachlU € uy,.
By the assumption on the embeddingfn X, we may assume that, converges to a
pointx, € X. Observe that for eache P(N) N M we haveb € u if and only if a, C* b
for uncountably many.

Suppose that is an element of some open subBevf X. Let{b,: n € w} € M NP(N)
generate(W N N)= N M. Sinceu converges tar, the setW N N is a member ofu.
ThereforeN\b, is a member of: for eachn, hence there is am such that{N\b,: n €
w} C uq. It follows, then, thatug is almost disjoint from each, for all § > «. Thus,
for @ < B < w1 we haveag ¢ (W N N)L, which means tha N ag is infinite for each
B = «a. It follows that {xg: o < B < w1} is contained in the closure d¥. Since W
was an arbitrary neighbourhood efand X is regular, it follows that there is a@ such
that{xg: o’ < B < w1} is contained inW. SinceW is open, it follows thatg is almost
contained inW whenever’ < 8 < ws.

Now suppose thdic,: n € w} € M NP(N) generatesW N N)¥ N M. By the above, it
follows that, whenever’ < B < w, there is am such thatg is almost contained in, . Fix
n such thatg is almost contained in, for uncountably many). As we observed above,
it follows thatc, € u. Therefore, as required, we have shown tWatontains a member
ofv. O

Theorem 3.5. If X isaregular spacein which N is dense and every subset of N contains
a converging sequence, then X has cardinality at most 281,

Proof. Each point of X will be the unique limit point of some filter base d& of
cardinality®1. O
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Compare this theorem with Theorem 3.1, which draws the conclusiorXtisannot be
mapped ontd0, 1]%2. In fact if 2% < 282 then Theorem 3.1 becomes a consequence of
Theorem 3.5.

N* minus a point. It was shown by Gillman in [16], assuming CH, that for every point
u of N* one can partitiolN*\{u} into two open sets, each of which hasn its closure.
Clearly this show thalN*\{u} is not C*-embedded irN*. Here we present Malykhin’s
result, from [20], that establishes the complete opposite.

Theorem 3.6 (m, > 81). N* minusa point is C*-embedded in N*,

Proof. Assume thatN*\{u} is not C*-embedded; so there is a continuous function
f:N*\{u} — [0, 1] such that: is simultaneously a limit point of <~ (0) and f < (1).

Fix an increasing sequenés,: n € w} in P(N)\u such that in the case thais not aP-
point every member of meets some, in an infinite set. Now defing = {a € {c,};": a* C
f<O}andJ = {a € {ca};-: a* € £ (1)}. The idealsZ and J are P-ideals: if I is a
countable subset ¢f then applym, > Rg to find a € {c,};- with I C a*. Because: ¢ u
the functionf is defined on all of:*; it then follows that there is & C a such that’ < b+
andb* C f<(0).

Claim 1. If U € u then thereisa € 7 such that a € U (similarly there is b € J with
bcU).

Proof of Claim 1. For everyn the seta, = U\c, belongs tox, hencea; meetsf < (0)
and there is a subsé}, of a, with b} € f<(0)—here we use the well-known fact that
/< (0) is regularly closed. Now take an infinite sesuch thatb <* | J ap, for all n;
thena C U anda™ C f<(0).

m>=n

Let M be ankg-covering elementary substructureféfo), of sizeXkq, that containg, f
and{c,: n € w}.

Claim 2. If b € P(N)/fin is such that ZN M C b¥ (or 7 N M C b') then there is
UeunM suchthat U C* b.

Proof of Claim 2. Let C € b* N M be a countable cofinal set and choose for everyC,
whenever possible, ap € Z N M such that g ic. Let I € M be a countable subset &f
that contains all the possiblg; becausd is countable there ise Z N M such thatz < i
for all « € I. Note thati € b¥ N M, hence there is € C such thati < ¢; it follows that
ZN M Cc'. Note that inM there is no solution tox' € Z andx % ¢” hence there is none
in H(); it follows thatZ < ¢t. But this implies that: € u.

The claim implies that ib € P(N) meets every/ € un M in an infinite set then there are
I €eINM andJ € 7 N M that meeb in an infinite set. This in turn implies that the closed
setF = ({U*: U eun M}is contained in cf < (0) Ncl f<(1). The inequalitym, > X1
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implies thatu N M does not generate an ultrafilter, so thatconsists of more than one
point. This contradicts our assumption thas the only pointin clf < (0)ncl f<(1). O

A firgt-countable nonremainder. The final result in this section is due to Bell [3].

He produced a compact first countable space which is not a continuous image of
(equivalently: not a remainder af). We will show that such a space can be taken to

be a subspace of the following space, which is an imag&‘ofr he space is, in hindsight,

easy to describe. In the first version of this paper we started out with a generalization
of Alexandroff's doubling procedure; the referee rightfully pointed out that we were
simply working with the square of the Alexandroff double of the Cantor set. In private
correspondence, Bell points out that his original space is hot embeddable in the square of
the Alexandroff double.

Definition 3.7. Let D be the Alexandroff double of the Cantor set, i.B.= C x 2,
topologized as follows: all points df x {1} are isolated and basic neighbourhoods of
a point(x, 0) is of the form(U x 2)\{(x, 1)}, whereU is a neighbourhood of in C. Itis
well known that this results in a compact first countable space.

We letK = D x D. We shall show thé&K is a continuous image &f* and that it contains
a closed subspace thatist a continuous image afi*.

In proving thatK is a continuous image oN* we use results from [4]. We let
W = {(k,1) e N% [ < 2*} and we letr : W — N be the projection on the first coordinate.
A compact space is called asrthogonal image of N* if there is a continuous map
f:W* — X such that the diagonal magm A f: W* — N* x X is onto. Theorem 2.5
of [4] states that products af(or fewer) orthogonal images &f* are again orthogonal
images ofN*. Thus the following proposition more than shows tlfais a continuous
image ofN*.

Proposition 3.8. The space D is an orthogonal image of N*.

Proof. Let{g;: | € N} be a countable dense subsetCadind definef : W — Cby f(k,1) =
q1; observe thagf mapsW* ontoC and thatg f (u) = ¢; forall u in {(k,[): 25 > I}*. This
readily implies thapz ABf mapsW* ontoC.

A minor modification of the usual argument that nonem@tysubsets ofW* have
nonempty interior lets us associate with everg C a subsetA, of W that meets all
but finitely many of the vertical line¥, = {(k,1): I < 2¥} and such thaBf[A*] = {x}.
Now defineg: W — Wby gk +1,2]) =gk + 1,2l + 1) = (k,[) (andg(0, 0) = (0, 0));
observe thaB, = g [A,] meets all but finitely many in at least two points, so that we
may split it into two partsC, andD,, each of which meets all but finitely marig.

Now we turn the mapsf o g: W* — C into a map fromW* to D: every point
of D will be mapped to(x, 1) and the points: of W*\J, D} will be mapped to
((Bf o Bg)(un), 0). Itis straightforward to verify that the malp thus obtained withesses
thatD is an orthogonal image o§*. O
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Theorem 3.9 (2% = ¢). The space K has a compact subspace X that is not an image
of N*.

Proof. We obtainX by removing a (suitably chosen) set of isolated points fidm\e
enumerateC as{r,: o < ¢} and we use our assumptiofi’2= ¢ to enumerate the family
[w1]™ as{A,: « € ¢} with cofinal repetitions. The set of isolated points that we keep is
{{{ra. 1), (rg,1)): a ¢ Ag or B ¢ Ay}. Furthermore, we let/,, be intersection o with

the clopen ‘cross’

D x {(re, D} U {{ra. 1)} x D.

Note that then for alle one hasA, = {£ € w1: Us N U, = 0}.

Now suppose thaf is a mapping ofN* onto X and for eachx € ¢ fix a representative
aq €N for f<[U,]. Observe that thug, = {§ € w1: ag N a, =" ¥}. Fix anR;-sized
Ro-ideal subalgebr#® of P(N)/fin that containgas: & € w1}.

For eachb € B let S, = {£: a¢ < b} and picka € ¢ such that bottf,\ A, ands, N A,
have cardinalityt; whenevers, has cardinalityt;. Now B N a;- is countably generated
and it contains the uncountable $et: & € A,}; it follows that there is & < aj; such that
Sy is uncountable. But now pick arfye Sy\A,. Thenag C* b C* aj; yetag Nag #* P—

a clear contradiction. O

4. Other cardinal invariants

In this section we relaten.(B) to other known cardinal invariants of Boolean Algebras;
we have already connected, to the idea of reaping. We formalize this idea in the
following definition, which is analogous to the cardirah P (N)/fin (see [5,1]).

Definition 4.1. A subsetA of a Boolean algebr® is reaped by the elemenb € B, if b
and its complement meet every non-zero element.ofhe cardinat(B) is defined as the
minimum cardinality of a subset of B that is not reaped by any element®f

Our discussion after Definition 2.9 therefore establishes the inequéhty> m.(B).
The other half, so to speak, of; is provided by the proper analogue, for arbitrary Boolean
algebras, of the cardinal numixer

In [6] van Douwen showed thatis equal to the number from the following definition.

Definition 4.2. If D C w® and A C [w]™ then D is said todominate on A if for each
g € w® there arel € D anda € A such thag(n) < d(n) for eachn € a. The cardinab; is
defined as

22 =min{|A| +|D|: A € [w]", D € »” andD dominates om}.

To find a natural analogue of the cardinal invariapnin a general Boolean algebra we
proceed along the lines of Rothberger's work on the cardibi@ad 0. For this we say
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that an idealZ in a Boolean algebra is co-generated by a setS if Z = S*. We will

say thatZ is countably co-generated if there is a countably infinite set that co-generates it
but, in order to avoid cumbersome consideration of cases, no finite set co-generates it. The
cardinal invariand is naturally equal to the minimum cardinal of a cofinal subset of any
countably co-generated non-principal ideaHR(N) /fin and likewiseb is the cardinal of an
unbounded subset of a countably co-generated non-principal id@&Nyy fin—this is so
because any countably co-generated ide& (i) /fin is naturally isomorphic to the ideal

in P(w x w)/finthat is generated by the set of the form

Ly={(m,n): mew, n< f(m},

wheref € w®.

Proposition 4.3. If Z € P(N)/finisa countably co-generated ideal then d2 is equal to the
minimum cardinality of a subset .7 of Z such that no member of Z meets every member
of 7.

Proof. Given A and D let 7 be the set of graphs | a, whereg € D anda € A. Observe
thatg [ a is disjoint fromL iff f(n) < g(n) foralln ea.

Conversely, given7 construct for each/ € J a function g; with domaina; =
{m: 3n) ((m,n) € J)} whose graph is contained ih. Clearly if Ly N J =@ then
gin)> f(m)forneay. 0O

It is clear that this proof uses a lot of the underlying structur@ @¥) /fin; one cannot
hope to do something similar for arbitrary Boolean algebras.

Definition 4.4. For a Boolean algebrA, let 02(B) be the minimum cardinat such that
whenever? is a countably co-generated ideal Bfand A is a subset of of cardinality
less tharx, there is & € 7 that meets each member 4f

We get the following characterization of.(B), with the immediate corollary that
m, = min{t, 0}.

Theorem 4.5. If B isa Boolean algebra with m.(B) > Rg then m.(B) is the minimum of
t(B) and 02(B).

Proof. We have already seen thaB) > m.(B).

Let Z be co-generated by the countable Setnd let7 be a subset df of cardinality
less thamm.(B). By our assumption om.(B) the setA = S U J has cardinality less than
m.(B) as well so that it i%g-ideal complete. There is therefore an elemiegnf B such
thats < b for all s € S and such thab reaps7; thend’ is an element of that meets all
elements of7. Thuso2(B) > m.(B).

Next let A be a subset oB, of size less than botl(B) andv2(B). Let S and T be
countable subsets af with § 1. T and divideA into three subsetsi g, the set of elements
a for which there is a finite subsét of S such that: < \/ F; the setAr, defined similarly,
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andA,, therest ofA. Applyingm.(B) > Rg we find for each: € A, a honzero elemert,
belowa that is in(As U A7)+ and we findb € B such thatS € »¥ andT C b1. Because
|A| < 02(B) we can findby < b andby < b’ such that

e b1 L Sandforalla e A, if bNb, #0thenbyNb, #0, and

e bo L T andforalla € A, if b’ Nb, #0.thenba N b, #0.

BecauseA| < t(B) we can finde1 < b1 that reaps all possible; N b, and likewise we
can findcz < ba. Finally thend = b N ¢} N ¢ is as required in the definition ¢fp-ideal
completeness. O

Remark 4.6. We can now see that,. = ¢ does not imply MAountabie indeed, it is well
known that in the Laver model MAuntablefails but that als@ =t =«c.

5. General structureof (81, 8g)-ideal algebras

In this section we explore the general structure (8f, ¥g)-ideal algebras. It is
straightforward to check that “being a&p-ideal subalgebra of” is a transitive relation.

Proposition 5.1. If A isan Rp-ideal subalgebra of B and B is an Rg-ideal subalgebra of
C, then A isan Rp-ideal subalgebra of C.

We have already mentioned Par&emnko’s theorem that under CH the alge®@) /fin
is the uniqug1, Ro)-ideal algebra withm, = ¢. This leads us to the following definition.

Definition 5.2. A Boolean algebraB is Cohen—Parogenko if B is (x, Rp)-ideal and
m¢(B) =c.

In the special case when= X, we have a convenient characterization in terms of well-
orderings at our disposal.

Proposition 5.3. If ¢ = Ny then an algebra B of cardinality ¢ is Cohen—Parovicenkoif and
onlyif for each enumeration B = {b,: o € wz} theset of A € wy for which B, = {by: a € A}
is both an Rp-ideal and an Rp-ideal complete subalgebra is closed and unbounded in ws.

The reason for adding the prefix ‘Cohen’ is contained in the following proposition,
which together with Theorem 5.5 gives a ‘factorization’ of Stey® characterization of
P(N)/fin (Theorem 2.13). The proposition itself combines Theorem 2.7 and Proposi-
tion 2.12.

Proposition 5.4. In the Cohen model P(N)/fin is Cohen—Parovicenko.

The following theorem combines Paréenko’s and Stepins’ theorems into one. We
have been unable to find any sort of similar result in the case that,.
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Theorem 5.5. If ¢ < Ry, then all Cohen—Parovitenko Boolean algebras of cardinality ¢
are pairwise isomorphic.

To show that this theorem is never vacuous we now consteuish)-ideal algebras with
prescribedn.-numbers, including. Thus we see that the idealness of an algebra has no
bearing on itsm.-number. By contrast, a careful inspection of [13, Proposition 2.3 and
Corollary 2.4] will reveal that ifP(N) /fin is («, Ro)-ideal and dfc ] = « thenm, > «,
thus showing thain, = ¢ in caseP(N)/fin is (x, Rp)-ideal and there are cofinally mary
below ¢ with cf[x]¥° =«.

Theorem 5.6. For each regular cardinal « < ¢ such that cf{«x]™° = «, there is an algebra
of cardinality ¢ that is (%, Rg)-ideal and has « asits m.-number. Thus, if ¢ isregular then
there is Cohen—Parovicenko algebra of cardinality c.

We split the construction into two propositions.
Proposition 5.7. Thereisa (x, Xpo)-ideal algebra B of size ¢ with m.(B) > «.

Proof. We obtainB as the direct limit of a sequeng¢B:: &€ < u}, wherep is the ordinal
¢ -k if k < candu = ¢ otherwise.
We begin by lettingBp be the two-element algebra. At limit stageset

B: = lim n<eBy.

Carry an enumeratior({Se, T¢): & € u} with cofinal repetitions, of pairs of countably
infinite subsets oB so thatS; U Tz € Bg andS; LT for all £. For simplicity, assume that
S¢ and T are strictly increasing sequences (if infinite) or singletons (if finite, where an
empty set may always be replaced{ioy).

To constructBs 1 from B first take the completios; of B: and in it we define: and
te by s =\/ Sz andr; =\/ T¢; note thatss < ;. There are two cases to consider.

If s¢ <t then we letB: 1 be the subalgebra oﬁg generated by the diagonal
{(b,b): b € Bg} and the elemenb: = (s, t£). Observe thafsg, tz) does exactly what
is required in Definition 2.9—witld = Bg, S = S¢ andT = T;. Also observe thaBg is an
No-ideal subalgebra aB:11: a typical elemenb of Bz 1 looks like (bg A ag) v (bé Aai)
and from this it is easily seen that the countabledset {(s Aag) V (t Aa1) V (agAai): s €
Se, t € Tz} generates¥ N Be: if a < b thena < ag v a1 and so we have to covera a}
(which is belowbs A ap), a A ag (Which is belowb/S Aai) anda A ag A az.

If s¢ =1z then this still works ifS; andT: are both infinite or both finite but not if,
say, St is infinite andT is finite, for then we seek an element such thats < bg < 1
for all s € S;—note that in this cas@; = {r;} and thatt; belongs toB;. To remedy
this we take the Stone spacé: of B: and consider the closed s€t = s¢\ | St.
We let Bgy1 be the clopen algebra of the subspage= (X¢ x {0}) U (C¢ x {1}) of
Xe x {0,1}. Observe thabs = sz x {0} does what we want: for everye Sz we have
s < bg < tg, because; now corresponds td: U (Ce x {1}). A typical elementb of
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Bg 1 now looks like (bg A ag) V (cg Aa1) vV (té A ap), wherecg = C¢ x {1}—Dbecause
C: C s we haveb € B iff we can takeag = a1. As above, we can verify that, =
{(s Aag) Vv (t: Aa1) vV (té Aap): s € St} generatedt N Bg. If a < b thenté Na <tg Aa,
S0 we concentrate an' =a Atz = (a Abg) v (a Acg). Nowa' A aj <bg, so there is an
s € Sg abovea” A a}. For thiss we havea < (s Aao) V (ts Aa1) v (1} A ag).

We shall refer t& as of type 0 if we simply adjoifs:, #¢); the othert will be of type 1.

It is straightforward to check thah.(B) > «: if |A| <« then A C B, for somen
and if § andT are countable subsets df with S | T then there is & aboven with
(S, T) = (S, T¢); the elemenb is as required for, S andT.

We show thatB is (x, Rg)-ideal by showing tha¥ N B is Rp-ideal in B whenevemM is
an elementary substructure Bf(c™) with ((Sg, T¢): § < ) and(Bg: & < p) bothinM,
and with|M| less tharc and regular.

Let b € B\M, takee € b¥* N M, and fix thes and ¢ for which b € Bs,1\Bs and
e € Bz 11\ Be respectively.

Claim 1. If& # § thenthereisana € A, withe <a.

Proof of Claim 1. If & < § thene € Bs and we are done.

If £ > 6 we consider two cases. ¥ is of type 0 ande = (bg A eg) V (l/S A e1) then
eoAb € bg, henceeg A b" < t for somer in Tg; likewiseer A b" < s for somes in Sg. But
thene < (eg A ') v (e1 A s") < b, where the middle element belongsag; it follows that
thereis am € A, with e < a.

If & is of type 1 ande = (bg A eg) V (ce A e1) V (té A €2) thentg A ez belongs to
Bg, so we concentrate on the other partsefand we assumey, e; < ;. Observe that
be ANeg < 1 Aeg < b: use the fact that € B:. Nexter Ab’ < be, so thatthere is € Sg with
e1nb’ <sandhences nep < s’ Aep < b. We see that < (1: Aeg) Vv (s' Ae1) V(té Ae2) <
b, where the middle element belongsRg; again we can find our € A, with e < a.

This claim essentially takes care of the cageM : by our obvious inductive assumption
we have for every: € A, a countable generating sé€t, for a¥ N M. By the claim the
countable se€), = UaeAb C. generatedt N M (note thatt € M, SO& #§).

To fully finish the proof we must show what to dodife M. The setC,, still takes care
of thee with & # §. The following two claims show what to add &, in order to take care
of thee with £ =§.

Claim 2. If § isof type 0, e = (bs A eg) V (bs A e1) and b = (bs A ag) V (bg A ay) then
thereare co € Cy and c1 € Cy,y suchthat e < (bs A co) V (b A c1) < b.

Proof of Claim 2. Simply observe thats A e; € af NMfori=0,1.

We see that we must ad¢bs A co) V (b5 A c1): co € Cag, €1 € Cyy} 10 Cp.
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Claim 3. If 5 is of type 1 and e = (bs A eg) V (cs A e1) V (t5 A e2) and b = (bs A
ao) V (cs A a1) V (t5 A az). Then there are co € Cyy, c1 € Cyy and ¢z € Cg, such that
e < (bs Aco) V (cs Ac1) V(15 Aca) < b.

Proof of Claim 3. Simply observe thals A eg € aé NM,cs Nej € all N M andtg A ez €

a3 N M. Now add{(bs A co) V (c5 A c1) V (t§ A €2): co € Cag, €1 € Cayy €2 € Cap) 10

Cp. O

Note that if« = ¢ we are done: the algebi is (%, Xp)-ideal withm.(B) = ¢. In the
case where < ¢ we use the cofinality assumption to find a subalgebrA @fith the right
properties.

Proposition 5.8. If ¥ < ¢ then the algebra B constructed in the proof of Proposition 5.7
containsan algebra A of cardinality ¢ withm.(A) = «.

Proof. We fix a cofinal subfamily{Y,: a < «} of [k]*° with ¥, C « for all «. We
also assume that, for every < «, all ordered pairs(S, T) with S,T C B, occur
in the list {(S¢, Tz): ¢-a < & < ¢ (¢ + 1)}. This enables us to choose, recursively,
Ay € [c-a, ¢ (@ + 1)) such thatS,, = {by,: B € Yo} and T, = {O}. Note that then
bry < b, wheneves € Y. In what follows we abbreviatg, , by p, .

Because th&, form a cofinal family in[«]%°, the family {p,: @ < «} is Ro-directed,
i.e., if F C « is countable then there is arsuch thafpg < p, for all 8 € F. It follows that
I ={b: (3a) (b < py)}is aP-ideal. We setF' = {b’: b € I} and consider the subalgebra
A =T1UF of B. ltis clear thaim.(A) < «: no element ofA reaps the family{p,: a < «}.

To showm,(A) > « we take a subalgebrB of A of size less tham and countable
subsetsS andT of D with S1T; we assume andT are increasing sequences. Also, fix
o < k such thatD € B, and for everyd € D there isp < a with d < pg ord’ < pg.

If some member o5 or T belongs toF then anyb € B that withesses this instance of
No-ideal completeness @ in B automatically belongs td.

In the other case, whehU T C I, we can assume th&}, contains, for every € SUT,
ap suchthat: < pg; butthenSUT C pi. Also note thafp, meets every nonzero element
of B;, and hence oD. Now choose; € [¢ - «, ¢ - (¢ + 1)) such thatS, = S U {p,} and
T, =T.lLetdeD ﬂbj; there is ans € S with d <s v pl,, thend A s’ < p,, and so
d As' =0 whenced < s. We see thaF generateﬁj N D and, similarly, tha” generates
by N D.

We finish by showing thatt is (x, Ro)-ideal. The notatiom* will always mean the set
computed inB. Let M be any elementary substructuref@fc*) of regular size less than
¢ such that(Bs: & < ) and(ry: « € k) are members oM; this ensures tha/ N B is
anRo-ideal subalgebra aB. We shall show that for ang in B, the idealb' N (M N A) is
countably generated; we denote the countable generating set, when fouttiAby

Fix 8§ < u so thatb € Bs.1\Bs and assume we have found”-4 for all a € Bs. By
Claim 1 in the proof of Proposition 5.7 the dgf, . ,, a™* takes care of akt € b* N (M N
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A), except possibly those iB; 1\ B;. In particular we can sét" 4 =, ,, a"** when
§¢ M.

Thus we are left with the case wheYe M. Ifthereisare e bY N M N F thenC, N F
generates' N M N A, whereCy, is as defined in the proof of Proposition 5.7. In the other
case, wheré' N M N F = ¢, we add

{(bs A co) v (b A c1): coeaéw’A, cleaiw’A}

to bM-4 if § is of type 0 and we add
{(bs A co) v (cs Ac) v (15 A c2): co eaéw’A, c1€ aiw’A, cr€ aéw’A}
if 8 is of type 1.

Indeed, ife € b¥ N (M N A) thene belongs tol N M and hence so deA bs ande A by.
Note thate A bs < ap ande A by < a1 so that there areg € a”* ande; € a3 with
e Abs < co < ag ande A by < c1 < ay respectively.

If 6 is of type 1 then we observe thai bs, e A ¢s ande A t5 all belong tol N M and
are belowug, a1 anday respectively. O

Mapping F-spacesonto SN. Every compact'-space contains a copy giN: it follows
straight from the definition of -space that the closure of a countably infinite relatively
discrete subset is homeomorphica®l. Thus, in a manner of speakingN is a minimal
F-space. Bell has asked whetlfd¥ is also minimal in the mapping-onto sense: does every
infinite compact zero-dimension&tspace map ont8N? The ease with whiciN can be
embedded into such a space belies the dual difficulty in constructing an embedding of
P(N) into its algebra of clopen sets. Indeed, we show by means of a Cohen-deautavi
algebra that such an embedding does not always exist. Before that we prove that Bell's
question has a positive answer if the Continuum Hypothesis is assumed.

Proposition 5.9 (CH). Every infinite compact zero-dimensional F-space maps onto SN.

Proof. It suffices to prove thaP(N) will embed into B where B is infinite and has no

(w, w)-gaps. Fix any sequende,: n € w} of pairwise disjoint non-zero elements Bf

Let {ay: o € w1} be an enumeration ¢?(N) so thata,, = {n} for eachn € w. Inductively
choose elements, € B so that the mapping, — b, lifts to an isomorphism from the
algebra generated lyg: 8 < o}. If a4 isin the algebra generated by its predecessors then
there is nothing to do. Otherwise, by the inductive hypothesis, the iigmnerated by
{bg: ag < aq} is disjoint from the ideal7 generated bybg: ag A a, = 0}. SinceB has no

(w, w)-gaps, there is &, € B such thatZ C bi andJ C bj. O

Theorem 5.10. It isconsistent that thereis an infinite compact zero-dimensional F-space
that does not map onto SN.

Proof. Itis consistent witht = X, thatP(N)/fin contains anw,-chain, this happens, e.g.,
if MA holds. But now letB be the Cohen—Pardienko algebra from Theorem 5.6. Clearly
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S(B) is a compact zero-dimensiongtspace. Assume thgt mapsS(B) onto SN and let

b, = f < (n) for eachn. Now letZ be the ideal inB generated by{b,: n € w}. By the
forthcoming Corollary 5.18/7 is still (81, Rp)-ideal and so, by Proposition 2.5, does not
contain anwz-chain. HoweverB/Z is isomorphic to the algebra of clopen subsets of the
closed se\ | J,, b, = f < (N*) and certainly does contaimp-chains. O

This proof does not work in th&,>-Cohen model, wheré (N)/fin is the Cohen—
Parovtenko algebra. We therefore ask, also in the hope of establishing the consistency
with —=CH of a yes answer to Bell's question, the following.

Question 1. Is it true in theX>-Cohen model that every compact zero-dimensianal
space does map ongiN?

Quotient algebras. Under CH one can use Pardenko’s theorem to find many copies of
N* inside of N*: the proof usually boils down to showing that a quotienfalN) /fin by
some ideal is isomorphic t8(N)/fin. The same can be done in the Cohen model because
many quotients of Cohen—Parodenko algebras are again Cohen—Parewko. First we
consider quotients by small ideals.

Lemma5.11. If B isa Boolean algebra, A is an Rp-ideal subalgebra, and Z is an ideal
whichisgenerated by Z N A, then A /7 is an Rp-ideal subalgebra of B/Z.

Proof. Fix any b € B and fix a cofinal sequenda,: n € w} Cbh' N A. Letc € A be
such thatc/Z < b/Z, which means that\b is covered by some membérof Z N A. It
follows then that\d < b. Hence there i such that\d < a, < b. But now it follows that
c/T<a,/Z. O

Corollary 5.12. If Z isan X1-generated ideal in a (k, Rg)-ideal Boolean algebra B, then
B/Z isalso a (k, ¥p)-ideal Boolean algebra.

Another interesting consequence is thgtis not the image of the Stone space of an
(N1, Rp)-ideal algebra.

Corollary 5.13. The algebra P(w1)/fin cannot be embedded into an (X1, Ro)-ideal
algebra.

Proof. This proceeds much as the proof of Theorem 5.10 sihge;) /ctble is a quotient
of P(w1)/fin by anXi-generated ideal and contaias-chains. O

Corollary 5.14 (—CH). If B is Cohen—ParoviCenko and Z is an X1-generated ideal then
B/ isagain Cohen—Parovicenko.

Proof. It remains only to prove that.(B/Z) = ¢. To do so, fix countable subsefandT
of B so thats At €T for eachs € S andr € T. SinceS andT are countable it is routine to
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recursively remove from each member$SandT some member of so as to ensure that
s At =0 foreachs € S andr € T. Now suppose that is a subalgebra aB that contains
S andT and has cardinality less thanWe may assume that contains a generating set
for Z. SinceB is Cohen—Parotenko there is & € B such thatS generates’ N A andT
generates N A. Now suppose:/Z is belowb/Z, i.e.,a\b € Z. SinceA N T generates
Z, there is ac € ANZ such thata\b < c¢. Thusa\c < b and so there is a finite join,

of members of§ such that:\c < s. It follows that{s/Z: s € S} generatesb/Z)* N A/Z.
Similarly (b/Z)* N A/T is generated byt /Z: t € T}. O

Another situation that occurs frequently is that one has a lifting for the ifetdis is
a Boolean homomorphisin B/Z — B with the property that(b/Z)/Z = b/Z. In dual
terms this means that the closed get= S(B)\ | J{i*: i € Z} is a retract ofS(B). The
retractionr and the lifting/ are connected by the formul&/Z) = r < [b* N F] for each
b e B.

Theorem 5.15. If 7 is an ideal on B for which there is a lifting /: B/Z — B then for
each Rp-ideal subalgebra A of B such that /[[A/Z| C A the quotient A/Z is an Rp-ideal
subalgebra of B/Z. Therefore, if B isan (k, Ro)-ideal Boolean algebra, then sois B/Z.

Proof. Let A be an®g-ideal subalgebra oB such that[A/Z] C A. Fix anyb € B. We
will show that (b/Z)* N A/T is countably generated. In fact, suppose thgt n € w}
generates(h/Z)¥ N A. Fix anyx € A such thate/Z < b/Z. By assumptiony ™ = /(x/7)
is also a member of. Furthermoré(x/Z) < 1(b/T), hence there is ansuch that T < a,,.
Clearly themx/Z =x1/Z <a,/Z. O

6. Other remaindersand applicationsto N*

We say that a zero-dimensional spakeis Cohen—Parogenko if its algebra of
clopen sets is Cohen—Parbenko. In this section we are interested in identifying
which remainders ofr-compact locally compact spaces can be Cohen—Ranko; by
‘remainder’ we mean th€ech—Stone remaind@tX\ X—commonly denoted by *. We
then apply this information and the results of the previous section to the stidywider
the assumption that it is Cohen—Pax@nko. We are motivated by the somewhat classical
results abouN* that are known to follow from CH (see [21]). The predisposition of this
section is to assume thB* is Cohen—Parogenko and to determine how this affects the
structure ofN* and of other remainders.

Inwhat follows, wheneveX is a zero-dimensional compact space, we wtit€X), t(X)
ando2(X) for the values that these functions have on the Boolean algeb¢Z Ya8d clopen
subsets o. We first prove a lemma concerning the behaviowoéndt under continu-
0ous mappings.

Lemma 6.1. If f:X — Y is an open continuous surjection then 92(Y) > 02(X) and
oY) <v(X).
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Proof. LetZ be an ideal of CQY), co-generated by the family,,: n € w}, and letA be
a subfamily ofZ of size less than,(X). In CO(X) we can find an elemerit such that
bN f< eyl =0 forallnandbn f<[a] £ @ forall a € A. Because the map is open the
set f[b] is clopen, it also belongs tb and it meets every element af

Next letC be a family of clopen subsets &f, of size less thar(Y). Becausef is open
the family { f[c]: ¢ € C} consists of clopen sets and so we can firdl CO(Y) that reaps
it. Then f < [b] reaps the family. O

Our first result is somewhat surprising. It implies that if CH fails then most remainders
are not Cohen—Paraenko. Recall that a spacehiasically disconnected if each cozero-set
has clopen closure—dually: the algebra of clopen subsets is countably complete. Unless
stated otherwise the spaces we are considering are all zero-dimensional.

Proposition 6.2. Let X bethetopological sum of countably many compact spacesthat are
not basically disconnected. If itsremainder X* is (81, Rp)-ideal then o = R3.

Proof. Write X =, ., X» and fix for eachn an infinite family {a(n, m): m € w} of
pairwise disjoint clopen sets &f, so thatD,,, the closure of their union, is not open.

Assume thaiM is anRg-covering elementary substructure of sor&) of sizeR that
containsX and the family{a(n, m): n,m € w}. We show that¥ N N is cofinal inNY.
Let f:N — N be a strictly increasing function not . We findg € M such thatf < g.

Let b = U{a(n,m): m < f(n)}; observe thab is also not inM. We take a countable
subfamilyC of M N CO(X) that is cofinal inb N M—this means that N b is compact
for all ¢ € C and that whenevef € M andd N b is compact there is € C such that the
differenced\c is compact.

There are two cases to consider. If there isaC such that the set. = {n: (Am) (cN
a(n,m) # )} is infinite then we are done. Indeed, define M by A(n) = min{m: ¢ N
a(n™,m) # 0}, wheren™ = min{l > n: [ € I.}. Because: N b is compact there is ah
such that Na(n, m) = @ wheneven <[ andm < f(n). It follows that forn > [ we have
h(n)=h(m™) > f(n™) > f(n). Now defineg by g(n) = max{h(n), f(n)}; this g belongs
to M because it is a finite modification éfand it is as required.

In the other case, wherk is finite for all ¢, we may assum€ € M: indeed, take a
countableD € M with C € D and replace&” by the set of elements of D for which I
is finite. By subtracting a compact part from eaclwe can also assume that everys
disjoint from everya (n, m).

But now from an enumeratiofa,,: n € w) of C (that is in M) we define the clopen set

C:U{Xnﬁ(cou-~-Ucn): nea)}.

It follows thatc is in M Nb+. Now for each:, D, Nc is empty, butD, is not equal taX,,\c
sinceD,, is not open. Therefore, there is some M N b+ such that C 4 and, for each
n,d N X, \c is not empty. It follows that/\ ¢, is not compact for an¥ and so{cx: k € w}
is not a generating set fér- N M. Therefore this case does not occur
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Theorem 6.3. (—=CH)If X =&p, ., X, isthetopological sum of countably many compact
gpaces that are not basically disconnected then the remainder of X is not Cohen—
Parovicenko.

Proof. Choosex, € X, for all » and observe thatD = cl{x,: n € w} N X* is
homeomorphic tdN*. The map that send,, to the pointx, induces an open retraction
from X* onto D. It follows that? > 02(X*), so if CO(X*) is (81, Rg)-ideal then, by
Proposition 6.2, we gab(X*) =R1 <¢. O

Remark 6.4. Clearly it follows from the previous result thatlif* is Cohen—Parotgenko
and CH fails thenw x (@ + 1))* is not homeomorphic te*. Using this fact and tracking
the location of both clopen and nowhere defsset copies oN* in their remainders, one
can easily show that, in additiom,x (w + 1) andw x (w?+ 1) do not have homeomorphic
remainders either.

It is also worth mentioning the following result since it has already found applications
in Functional Analysis, see [10].

Corollary 6.5. (—CH) If P(N)/finis Cohen—Parovitenko and C is a non-compact cozero
set in N*, then the closure of C isnot a retract of N*.

Proof. Let C be a non-compact cozero subselNdt It follows thatC is a countable union
of compact open subsetsif and, as is well known, that the closure®fs just itsCech—
Stone compactification. Now if the closure were a retradNof then its clopen algebra
would be an(X1, Rp)-algebra. The boundary af, which is homeomorphic t@C\C,
is a Gs-set in the closure o€'; hence its clopen algebra is also @, Rp)-algebra by
Lemma5.11.

However, no clopen subset 8f is basically disconnected so by Proposition 6.2 we
haved = R;. But we assumed that, and hence was equalta. O

With the previous results in mind it is tempting to hope thatdfecompact locally com-
pactX andY, if X* andY* were homeomorphic theX¥ andY would be homeomor-
phic-modulo-compact-sets in some sense. For example, we do not kigew i2*)* and
(w x 2*1)* are homeomorphic in the Cohen model.

We do however know of other spaces whose remainder is Cohen-&amkei The proof
of this fact is a rather interesting use of the basic results we have developed about Cohen—
Parovienko algebras. Recall that the Gleason cover or absolute of a compactsace
denoted byE (X) and thatE (X) is just the Stone space of the complete Boolean algebra
of regular open subsets af. We write E,. for w x E(2¢).

Lemma6.6. Let X =P, .,
spaces. Then 02(X*) = 0.

X, bethetopological sum of basically disconnected compact
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Proof. Lemma 6.1 gives us > 02(X*). To prove the other inequality we take an ideal

in CO(X™) that is co-generated by a strictly increasing sequence. Translating this into
CO(X) we get an increasing sequen@®,: k € w) of clopen sets inX such that for alk

the differenceCy 1\ Cx is not compact (for convenience we assufige= ), and the ideal

Z in CO(X) consisting of those sef8 for which every intersectio® N Cy is compact.

For everyn,k € w puta(n,k) = X,, N (Cxr+1\Cx). This transforms the; into an
increasing sequendey: k € w) of subsets of the countable sét= {a(n, k): n, k € w},
wherecy = {a(n,l): n € w, [ <k}. To everyD € T correspondsthe sep ={a € A: DN
a # {}; observe that p N ¢y is finite for eachk. Because eachi,, is basically disconnected
the setsD,, = cl|J, a(n, k) are clopen (maybe empty); we ptit= X\ | J,, D».

Let 7 be a subfamily off of size less tham and consisting of non-compact sets. Fix
an infinite subset of A such thatd N ¢ is finite for all k and such thad N xp is infinite
wheneverD € 7 andxp is infinite. Finally putC =Y U | Jd. ClearlyC N Cy is compact
for everyk. If D € 7 andxp is finite thenD N'Y is not compact; ifxp is infinite then
Dn|Jd is not compact. O

Remark 6.7. A similar result does not hold far. Indeed, consider the spaég; a clopen
set in its remaindeE; is determined by a clopen set 8, itself. In turn a clopen subset
of E, is determined by a regular open subsetok 2¢ and it is well known that such a
regular open set depends on at most countably many coordinates. Thisaifamily of
fewer tharnk many clopen sets i} then we can find ar € « such that no element ¢f
depends om. But this means that the clopen set< 7 (0) (or rather the clopen subset
of E} determined by it) reaps the famify We deduce that(E}) > « and hence that, for
exampler(E?) > vin models where > .

Theorem 6.8. For each cardinal « < ¢, theremainder of E, is Cohen—Parovicenko iff N*
is Cohen—Parovicenko.

Proof. We start out by observing two partial equivalences.
Clam 1. 2 =ciff 02(E}) =c.

Proof of Claim 1. By Lemma 6.6 we know that(E;) =0 for all «.
Claim 2. Thealgebra CO(E}) is (*, Rg)-ideal iff P(N)/finis.

Proof of Claim 2. This follows by applying Theorem 5.15 twice. Fir8¥ is easily seen

to be aretract o}, soP(N)/finis (x, Ro)-ideal if CO(E}) is. SecondB E, is a separable
extremally disconnected compact space and hence can be embedded as fétrat that
CO(BEY) is (x, Bo)-ideal if P(N)/fin is and, by Corollary 5.12, so is the clopen algebra
of E}.

We would be done if we could also proveE}?) = v but by Remark 6.7 we know that
this cannot be done. We circumvent this difficulty by showing thato if P(N)/fin is
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(%, Np)-ideal. This will follow from the following technical lemma, which is in the spirit
of Proposition 2.3 of [13], whose content was explained just before Theorem 5.6.

Lemma6.9. If x <0 and P(N)/finis (k, Rg)-ideal thenalso x < t.

Proof. It suffices to show that itM < H(6) is Rg-covering, of sizex and such that
M N P(N) is Ro-ideal in P(N) then there is am € P(N) that reapsM N [N]%¥0. By van
Douwen’s characterization af (see Definition 4.2) there ig € "N such that for every
x € M N[NJ® and everyg € M N NN there is ann € x such thatf(n) > g(n). Fix
a countable subset of M N NN such that for every subsetof N x N with a € Ly
there isc € C such thata € L.. As we can assum€ € M and becaus&/ knows that
C is countable we can fing € M N VN such thatc <* g for all ¢ € C. We claim that
r={n: f(n) > gn)}is as required.

Now letx € M N[N]™; the choice off implies that- N x is infinite. To show that’ N x
is infinite consider = L, N (x x w). Clearly there is ne € C witha C* L., hencez\L ¢
is infinite; this gives infinitely many with g(n) > f(n). O

Remark 6.10. Many of the foregoing consequenceshdf being Cohen—Paro&enko do
need the assumption 6fCH. For example, it is shown in [7] that a homeomorphism
between nowhere densk-set subsets oN* can be lifted to a homeomorphism on
N*. In addition, Stens [23] proves that alP-points can be taken to one another by
autohomeomorphisms &f* in the Cohen model (and it appears that only the assumption
thatm, = X, = cis used). However we can provide the following elegant contrasting result.

Proposition 6.11. If ¢ = 8, and if N* is Cohen—Parovicenko then there are two P-setsin
N*, of character ®1 and X respectively, that are both homeomorphic to N*.

Proof. Using Theorem 6.8 we see thé} is Cohen—Parogenko. We may therefore apply
Theorem 5.5 to deduce thiit and E¥ are homeomorphic. Now fix one pointin E(2°);
the set(w x {x})* is a P-set of character in E} and clearly homeomorphic fi§*.

To get aP-set of character; we take a strictly decreasing chain,: o < w1) of
clopen sets ilN* whose intersectiod is nowhere dense iN*—see Remark 2.11 for the
construction. Clearly then is a P-set of characteR,. The ideall generated by the family
{a): « < w1} is R1-generated, so by Corollary 5.14 the algelfP4N)/fin)/Z is Cohen—
Parovienko and hence isomorphic®(N) /fin. Its Stone space ig, which consequently
is homeomorphict®N*. O

7. Problems

Other reals. The Cohen model is probably the most intensively investigated model of
—CH of all; this may explain our success in extracting key featurg3(®f) /fin andN* in

that model. It would be of great interest if a similar thing could be done for other familiar
models of-CH.
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The Laver and Sacks (also side-by-side) models are particular favourites of the authors
but the Random real model seems the most likely candidate for a successful investigation.

Characteriziing P(N)/fin. Theorems 2.13 and 5.5 lead one to hope that there is a
characterization ofP(N)/fin in any Cohen model. As first steps on the way to such a
result we ask the following questions.

Question 2. Is, in theRz-Cohen modelP (N) /finthe unique Cohen—Pard@anko algebra?
Or, more generally:

Question 3. If ¢ = X3 are then all Cohen—Par@énko algebras of cardinalityisomor-
phic?
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