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Abstract

We prove that if every family in(ωω,6 ∗) of size less thanc is bounded then there exists a pointp

in Q∗ such thatp generates an ultrafilter in the set-theoretic sense onQ and such thatp has a base
consisting of sets that are homeomorphic toQ. This is a partial answer to Question 30 (Problem 229)
in (Hart and van Mill, 1990). 1999 Elsevier Science B.V. All rights reserved.
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1. Gruff ultrafilters

LetX be a metrizable space without isolated points. We shall call a pointp of theČech–
Stone remainderX∗ gruff if it generates an ultrafilter on the setX; conversely, an ultra-
filter on the setX will be called gruff if it has a base consisting of closed sets of the spaceX.
Thus we are able to speak unambiguously about gruff ultrafilters onX.

It is easily seen that every point inX∗ that contains a discrete set is gruff. On the other
hand, there is no gruff remote point, as every gruff ultrafilter contains a nowhere dense set.
E. van Douwen in [2] studied the question whether there can exist a gruff ultrafilter which
does not contain a scattered set; such an ultrafilter is said to becrowded. One of the reasons
for this is that such ultrafilters provide examples of particularly nice points ofX∗ that are
totally non-remote: ifp is a crowded gruff ultrafilter and ifA ∈ p then there isB ∈ p such
thatB is nowhere dense inA.

It is not difficult to see that there are no crowded gruff ultrafilters on the real lineR:
Every closed non-scattered set is of cardinalityc and so a crowded gruff ultrafilter would
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be uniform and would therefore be generated by more thanc sets. However,R has onlyc
closed sets, so no family of closed sets can generate a uniform ultrafilter.

The situation is somewhat different if we consider the spaceQ of rational numbers.
E. van Douwen proved in [2] that under CMA (Martin’s Axiom for countable posets) there
are crowded gruff ultrafilters onQ. We shall show that the existence of gruff ultrafilters
on Q follows from b = c, whereb is the minimal cardinality of an unbounded subset
in (ωω,6∗). This is of interest because it shows that there are gruff ultrafilters in Laver’s
model for the Borel Conjecture; CMA is certainly false in that model.

Theorem 1. If b= c then there exists a crowded gruff ultrafilter onQ.

We shall need two lemmas proved by E. van Douwen in [2], albeit in a slightly different
form. Let us call a nonempty set without isolated pointscrowded.

Lemma 2. Every crowded and unbounded subset ofQ has a closed, crowded and
unbounded subset.

Proof. Let F be a crowded and unbounded subset ofQ. Let U be a countable clopen
base forQ which is closed under finite unions and consists of bounded sets. Consider the
countable posetP defined by

〈p,U〉 ∈ P iff p ∈ [F ]<ω, U ∈ U andp ∩U = ∅
ordered by

〈p,U〉6 〈q,V 〉 iff p ⊇ q andU ⊇ V.
Consider

D= {Cx : x ∈Q} ∪ {Dn: n ∈ ω} ∪ {Ex,n: x ∈Q, n ∈ ω},
where

Cx =
{〈p,U〉 ∈ P: x ∈ p ∪U}, Dn =

{〈p,U〉 ∈ P: (∃x ∈ p) |x|> n} and

Ex,n =
{〈p,U〉 ∈ P: x ∈ p⇒ (∃y ∈ p)0< |x − y|< 2−n

}
.

The familyD is a countable family of dense subsets of the posetP; hence, by the Rasiowa–
Sikorski Theorem, there is a filterG onP that meets them all. Define

K =
⋃{

p: (∃U ∈ U) 〈p,U〉 ∈G}
and

W =
⋃{

U : 〈∅,U〉 ∈G}.
ClearlyK ⊆ F andK ∩W = ∅. For everyx ∈Q we haveG ∩ Cx 6= ∅ soK ∪W =Q. It
follows thatK is closed. It is also easily seen thatK is crowded and unbounded.2
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Lemma 3. LetF be a free filterbase consisting of closed and crowded sets which extends
the filter of co-bounded clopen sets. Define, forR ⊆Q andF ⊆Q,

KR(F)=
⋃{

L⊆ F : L is crowded andL⊆L ∩R}.
LetA⊆Q. Then either forR =A or for R =Q \A the collection

F+ =F ∪ {KR(F): F ∈F}
is a free filterbase consisting of closed, crowded and unbounded sets.

Proof. First we show that for everyF ∈ F the setKR(F) is either empty or closed and
crowded. AssumeKR(F) is non-empty. Then it is crowded, being a union of crowded sets.
It also satisfiesKR(F)⊆KR(F)∩R and hence we have

KR(F)⊆KR(F) ∩R ⊆KR(F)∩R,
soKR(F) is closed.

Observe thatKR(F) ⊆ KR(G) if F ⊆ G. Now it is easy to see that for everyF ∈ F
there isR ∈ {A,Q \ A} such thatKR(F) is unbounded. For suppose bothKA(F) and
KQ\A(F ) are bounded. LetH ∈F be such that

H ⊆ F \ (KA(F)∪KQ\A(F )).
Then bothKA(H) andKQ\A(H) are empty, which is impossible.

Now we show that for eitherR = A or R = Q \ A the setKR(F) is unbounded for
everyF ∈ F . If it were not true then there areF,G ∈ F with KA(F) andKQ\A(G) both
bounded. LetH ∈F be such thatH ⊆ F ∩G. Clearly,KA(H)⊆KA(F) andKQ\A(H)⊆
KQ\A(G), henceKA(H) andKQ\A(H) are both bounded, which is a contradiction.

Let R ∈ {A,Q \ A} be such thatKR(F) is closed, crowded and unbounded for every
F ∈ F and letF+ = F ∪ {KR(F): F ∈ F}. To show thatF+ is a filterbase it suffices to
show that{KR(F): F ∈F} is a filterbase becauseKR(F)⊆ F for all F . But if F0 ∈ [F ]<ω
then there isG ∈F such thatG⊆⋂F0; then alsoKR(G)⊆⋂{KR(F): F ∈F0}. 2
Proof of Theorem 1. Let {Aξ : ξ ∈ c} enumerateP(Q). By transfinite recursion onξ ∈ c

we shall construct familiesFξ ⊆P(Q) such that for everyξ, η ∈ c

(i) if ξ < η thenFξ ⊆Fη,
(ii) Fξ is a free filterbase onQ consisting of closed, crowded and unbounded subsets

of Q;
(iii) Fξ is of cardinality less thanc, and
(iv) there isF ∈Fξ+1 such thatF ⊆Aξ or F ∩Aξ = ∅.

It is easily seen thatF =⋃ξ∈cFξ is a base of a crowded gruff ultrafilter.
We proceed to the construction. Let

F0=
{[n,∞): n ∈ ω}.

This guarantees that every filter extendingF0 is free and consists of unbounded sets. If
ξ < c is a limit ordinal we letFξ =⋃η∈ξ Fη; note that|Fξ |< c becausec= b is regular.
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SupposeFξ is a free filterbase consisting of closed, crowded and unbounded subsets
of Q and of cardinality less thanc. We have to decideAξ . By Lemma 3 there is
R ∈ {Aξ,Q \Aξ } such thatF+ξ =Fξ ∪ {KR(F): F ∈Fξ } is a free filterbase consisting of
closed, crowded and unbounded sets. Enumerate the complement ofR:

Q \R = {xn: n ∈ ω}.
For everyF ∈ F+ξ let F̃ be a closed, crowded and unbounded subset ofF ∩ R; such a

set exists by Lemma 2 becauseKR(F) = KR(F)∩R ⊆ F ∩R and soF ∩ R contains a
crowded unbounded set. DefinefF ∈ ωω by

fF (n)=min
{
m ∈ ω: (xn − 2−m,xn + 2−m)∩ F̃ = ∅}.

The set

C(fF )=Q \
⋃
n∈ω

(
xn − 2−fF (n), xn + 2−fF (n)

)
is a closed superset of̃F , hence unbounded and not scattered.

Consider the familyE = {fF : F ∈ F+ξ }. Becauseb = c and |E | < c the family E is

bounded. Letg ∈ ωω be such thatg ∗> fF for everyF ∈F+ξ and let

C(g)=Q \
⋃
n∈ω

(
xn − 2−g(n), xn + 2−g(n)

)
.

We shall show that for everyF ∈ F+ξ the setC(g) ∩ F contains a closed, crowded and
unbounded set.

Let F ∈ F+ξ . The setC(fF ) \ C(g) is bounded; hence there is a clopen bounded set

D containingC(fF ) \ C(g). Clearly F̃ \D is closed, crowded and unbounded. We also
haveF̃ ⊆ C(fF ) andF̃ ⊆ F , henceF̃ \D ⊆ C(fF ) \D ⊆ C(g) and soF̃ \D is a closed,
crowded and unbounded subset ofF ∩C(g).

For everyF ∈ F+ξ let F ′ ⊆ C(g) ∩ F be closed and crowded such that the set
C(g)∩F \F ′ is scattered. The existence of such a set follows from the Cantor–Bendixson
Theorem. The family

Fξ+1=F+ξ ∪ {F ′: F ∈F+ξ }
is as required. 2

2. n-gruff ultrafilters

Let n be a positive natural number. A pointp in Q∗ is said to ben-gruff if it is the
intersection ofn ultrafilters onQ.

The existence of crowdedn-gruff ultrafilters onQ follows from CMA, as shown
by E. van Douwen in [2]. By slightly modifying the proof of Theorem 1 it is not difficult
to show that the same can be proved underb= c:

Theorem 4. If b= c then there exists a crowdedn-gruff ultrafilter onQ.



E. Coplakova, K.P. Hart / Topology and its Applications 97 (1999) 79–84 83

The proof of Theorem 4 is almost identical to that of Theorem 1 so we will indicate only
the main differences.

Let B be a family of subsets ofQ. A setF ⊆Q is said to beB-goodif F ⊆ F ∩B for
everyB ∈ B.

Fix a collectionH of n disjoint dense subsets ofQ such that
⋃
H = Q. Observe that

everyH ∈H must be crowded and unbounded.

Lemma 5. Every crowded, unbounded andH-good subset ofQ has a closed, crowded,
unbounded andH-good subset.

Proof. The proof is almost the same as the proof of Lemma 2. The only difference is the
choosing of the dense subsetsDn andEx,n:

Dn =
{〈p,U〉 ∈ P: (∀H ∈H) (∃x ∈ p ∩H) |x|> n}

and

Ex,n =
{〈p,U〉 ∈ P: x ∈ p⇒ (∀H ∈H) (∃y ∈ p ∩H)0< |x − y|< 2−n

}
.

Lemma 6. Let F be a free filterbase consisting of closed, crowded andH-good sets
and which extends the filter of co-bounded clopen sets. Define, forF ⊆ Q, H0 ⊆ H and
R ⊆H0,

KR(F)=
⋃{

L⊆ F : L is crowded andHR-good
}
,

whereHR = (H \ {H0})∪ {R}. LetA⊆H0. Then either forR =A or for R =H0 \A the
collection

F+ =F ∪ {KR(F): F ∈F}
is a free filterbase consisting of closed, crowded, unbounded andH-good sets.

Proof. Follow the proof of Lemma 3. It is easily seen that we can also guaranteeH-
goodness. 2
Proof of Theorem 4. Fix an enumeration of

⋃
H∈HP(H):⋃

H∈H
P(H)= {Aξ ⊆Q: ξ ∈ c

}
.

By transfinite recursion onξ ∈ c we construct familiesFξ ⊆ P(Q) such that for every
ξ, η ∈ c they satisfy the conditions (i)–(iii) in the proof of Theorem 1 together with

(iv)∗ there isF ∈ Fξ+1 such thatF ∩H ⊆ Aξ or F ∩ Aξ = ∅, whereH ∈H is such
thatAξ ⊆H , and

(v) eachF ∈Fξ isH-good.
The construction is now exactly the same as in the proof of Theorem 1 except that
Lemmas 5 and 6 guaranteeH-goodness of the elements of the filterbasesFξ . Also note
that (iv)∗ ensures that the restriction ofF to H generates an ultrafilter onH for each
H ∈H, and thatF is the intersection of those ultrafilters becauseH is a finite partition
of Q.
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