

Topology and its Applications 97 (1999) 79-84

www.elsevier.com/locate/topol

Crowded rational ultrafilters

Eva Coplakova*, Klaas Pieter Hart¹

Faculty of Technical Mathematics and Informatics, TU Delft, Postbus 5031, 2600 GA Delft, The Netherlands Received 1 January 1997; received in revised form 12 March 1997

Abstract

We prove that if every family in $({}^{\omega}\omega, \leq *)$ of size less than c is bounded then there exists a point p in \mathbb{Q}^* such that p generates an ultrafilter in the set-theoretic sense on \mathbb{Q} and such that p has a base consisting of sets that are homeomorphic to \mathbb{Q} . This is a partial answer to Question 30 (Problem 229) in (Hart and van Mill, 1990). © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Ultrafilter; Gruff; Bounding number; Rational numbers

AMS classification: Primary 54D80, Secondary 03E35; 04A20

1. Gruff ultrafilters

Let X be a metrizable space without isolated points. We shall call a point p of the Čech– Stone remainder X^* gruff if it generates an ultrafilter on the set X; conversely, an ultrafilter on the set X will be called gruff if it has a base consisting of closed sets of the space X. Thus we are able to speak unambiguously about gruff ultrafilters on X.

It is easily seen that every point in X^* that contains a discrete set is gruff. On the other hand, there is no gruff remote point, as every gruff ultrafilter contains a nowhere dense set. E. van Douwen in [2] studied the question whether there can exist a gruff ultrafilter which does not contain a scattered set; such an ultrafilter is said to be *crowded*. One of the reasons for this is that such ultrafilters provide examples of particularly nice points of X^* that are totally non-remote: if p is a crowded gruff ultrafilter and if $A \in p$ then there is $B \in p$ such that B is nowhere dense in A.

It is not difficult to see that there are no crowded gruff ultrafilters on the real line \mathbb{R} : Every closed non-scattered set is of cardinality \mathfrak{c} and so a crowded gruff ultrafilter would

^{*} Corresponding author. E-mail: E.Coplakova@twi.tudelft.nl.

¹ E-mail: K.P.Hart@twi.tudelft.nl.

^{0166-8641/99/\$ –} see front matter © 1999 Elsevier Science B.V. All rights reserved. PII: S0166-8641(98)00069-8

be uniform and would therefore be generated by more than \mathfrak{c} sets. However, \mathbb{R} has only \mathfrak{c} closed sets, so no family of closed sets can generate a uniform ultrafilter.

The situation is somewhat different if we consider the space \mathbb{Q} of rational numbers. E. van Douwen proved in [2] that under CMA (Martin's Axiom for countable posets) there are crowded gruff ultrafilters on \mathbb{Q} . We shall show that the existence of gruff ultrafilters on \mathbb{Q} follows from $\mathfrak{b} = \mathfrak{c}$, where \mathfrak{b} is the minimal cardinality of an unbounded subset in (${}^{\omega}\omega, \leq^*$). This is of interest because it shows that there are gruff ultrafilters in Laver's model for the Borel Conjecture; CMA is certainly false in that model.

Theorem 1. If $\mathfrak{b} = \mathfrak{c}$ then there exists a crowded gruff ultrafilter on \mathbb{Q} .

We shall need two lemmas proved by E. van Douwen in [2], albeit in a slightly different form. Let us call a nonempty set without isolated points *crowded*.

Lemma 2. Every crowded and unbounded subset of \mathbb{Q} has a closed, crowded and unbounded subset.

Proof. Let *F* be a crowded and unbounded subset of \mathbb{Q} . Let \mathcal{U} be a countable clopen base for \mathbb{Q} which is closed under finite unions and consists of bounded sets. Consider the countable poset \mathbb{P} defined by

$$\langle p, U \rangle \in \mathbb{P}$$
 iff $p \in [F]^{<\omega}$, $U \in \mathcal{U}$ and $p \cap U = \emptyset$

ordered by

$$\langle p, U \rangle \leqslant \langle q, V \rangle$$
 iff $p \supseteq q$ and $U \supseteq V$.

Consider

$$\mathcal{D} = \{C_x \colon x \in \mathbb{Q}\} \cup \{D_n \colon n \in \omega\} \cup \{E_{x,n} \colon x \in \mathbb{Q}, n \in \omega\},\$$

where

$$C_x = \{ \langle p, U \rangle \in \mathbb{P} \colon x \in p \cup U \}, \quad D_n = \{ \langle p, U \rangle \in \mathbb{P} \colon (\exists x \in p) |x| > n \} \text{ and } E_{x,n} = \{ \langle p, U \rangle \in \mathbb{P} \colon x \in p \Rightarrow (\exists y \in p) \, 0 < |x - y| < 2^{-n} \}.$$

The family \mathcal{D} is a countable family of dense subsets of the poset \mathbb{P} ; hence, by the Rasiowa–Sikorski Theorem, there is a filter *G* on \mathbb{P} that meets them all. Define

$$K = \bigcup \left\{ p \colon (\exists U \in \mathcal{U}) \langle p, U \rangle \in G \right\}$$

and

$$W = \bigcup \{ U \colon \langle \emptyset, U \rangle \in G \}.$$

Clearly $K \subseteq F$ and $K \cap W = \emptyset$. For every $x \in \mathbb{Q}$ we have $G \cap C_x \neq \emptyset$ so $K \cup W = \mathbb{Q}$. It follows that *K* is closed. It is also easily seen that *K* is crowded and unbounded. \Box

Lemma 3. Let \mathcal{F} be a free filterbase consisting of closed and crowded sets which extends the filter of co-bounded clopen sets. Define, for $R \subseteq \mathbb{Q}$ and $F \subseteq \mathbb{Q}$,

$$K_R(F) = \bigcup \{ L \subseteq F \colon L \text{ is crowded and } L \subseteq \overline{L \cap R} \}.$$

Let $A \subseteq \mathbb{Q}$ *. Then either for* R = A *or for* $R = \mathbb{Q} \setminus A$ *the collection*

 $\mathcal{F}^+ = \mathcal{F} \cup \left\{ K_R(F) \colon F \in \mathcal{F} \right\}$

is a free filterbase consisting of closed, crowded and unbounded sets.

Proof. First we show that for every $F \in \mathcal{F}$ the set $K_R(F)$ is either empty or closed and crowded. Assume $K_R(F)$ is non-empty. Then it is crowded, being a union of crowded sets. It also satisfies $K_R(F) \subseteq \overline{K_R(F) \cap R}$ and hence we have

$$\overline{K_R(F)} \subseteq \overline{K_R(F) \cap R} \subseteq \overline{K_R(F)} \cap R,$$

so $K_R(F)$ is closed.

Observe that $K_R(F) \subseteq K_R(G)$ if $F \subseteq G$. Now it is easy to see that for every $F \in \mathcal{F}$ there is $R \in \{A, \mathbb{Q} \setminus A\}$ such that $K_R(F)$ is unbounded. For suppose both $K_A(F)$ and $K_{\mathbb{Q}\setminus A}(F)$ are bounded. Let $H \in \mathcal{F}$ be such that

 $H \subseteq F \setminus \big(K_A(F) \cup K_{\mathbb{Q} \setminus A}(F) \big).$

Then both $K_A(H)$ and $K_{\mathbb{Q}\setminus A}(H)$ are empty, which is impossible.

Now we show that for either R = A or $R = \mathbb{Q} \setminus A$ the set $K_R(F)$ is unbounded for every $F \in \mathcal{F}$. If it were not true then there are $F, G \in \mathcal{F}$ with $K_A(F)$ and $K_{\mathbb{Q}\setminus A}(G)$ both bounded. Let $H \in \mathcal{F}$ be such that $H \subseteq F \cap G$. Clearly, $K_A(H) \subseteq K_A(F)$ and $K_{\mathbb{Q}\setminus A}(H) \subseteq$ $K_{\mathbb{Q}\setminus A}(G)$, hence $K_A(H)$ and $K_{\mathbb{Q}\setminus A}(H)$ are both bounded, which is a contradiction.

Let $R \in \{A, \mathbb{Q} \setminus A\}$ be such that $K_R(F)$ is closed, crowded and unbounded for every $F \in \mathcal{F}$ and let $\mathcal{F}^+ = \mathcal{F} \cup \{K_R(F): F \in \mathcal{F}\}$. To show that \mathcal{F}^+ is a filterbase it suffices to show that $\{K_R(F): F \in \mathcal{F}\}$ is a filterbase because $K_R(F) \subseteq F$ for all F. But if $\mathcal{F}_0 \in [\mathcal{F}]^{<\omega}$ then there is $G \in \mathcal{F}$ such that $G \subseteq \bigcap \mathcal{F}_0$; then also $K_R(G) \subseteq \bigcap \{K_R(F): F \in \mathcal{F}_0\}$. \Box

Proof of Theorem 1. Let $\{A_{\xi}: \xi \in \mathfrak{c}\}$ enumerate $\mathcal{P}(\mathbb{Q})$. By transfinite recursion on $\xi \in \mathfrak{c}$ we shall construct families $\mathcal{F}_{\xi} \subseteq \mathcal{P}(\mathbb{Q})$ such that for every $\xi, \eta \in \mathfrak{c}$

- (i) if $\xi < \eta$ then $\mathcal{F}_{\xi} \subseteq \mathcal{F}_{\eta}$,
- (ii) *F_ξ* is a free filterbase on Q consisting of closed, crowded and unbounded subsets of Q;
- (iii) \mathcal{F}_{ξ} is of cardinality less than \mathfrak{c} , and

(iv) there is $F \in \mathcal{F}_{\xi+1}$ such that $F \subseteq A_{\xi}$ or $F \cap A_{\xi} = \emptyset$.

It is easily seen that $\mathcal{F} = \bigcup_{\xi \in \mathfrak{c}} \mathcal{F}_{\xi}$ is a base of a crowded gruff ultrafilter.

We proceed to the construction. Let

$$\mathcal{F}_0 = \big\{ [n, \infty) \colon n \in \omega \big\}.$$

This guarantees that every filter extending \mathcal{F}_0 is free and consists of unbounded sets. If $\xi < \mathfrak{c}$ is a limit ordinal we let $\mathcal{F}_{\xi} = \bigcup_{n \in \xi} \mathcal{F}_{\eta}$; note that $|\mathcal{F}_{\xi}| < \mathfrak{c}$ because $\mathfrak{c} = \mathfrak{b}$ is regular.

Suppose \mathcal{F}_{ξ} is a free filterbase consisting of closed, crowded and unbounded subsets of \mathbb{Q} and of cardinality less than c. We have to decide A_{ξ} . By Lemma 3 there is $R \in \{A_{\xi}, \mathbb{Q} \setminus A_{\xi}\}$ such that $\mathcal{F}_{\xi}^+ = \mathcal{F}_{\xi} \cup \{K_R(F): F \in \mathcal{F}_{\xi}\}$ is a free filterbase consisting of closed, crowded and unbounded sets. Enumerate the complement of R:

$$\mathbb{Q} \setminus R = \{x_n \colon n \in \omega\}$$

For every $F \in \mathcal{F}_{\xi}^+$ let \widetilde{F} be a closed, crowded and unbounded subset of $F \cap R$; such a set exists by Lemma 2 because $K_R(F) = \overline{K_R(F) \cap R} \subseteq \overline{F \cap R}$ and so $F \cap R$ contains a crowded unbounded set. Define $f_F \in {}^{\omega}\omega$ by

$$f_F(n) = \min\{m \in \omega: (x_n - 2^{-m}, x_n + 2^{-m}) \cap \widetilde{F} = \emptyset\}$$

The set

$$C(f_F) = \mathbb{Q} \setminus \bigcup_{n \in \omega} (x_n - 2^{-f_F(n)}, x_n + 2^{-f_F(n)})$$

is a closed superset of \widetilde{F} , hence unbounded and not scattered.

Consider the family $\mathcal{E} = \{ f_F \colon F \in \mathcal{F}_{\xi}^+ \}$. Because $\mathfrak{b} = \mathfrak{c}$ and $|\mathcal{E}| < \mathfrak{c}$ the family \mathcal{E} is bounded. Let $g \in {}^{\omega}\omega$ be such that $g \stackrel{*}{\geq} f_F$ for every $F \in \mathcal{F}_{\xi}^+$ and let

$$C(g) = \mathbb{Q} \setminus \bigcup_{n \in \omega} (x_n - 2^{-g(n)}, x_n + 2^{-g(n)}).$$

We shall show that for every $F \in \mathcal{F}_{\xi}^+$ the set $C(g) \cap F$ contains a closed, crowded and unbounded set.

Let $F \in \mathcal{F}_{\xi}^+$. The set $C(f_F) \setminus C(g)$ is bounded; hence there is a clopen bounded set D containing $C(f_F) \setminus C(g)$. Clearly $\widetilde{F} \setminus D$ is closed, crowded and unbounded. We also have $\widetilde{F} \subseteq C(f_F)$ and $\widetilde{F} \subseteq F$, hence $\widetilde{F} \setminus D \subseteq C(f_F) \setminus D \subseteq C(g)$ and so $\widetilde{F} \setminus D$ is a closed, crowded and unbounded subset of $F \cap C(g)$.

For every $F \in \mathcal{F}_{\xi}^+$ let $F' \subseteq C(g) \cap F$ be closed and crowded such that the set $C(g) \cap F \setminus F'$ is scattered. The existence of such a set follows from the Cantor–Bendixson Theorem. The family

$$\mathcal{F}_{\xi+1} = \mathcal{F}_{\xi}^+ \cup \{F': F \in \mathcal{F}_{\xi}^+\}$$

is as required. \Box

2. *n*-gruff ultrafilters

Let *n* be a positive natural number. A point *p* in \mathbb{Q}^* is said to be *n*-gruff if it is the intersection of *n* ultrafilters on \mathbb{Q} .

The existence of crowded *n*-gruff ultrafilters on \mathbb{Q} follows from CMA, as shown by E. van Douwen in [2]. By slightly modifying the proof of Theorem 1 it is not difficult to show that the same can be proved under $\mathfrak{b} = \mathfrak{c}$:

Theorem 4. If $\mathfrak{b} = \mathfrak{c}$ then there exists a crowded *n*-gruff ultrafilter on \mathbb{Q} .

The proof of Theorem 4 is almost identical to that of Theorem 1 so we will indicate only the main differences.

Let \mathcal{B} be a family of subsets of \mathbb{Q} . A set $F \subseteq \mathbb{Q}$ is said to be \mathcal{B} -good if $F \subseteq \overline{F \cap B}$ for every $B \in \mathcal{B}$.

Fix a collection \mathcal{H} of *n* disjoint dense subsets of \mathbb{Q} such that $\bigcup \mathcal{H} = \mathbb{Q}$. Observe that every $H \in \mathcal{H}$ must be crowded and unbounded.

Lemma 5. Every crowded, unbounded and \mathcal{H} -good subset of \mathbb{Q} has a closed, crowded, unbounded and \mathcal{H} -good subset.

Proof. The proof is almost the same as the proof of Lemma 2. The only difference is the choosing of the dense subsets D_n and $E_{x,n}$:

$$D_n = \left\{ \langle p, U \rangle \in \mathbb{P} \colon (\forall H \in \mathcal{H}) (\exists x \in p \cap H) |x| > n \right\}$$

and

$$E_{x,n} = \{ \langle p, U \rangle \in \mathbb{P} \colon x \in p \Rightarrow (\forall H \in \mathcal{H}) (\exists y \in p \cap H) \, 0 < |x - y| < 2^{-n} \}.$$

Lemma 6. Let \mathcal{F} be a free filterbase consisting of closed, crowded and \mathcal{H} -good sets and which extends the filter of co-bounded clopen sets. Define, for $F \subseteq \mathbb{Q}$, $H_0 \subseteq \mathcal{H}$ and $R \subseteq H_0$,

$$K_R(F) = \bigcup \{ L \subseteq F \colon L \text{ is crowded and } \mathcal{H}_R\text{-good} \},\$$

where $\mathcal{H}_R = (\mathcal{H} \setminus \{H_0\}) \cup \{R\}$. Let $A \subseteq H_0$. Then either for R = A or for $R = H_0 \setminus A$ the collection

 $\mathcal{F}^+ = \mathcal{F} \cup \left\{ K_R(F) \colon F \in \mathcal{F} \right\}$

is a free filterbase consisting of closed, crowded, unbounded and H-good sets.

Proof. Follow the proof of Lemma 3. It is easily seen that we can also guarantee \mathcal{H} -goodness. \Box

Proof of Theorem 4. Fix an enumeration of $\bigcup_{H \in \mathcal{H}} \mathcal{P}(H)$:

$$\bigcup_{H\in\mathcal{H}}\mathcal{P}(H) = \big\{A_{\xi}\subseteq \mathbb{Q}: \, \xi\in\mathfrak{c}\big\}.$$

By transfinite recursion on $\xi \in \mathfrak{c}$ we construct families $\mathcal{F}_{\xi} \subseteq \mathcal{P}(\mathbb{Q})$ such that for every $\xi, \eta \in \mathfrak{c}$ they satisfy the conditions (i)–(iii) in the proof of Theorem 1 together with

- (iv)^{*} there is $F \in \mathcal{F}_{\xi+1}$ such that $F \cap H \subseteq A_{\xi}$ or $F \cap A_{\xi} = \emptyset$, where $H \in \mathcal{H}$ is such that $A_{\xi} \subseteq H$, and
 - (v) each $F \in \mathcal{F}_{\xi}$ is \mathcal{H} -good.

The construction is now exactly the same as in the proof of Theorem 1 except that Lemmas 5 and 6 guarantee \mathcal{H} -goodness of the elements of the filterbases \mathcal{F}_{ξ} . Also note that (iv)* ensures that the restriction of \mathcal{F} to H generates an ultrafilter on H for each $H \in \mathcal{H}$, and that \mathcal{F} is the intersection of those ultrafilters because \mathcal{H} is a finite partition of \mathbb{Q} .

References

- [1] K.P. Hart and J. van Mill, Open problems on $\beta \omega$, in: J. van Mill and G.M. Reed, eds., Open Problems in Topology (North-Holland, Amsterdam, 1990) pp. 97–125.
- [2] E.K. van Douwen, Better closed ultrafilters on Q, Topology Appl. 47 (1992) 173–177.