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] A DOWKER GROUP
Klaas Pieter HART, Heikki JUNNILA and Jan van MiLL

Abstract: We construct, in ZFC, a normal topological group,
whose product with the circle group is not normal.

Key words and phrases:Topological group, normal, countably
paracompact.

Classification: 22A05, 54D15, 54D18, 54G20.

0. Introduction. The purpose of this note is to give an ex-
ample of a Dowker group: i.e. a normal . topological group whose
product with the circle group is not normal. We construct our ex-
ample in ZFC alone, applying the B(X)-construction from [HavM] to.
a minor modification of M.E.Rudin’s Dowker space [Ru]. The paper
is organized as follows: Section 1 contains some definitions and
preliminaries. In Section 2 we repeat the construction of B(X)
and give some generalizations of the results from DMVWﬂ in order
to be able to show that for the modified Dowker space X of Secti-
on 4 B(X) is a topological group. In Section 3 we describe the
Rudin’s Dowker space R and show that under =1CH B(R) is not a to-
pological group.

Our construction shows once more the usefulness of Rudin’s ex-
ample: In [DovM] R was used to construct an extremally disconnec-

ted Dowker space.
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1. Definitions and preliminaries. For topology see [En], for

set theory see [Kul.

1.0.Free Boolean groups. Recall that a Boolean group is a
group in which every element has order at most 2. Such groups are
always Abelian. )

For a set X we define the free Boolean group B(X) of X to be the
unique (up to isomorphism) Boolean group containing X such that e-
very function from X to a Boolean group extends to a unique homo-
morphism from B(X) to that group. For example B(X) ={2<_£X2:

X2. We shall write the elements

: 1x*®™(1) 1< w? as a subgroup of
of B(X) as formal Boolean sums of elements of X. For every nelN de-

fine ?n:Xn——> B(X) by o (x) = x; +...+ x and let X_ = 9n[XnJ.

1.1. Pu—spaces. Let X be a topological space. We call X a
Pn-space, where 2¢ is a cardinal, iff whenever W is a collection

of fewer than s open subsets of X,n U is open.

1.2, k(X). For a space X we let
k(X) = min{nzw: Every open cover of X has a subcover of
cardinality less than s},

Observe that k(X) = @ iff X is compact. Thus k(X) might be cal-
led the compactness number of X.
From now on we assume that all spaces are Hausdorff. Observe that
if X is a P, -space with k(X) = @ then X is simply a compact
space.
For regular %, Pu—spaces with compactness number 2¢ behave like

compact spaces.

1.3. Proposition. Let X be a P, -space with k(X) = s¢ , 2 re-

gular. Then

(i) For all neiN X" is a Pe-space and k(X M = 2.
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(ii) If f:X — Y is continuous where Y is a Q‘—space (and
Hausdorff) then f is closed.

(iii) X is normal.

Proof: Imitate the proof for 2 = w . Note that only (i)

needs regularity of »e.

2. B(X) revisited. We begin this section by repeating the con-

struction of a topology for B(X) given in [HavM].

2.0. Construction. Let X be a topological space. We defiee
a topology on B(X) as follows:
First for each n let n be the quotient topolegy on Xn determin-
ed by X" and ¢ . We then define

v ={Ug B(X): UNn X, & T, for all nt,
i.e. ® is the topology on B(X) determined by the spaces
{X,,T,?, neiN. Henceforth we will always assume that B(X) car-
ries this topology.

We now list some properties of B(X), proved in [HavM]. Remem-

ber that all spaces are assumed to be Hausdorff.

2.1. Properties of B(X).

(o) Both E and 0 are clopen in B(X).

(i) Tr;nslations are continuous, hence B(X) is homogeneous.

(ii) For each n ( Xn, tl1) is a closed subspace of
<xn+2’ tn+2> , and consequently each <Xn, ¢n) is a closed subspa-
ce of B(X).

(iii) For each n, if X" is normal then X, is normal and con-
sequently if each X" is normal then B(X) is normal. For in the lat-
ter case B(X) is dominated by a countable collection of closed nor-

mal subspaces and hence normal.
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(iv) 1If X is compact then B(X) is a topological group.
(v) 1If for each neiN X" is normal and [S(Xn) = (rzx)" then

B(X) is a subspace of B(f3 X) and hence a topological group.

We shall need some slight generalizations of 2.1 (iv),(v), in
order to be able to show that for the space X from Section 4, B(X)
is a topological group. The proofs are almost identical to the ones
in [HavM], but for the readers’ convenience we shall give rough

sketches. First we generalize 2.1 (iv).

2.2. Theorem. Let X be a F,-space with k(X) = 2¢ , 2¢ a regu-
lar cardinal. Then B(X) is a topological group.

Proof. The case 9= & is covered by 2.1 (iv), also B(X) is
Boolean, so it suffices to show that the addition is continuous.
We assume that ¢ > @w.

As a quotient of a Pn—space each Xn is a P”—space‘

From this it follows that B(X) - and hence B(X)x B(X) - is a
Pw-space, too.

Because 9¢ > @ , the sequence {an Xn‘nclN dominates the space
B(X)» B(X).
Thus, it suffices to show that for every n¢iN +:an Xn--’ X2n is

continuous.

By 1.3(iii) and 2.1(iii) X" and X, are normal,in particular X,
is Hausdorff.So by 1.3(ii) ¢ x ¢ :X"= X" —» Xo® X, is closed.
But now if F - = o

w if FaX, is closed then +* [f] - (o= g)[n q’Zn[F]]
is closed,where h:X"% X" —> in is the obvious homomorphism.
Next we generalize 2.1(v).

2.3..Lemma. Let Y be a dense subspace of X and ne N. Assume

that Yn is completely regular and Y7 is C"-embedded in X",

- 802 -



Then Y is a C*-embedded subspace of Xn-
Proof. Consider the following diagram:

n n

X
|
X

n n

F

Y
9;(1
Y

where i and j are the inclusion maps.
] ﬁoi is continuous, q|)_(‘o i=3 aqu‘ and qu‘ is quotient, so
j is continuous.

Let f:Yn —> [0,1] be continuous. We shall find a continuous
g:X,—> L[0,1) with ge j = f. Let T=1»fe g:z and let §:X"—>[0,1)
be the (unique) extension of T.

From the fact that f is constant on the fibers of qz it is easy
to deduce that § is constant on the fibers of @ ﬁ. Thus, @ induces
a function g:X, —> [0,1] with g oq‘): = g and g is continuous be-
cause g is continuous and qz is quotient.

These two facts plus the complete regularity of Yn establish that

Y, is a C*¥-embedded subspace of X,

2.4. Theorem. Let Y be a dense subspace of X such that B(Y)
is completely regular and Y" is C™-embedded in X" for all ne IN.
Then B(Y) is a C*-cmbedded subspace of B(X). .

Proof.
If UeB(X) is open then for each n&iIN UnB(Y)n Yo =UnY. =
= UnX nY is open in Y_, so UnB(Y) is open in B(Y).
If £:B(Y) —> 10,11 is continuous, then for each neIN we obtain
a (unique) extension g :X —> [0,1 of fMY . It is easy to
check that the gn's are compatible and that g = L{“.‘ 9, is a
continuous extension of f.
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2.5. Corollary. If X and Y are as in 2.4, then B(Y) is a to-
pological group if B(X) is.

3. Dowker spaces. We describe Rudin’s Dowker space and give
some variations.

3.0.Construction. Let x, be a cardinal and for neiN let %,

be the nth

successor of a,. Let P = DnclN %, +1 i.e. the box
product (see e.g.[Wi)) of the ordinal spaces 3 + 1, %, + 1,....
Let X" = {feP: YnelN cf (f(n)) > % ¢ and

X = {feX': FiecIN VneIN cf(f(n)) £ aei}.

Then X is always a Dowker space. We shall briefly indicate why and

refer to [Rul] for full proofs.

3.1. X is not countably paracompact [Ru,II]. For neiN let
D, =AfeX: 3izn £(i) = aci}. Then {Dn:nclN; witnesses that

X is not countably paracompact.
3.2. X is dense in X.

3.3. If A and B are closed and disjoint in X then their clo-
sures are disjoint in X  (LRu) Lemmas 5 and 6). Lemma 5 says that
X' is a PQ -space and Lemma 6 establishes that Innﬁn = @ for all

n where A = {feA: VieIN cf(f(i)) < ¢} (closures in X).

In Section 4 we shall reprove that X' is paracompact, thereby
establishing (collectionwise) normality of X.
For the rest of this section we let %, = W, so that R, Wy
for ieIN. Moreover we shall call this Dowker space R.
We shall show that if 29> @, then B(R) is not a topological

group.
3.4. Let H be a topological group which is also a ﬁu -space
1
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then H has a local base at the identity consisting of open subgroups.

For let U0 3 e be open. Inductively find open Un a2 e for nelN such

-1

that always Un = Un

2 ; )
and Un+1§ Un' Then IN = r;‘mun is an open sub-

group contained in Uo'
3.5. Let G be an open subgroup of B(R). For xeR let G, =
= {y:x + yeG§, then -(Gx:xeR§ is an open partition of R. Note

that Gx is the intersection of R and the coset x + G.

3.6. Let f¢P be such that for all ne¢IN 0< f(n)< @ and

f(n)=< f(n+1) and supm‘_Nf(n) = Wy,
For A& [INI® let Cy = fheR:nc Aes> h(n)£ £(n)}. Then €= {C,:
(A e LINY¥% is a clopen partition of R of size 29,
For each A find xA‘,l’XA,Z‘ CA such that
- for some neIiN cf (XA,l(n)) = @, and xA’l(n) is not isolated

in f € 2 : cfle) > 3
- for some nelN cf(xA’z(n)) = @,
Now using 2“) z wz we extract from <€ a clopen partition 'fV‘ :
: & & w,}of R together with points {x_ : € € w,¢ such that
(i) x_e V, for each o .

(ii) If o« € @, then there is a decreasing sequence {C‘p:

pe 02} of clopen sets with x_ & nINw,C-‘(I but
X, @ Int(ﬁpmc‘p)
(iii) if «& @, \ @, a similar sequence {C‘r‘: pe a)l} of length
@,

3.7. For « e @, define D, as follows:

if 6w, SD‘-{vﬂ:pew’A(ihc} v

u{C,“:'rcoa\w,'} v -i\IT\ cf,-t-: re o\ o, t
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it «€ew\w, B o=4{Vg: Bew,\Neyn Bzl v
u{C,',":ysw‘l UAVNCp i re 0.

For each £ € 6-)2 ﬁac v {V.c; is a clopen partition of R.

3.8. We define an open set 0¢ X‘ as follows:
4 2 2
0= U vt v U“()’ L{Neq‘ u“s"e'tv“xw ]

%€ W, o
4 . s
(S4 acts on X  in the obvious way 6’(x1,...,xa) = (XG'(I)""’G’(A))'
Then 0 =g [94[0)1 so that @,L0) is a neighborhood of 0 in

X, (the verification is straightforward).

3.9. Now suppose that G is an open subgroup of B(R) such tat

GnXA [= ch[0]; we shall show that this gives a contradiction.

The partition &Gx:xeR} has the following property:
it fa,b,c,d¥n G, has 0, 2 or 4 elements for each x&R then
a+b+c+deb.
Any partiti®n refining {Gx:xe R? also has this property, so W ,
the common refinement of {6,:x ® R§ and {V, :x € “’2} also has this
property.

Fix for each « € @, W, ¢ W with X € W, then W g V. of
course.

For each o« & 02 let

Pe= minifp:We & Copnd.

Find ¥, ¢ @,N®,, ¥, € @ and S € &, @, unbounded such
that

for « € @, Be< %, and

for « € S B = %1 ° .
Now pick , 7265 7 > 71, and pick y;€ Wz N C%-‘Yz and

Wy, .
Y2€W¥r:NCra g
Consider F = {x’; Xy ol

Then Xg, * Y1 * Xgy *+ Yo G because | Fn W.r'\ =] Fna Ht\ = 2 and
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FAW =@ , Wa Wy Wy,. On the other hand Xy * Y1t xrz + Yy ¢
¢ ¢ ,101 because (x =<xf1 Yo% ,y2>):

- for no o Fe V. so x Q‘Jdewzvi

- if x eG(Vix v21 for some V € D then FAV %@ so <=9y OF
o« = 9, If «= o, then, since (xﬁ,y.z)sv,rz, either V =
= C,a.;',ﬂ or V = V‘Yz \ CTI.% ; but both are impossible since
Xy, € C'fz.’d’q $ y,. Likewise ax= 7, is impossible.

Thus, combining 3.6 and 3.9, we find that B(R) is not a topologi-

cal group, assume 2“) > wz. This leaves open what will happen if

2")=\ wl

3.10. Question. 1Is B(R) a topological group under CH ?

4.A good Dowker space. In this section we let aeo = 2“’ and
we let X be the Dowker space constructed in 3.0. We shall show

that B(X) is a topological group, and in fact a Dowker group.

To begin we quote from [Hal the following fact

4.0. For each n&IN X  is homeomorphic with (X*)" and the
homeomorphism can be chosen to map X onto x".

Furthermore we need the following

4.1. X  is paracompact and k(X') = %,

Proof. We fix some notation: for £ ,geP we say f<g iff
f(n)<g(n) for all n and f£g iff £(n)<g(n) for all n. For f,g €
€ P with f<g we put
= X" A T W(E(n),0(n)] =4heX :f<hégt

Us, g
For U = Uf,

= B . . X =
0 put tu(n) sup 4 h(n)theU% (neN) . Then Uf’gn
= U A X" and t,(n) is always a limit ordinal.
£ty m
Let 0’ be an open cover of X . We find a dis:oint open refi-
nement %W of O of size £ 2%-= %,. We define a sequence
- 807 -



'{ua;.c‘w, of disjoint basic open covers of X such that

(1) « € Becwy— U refines Uy

(i) € € @y — 1% ) &2

(iii) x eyAU 6 Uy ~>EV e U, :V € Ut = {UT iff UcO for
some 0 € O«
tet %, = §x'%.
For xe X" and o e wl Ux,‘ is always the unique element of -ux
containing x . If o is a limit, put Uy e = f\{Ux’p: e’ and

QL‘_={UX,‘:XSX'§. If @y is found make A _ )

Let U e 'ud' if Ue some O 50', put S(U) = {U%. Otherwise consi-

as follows.

der two cases.
a) For some n (= cf (tu(n))£2“’ (ie. t, & X'). Let
4 AE: ¢ (u-) be a strictly increasing, continuous and cofinal se-
quence in t,(n) with A = o and cf (AE )< 2% for all €-
Put UE ={felU: A
= '(Ug: § € @b
b) For all n cf (tu(n))>2°" (i.e. t

§< t‘(n).‘.).§+l§ (§e @) and let S(U) =

W& X );pick 0 € O
with tuc 0 and f«< tu. such that Uf,tus' 0. For A€ N let
Uy ={heU: neA—>h(n)&f(n), ngA—>» h(n)>t(mi,
and set 5(U) = fU,: A€ INE.
Now let U, 4= ULSU): Ue Uyt . It follows that always
1s(U)1£2% and hénqe inductively that |%U| < 2% for « € @, -

Llet U =4U e U‘.w‘, U : S(U) = 4UtY . Then, as in [Rul, U is

‘:

a disjoint open refinement of O and by construction |U| £ 2%,

The above argument is from {Rul but we included it because
we need to know that the refinement is not too big.

We now collect everything together in.

4.2. Theorem. B(X) is a Dowker group.
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Proof. (i) X = X; is a closed subspace of B(X), so B(X) is
not countably paracompact.

(ii) From 3.3, 4.0 and 4.1 it follows that for all n X"
is normal and C* -embedded in (X')", hence B(X) is normal by 2.1.
(iii) and a C* - embedded subspace of B(X ) by 2.4.

(iii) X  is a ﬂ‘1 -space and k(X") = 2, hence B(X') is a
topological group.

(iv) By 2.5 B(X) is a topological group.

4.3. Remark. Actually, the method of Section 3 and this section
yield the following result:

If X is the space constructed in 3.0 then

(i) it 2%¢ #, then B(X) is a topological group,

(ii) if 2%9 > %, then B(X) is not a topological group.
This leaves open a generalization of the question 3.10:

Is B(X) a topological group if 2% = ®, ?
If we specialize by setting xR, = ‘01 then we obtain a space X for
which B(X) is a topological group if 2% @y, not a topological
group if 2% 203 and maybe (not) a topological group if 2“‘= ©,.
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