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Abstract

It is a well known open problem if, in ZFC, each compact space with a small diagonal is metrizable.
We explore properties of compact spaces with a small diagonal using elementary chains of substructures.
We prove that ccc subspaces of such spaces have countable π -weight. We generalize a result of Gruenhage
about spaces which are metrizably fibered. Finally we discover that if there is a Luzin set of reals, then
every compact space with a small diagonal will have many points of countable character.
c⃝ 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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0. Introduction

In [4] Hušek defined a space, X , to have an ω1-accessible diagonal if there is an ω1-sequence
⟨⟨xα, yα⟩ : α < ω1⟩ in X2 that converges to the diagonal ∆(X) in the sense that every
neighborhood of the diagonal contains a tail of the sequence. Hušek also mentions that Van
Douwen referred to spaces that do not have an ω1-accessible diagonal as having a small diagonal.
The latter has gained more currency since Zhou’s [10] and the definition has been cast in a more
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positive form: X has a small diagonal if every uncountable subset of X2 that is disjoint from the
diagonal has an uncountable subset whose closure is disjoint from the diagonal. For brevity’s
sake we will say that a space is csD if it is a compact Hausdorff space with a small Diagonal.

There are a number of very interesting results known for csD spaces and we recommend [3]
as an excellent reference. In particular, it is known that csD spaces have countable tightness [5]
and that it follows from CH that csD spaces are metrizable [4,5]. One of our main results is
that ccc subspaces of a csD space have countable π -weight. In [9] Tkachuk describes a space
as metrizably fibered if there is a continuous map onto a metric space with the property that
each point preimage (fiber) is also metrizable. Let us say that a space is weight κ fibered if the
obvious generalization is satisfied: there is a map onto a space with weight at most κ so that each
fiber also has weight at most κ . In [3] Gruenhage showed that a metrizably fibered csD space is
metrizable. We will show that this is also true for weight ω1 fibered spaces.

Though the main question on csD spaces is whether they are metrizable, it is at present
not even known if they must have points of countable character. We uncover the surprising
connection that if there is a Luzin set of reals, then each csD space does have points of countable
character.

1. Preliminaries

We begin by citing a convenient characterization of csD spaces obtained by Gruenhage in [3].
We say that a sequence ⟨⟨xα, yα⟩ : α ∈ ω1⟩ of pairs is ω1-separated if there is an uncountable
subset A of ω1 such that {xα : α ∈ A} and {yα : α ∈ A} have disjoint closures. Gruenhage
showed that a compact space is csD if and only if every uncountable sequence of pairs is
ω1-separated.

1.1. Elementary sequences

The key to uncovering why a non-metric compact space might not be csD is to select the
right ω1-sequence of pairs. We will explore a method of using chains of countable elementary
substructures for this purpose.

For a cardinal θ we let H(θ) denote the collection of all sets whose transitive closure has
cardinality less than θ (see [6, Chapter IV]). An ω1-sequence ⟨Mα : α < ω1⟩ of countable
elementary substructures of H(θ) that satisfies ⟨Mβ : β ≤ α⟩ ∈ Mα+1 for all α and
Mα =


β<α Mβ for all limit α will simply be called an elementary sequence.

It will be convenient to assume that the spaces considered in this paper are subspaces of [0, 1]
κ

for some suitable cardinal κ (usually the weight of the space under consideration). By a basic
open subset of [0, 1]

κ we mean a set that is a product


ξ∈κ Iξ where each Iξ is a relatively open
subinterval of [0, 1] with rational endpoints such that the set of ξ ∈ κ for which Iξ ≠ [0, 1] – its
support – is finite. When a space X is a subspace of [0, 1]

κ we will use the intersections of these
basic open sets with X as a base for X .

Elementary sequences for a space. Let X be a compact space and assume that X is a subset
of [0, 1]

κ , where κ is the weight of X . An elementary sequence for X will be an elementary
sequence ⟨Mα : α < ω1⟩ in H((2κ)+) such that X ∈ M0.

For each α ∈ ω1 we associate two spaces with X and Mα: the first is the closure of X ∩ Mα ,
which we denote Xα . The second is the image of X under the projection prMα

from [0, 1]
κ onto

[0, 1]
Mα∩κ : we write X Mα = prMα

[X ].
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For each x ∈ X and α ∈ ω1 we often denote prMα
(x) by x � Mα and we write [x � Mα] =

{y ∈ X : prMα
(y) = prMα

(x)}.
We will apply Gruenhage’s criterion to sequences of pairs associated to elementary sequences.

Definition 1.1. An elementary ω1-sequence of pairs for a space X is a sequence ⟨⟨xα, yα⟩ : α ∈

ω1⟩ of pairs of points from X for which there is some elementary sequence ⟨Mα : α ∈ ω1⟩ for X
so that {xα, yα} ∈ Mα+1, xα ≠ yα and xα � Mα = yα � Mα for each α ∈ ω1.

The (seemingly narrow) gap between metrizability and being csD in the class of compact
spaces is revealed in the next two propositions.

Proposition 1.2. A compact space is metrizable if and only if it has no elementary ω1-sequence
of pairs. �

It is somewhat easier to prove the contrapositive form: a compact space has uncountable
weight iff it has an elementary ω1-sequence of pairs.

Proposition 1.3. A compact space X is not csD if and only if it has an elementary ω1-sequence
of pairs that is not ω1-separated.

Proof. We will actually prove a stronger statement: each ω1-sequence of pairs that is not
ω1-separated contains an elementary ω1-sequence. Suppose that ⟨⟨xα, yα⟩ : α ∈ ω1⟩ is an
uncountable set of pairs of X that is not ω1-separated. Choose any elementary sequence
⟨Mγ : γ ∈ ω1⟩ for X such that ⟨⟨xα, yα⟩ : α ∈ ω1⟩ is an element of M0. For each γ ∈ ω1,
choose αγ (if possible) so that xαγ � Mγ = yαγ � Mγ . By elementarity, if such an αγ exists, it
may be chosen in Mγ+1. Then ⟨⟨xαγ , yαγ ⟩ : γ ∈ ω1} is the desired elementary ω1-sequence that
is not ω1-separated.

To finish the proof we show that it is always possible to choose an αγ . If not then there will
be a γ such that the set A of α for which xα � Mγ ≠ yα � Mγ is co-countable. For each α ∈ A,
there are basic open sets Uα and Wα with disjoint closures and supports in Mγ such that xα ∈ Uα

and yα ∈ Wα . As Uα and Wα are determined by finite subsets of Mγ they belong to Mγ . As Mγ

is countable one pair ⟨U, W ⟩ would be chosen uncountably often, say for α ∈ B. The latter set
would witness that our sequence is ω1-separated. �

2. Applications of elementary ω1-sequences

There will be occasions when one countable elementary substructure will already do but in
our first result a fair amount of care will go into the construction of an elementary ω1-sequence
of pairs.

2.1. Cellularity and π -weight

We need the notions of π -bases and local π -bases. A π -base for a space is a collection of
non-empty open sets such that each non-empty open set contains one of them. A local π -base
for a space at a point is a collection of non-empty open sets such that each neighborhood of the
point contains one of them. Thus one obtains the notions of π -weight and π -character: minimum
cardinalities of defining families.

A continuous surjection is said to be irreducible if no proper closed subset of the domain
maps onto the range or, dually, the image of a set with non-empty interior has non-empty
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interior as well. The latter formulation easily implies that π -weight is invariant under irreducible
surjections, in both directions.

An easy application of Zorn’s Lemma will show that if f : X → Y is a continuous surjection
between compact Hausdorff spaces one can find a closed subset Z of X such that f � Z : Z → Y
is irreducible and surjective.

The following lemma is of the nature of a reflection result in that we replace an unspecific
‘uncountable’ by the specific ‘cardinality ω1’. As such it can be proven using a closing-off
argument but we opt to work in the spirit of this paper and let an elementary chain do the closing
off for us.

Lemma 2.1. If a compact space X has a ccc subspace with uncountable π -weight, then it has a
compact ccc subspace with π -weight equal to ω1.

Proof. Let Y be a ccc subspace that does not have a countable π -base. Let K be the closure of
Y ; then K is compact, ccc, and does not have a countable π -base either. Let ⟨Mα : α ∈ ω1⟩ be an
elementary sequence for K and let M =


α∈ω1

Mα . For each α ∈ ω1 there is, by elementarity, a
basic open subset Uα of K that is an element of Mα+1 and does not contain any non-empty open
subset of K that is a member of Mα . It follows that KM = prM [K ] has π -weight ω1 since it has
weight at most ω1 and does not have countable π -weight.

Since KM is a continuous image of K , it is ccc. Now choose any compact Z ⊂ K such that
prM � Z : Z → KM is irreducible and onto. Since the map is irreducible, Z is ccc and has the
same π -weight (namely ω1) as KM . �

The first main result grew out of an attempt to see if there was a more direct proof, perhaps
uncovering more about the nature of csD spaces, that a csD space has countable tightness.

Theorem 2.2. In a csD space every ccc subspace has countable π -weight.

Proof. We proceed by contradiction. Since a closed subspace of a csD space will also be csD,
we may apply Lemma 2.1 and assume that we have a compact space X that is csD and ccc, and
has π -weight equal to ω1.

Let ⟨Mα : α ∈ ω1⟩ be an elementary sequence for X and let M =


α∈ω1
Mα . It follows

that the basic open subsets of X that are members of M form a π -base for X . We will define an
elementary ω1-sequence of pairs.

For each α we choose our pair xα ≠ yα ∈ Mα+1 so that xα � Mα = yα � Mα . We first choose
a non-empty basic open set Uα from Mα+1 whose closure does not contain any non-empty basic
open set that is a member of Mα . We may do so since X is assumed to not have a countable
π -base. Let xα be any point in Uα ∩ Mα+1. Next, we note that prMα

[X \ clUα] is dense in X Mα

so that prMα
[X \ Uα] = X Mα . Therefore we can take a closed subset Zα of X , disjoint from Uα ,

such that prMα
maps Zα irreducibly onto X Mα ; by elementarity, there is such a Zα in Mα+1.

Claim. There is a point yα ∈ Zα such that for each neighborhood W of yα , the set pr−1
Mα

[X Mα \

prMα
[clW ]] is not dense in a neighborhood of xα— in dual form: xα belongs to the closure of

the interior of pr−1
Mα

[prMα
[clW ]] for every neighborhood of yα . By elementarity, such a point yα

can be chosen to be a member of Mα+1; it is immediate that yα ≠ xα and xα � Mα = yα � Mα .

Proof : We prove the dual form: if not then there is a cover of Zα by basic open sets W
for which xα ∉ cl int pr−1

Mα
[prMα

[clW ]]. Take a finite subcover {W1, . . . , Wn}; then X Mα =n
i=1 prMα

[clWi ] and so X =
n

i=1 pr−1
Mα

[prMα
[clWi ]]. Now the union of the boundaries of
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these sets is nowhere dense, so that in fact X =
n

i=1 cl int pr−1
Mα

[prMα
[clWi ]], a contradiction as

xα was assumed not to belong to that union.
Now we show that the elementary ω1-sequence of pairs ⟨⟨xα, yα⟩ : α ∈ ω1⟩ is not ω1-

separated. Suppose that U and W are disjoint open subsets of X that have disjoint closures,
and that there is an uncountable subset A of ω1 such that xα ∈ U and yα ∈ W for all α ∈ A.
Let U and W denote the families of basic open subsets of X that are contained in U and W
respectively. Since X is ccc and the family of basic open sets that are members of M forms a
π -base for X there is a δ < ω1 such that the unions of Uδ = Mδ ∩ U and Wδ = Mδ ∩ W are
dense in U and W respectively. Note that each member, O , of U ∪ W has its support in Mδ so
that it satisfies O = pr−1

Mα
[prMα

[O]].
Let α ∈ A be larger than δ. By construction each member of Uδ is disjoint from clW and

because its support is in Mα it is also disjoint from pr−1
Mα

[prMα
[clW ]]. It follows that


Uδ is

contained in pr−1
Mα

[X Mα \ prMα
[clW ]]. Since


Uα is dense in U , this contradicts the conditions

in the claim. �

Remark 2.3. From Theorem 2.2 it follows that no closed subset of a csD space can map onto the
Tychonoff cube [0, 1]

ω1 , and therefore, by Šapirovskiı̆’s famous result from [7] that csD spaces
have (many) points of countable π -character: every closed subset must have a point of countable
π -character (relative to the closed set).

The theorem does not (yet) imply that csD spaces have countable tightness: for this one would
need to show that the hereditary π -character is countable, see [8].

2.2. Weight ω1 fibered

We will see in Theorem 2.9 that a similar application of elementary sequences will imply that
a csD space will have a property stronger than countable tightness. This approach was inspired
by the Juhász–Szentmiklóssy proof from [5] where it is shown that if a compact space does
not have countable tightness, then it will contain a converging (free) ω1-sequence (also making
essential use of Šapirovskiı̆’s result). A csD space cannot contain a (co-countably) converging
ω1-sequence. We will need a strengthening of this result. A point x is commonly called
condensation point of a set A if every neighborhood of x contains uncountably many points
of A.

Proposition 2.4. Let A be an uncountable subset of a csD space X whose set of condensation
points is metrizable, then there is a co-countable subset B of A with a metrizable closure.

Proof. Let ⟨Mα : α ∈ ω1⟩ be an elementary sequence for X such that A ∈ M0 and put M =
α<ω1

Mα . Let K denote the (closed) set of condensation points of A; it is also a member of
M0. Since K is compact metrizable and a member of M0, it follows that prM0

� K is one-to-one.
We prove by contradiction that A\K is countable. If A\K is uncountable then we may choose

for each α a pair of points ⟨xα, yα⟩ such that xα ∈ A \ K , yα ∈ K and prMα
(xα) = prMα

(yα).
Let J be any uncountable subset of ω1 and let y ∈ K be a condensation point of {xα : α ∈ J }.

We show that y also belongs to the closure of {yα : α ∈ J }.
Let U be a basic open neighborhood of y that is in M and take β such that the support of U is

contained in Mβ . There are uncountably many α in J \ β for which xα ∈ U and for these α we
have yα � β = xα � β and hence also yα ∈ U . It follows that y � M is in the closure of {yα � M :

α ∈ J } and hence, because prM is one-to-one on K that y is in the closure of {yα : α ∈ J }. �
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We are now ready to prove our result about weight ω1 fibered spaces. Remember from the
introduction that X is weight ω1 fibered if there is a continuous map f : X → Y such that Y and
every fiber f −1(y) have weight at most ω1.

Theorem 2.5. Each csD space that is weight ω1 fibered is metrizable.

Proof. Let X be a compact space that is weight ω1 fibered but not metrizable. We will prove that
X is not csD. Let ⟨Mα : α ∈ ω1⟩ be an elementary sequence for X . As usual we are assuming
that X is a subspace of [0, 1]

κ for some cardinal κ ∈ M0. Let M denote the union


α∈ω1
Mα

and we recall that [x � M] denotes the set {y ∈ X : y � M = x � M}. Since X is weight ω1
fibered, this will be witnessed by the elementary substructure M0; thus it is routine to verify that,
for each x ∈ X , the set [x � M] has weight at most ω1. By Hušek’s result, we may assume that
each set [x � M] is metrizable. On the other hand, and also by Hušek’s theorem, we may also
assume that the weight of X is greater than ω1, so we may fix an x ∈ X such that [x � M] ≠ {x}.
We complete the proof by establishing two lemmas of independent interest. If [x � M] is not a
Gδ-set, then Lemma 2.6 will complete the proof. On the other hand if [x � M] is a Gδ-set, then
there will be some δ < ω1 such that [x � M] = [x � Mδ] is metrizable and not a singleton. In
this case Lemma 2.7 will complete the proof. �

Lemma 2.6. If X is a space for which there is an elementary chain ⟨Mα : α ∈ ω1⟩ for X and a
point x in X such that [x � M] is metrizable but not a Gδ-set, then X is not csD.

Proof. Since we are assuming that [x � M] is not a Gδ-set there is no δ ∈ ω1 such that
[x � M] = [x � Mδ]. For each α ∈ ω1 choose xα ∈ [x � Mα] \ [x � M]. For each α, there
is a βα such that xα ∉ [x � Mβα ], hence the set A = {xα : α ∈ ω1} is uncountable. The set of
condensation points of A is contained in [x � M]; and so, by Proposition 2.4, X is not csD. �

Lemma 2.7. If for some x ∈ X, there is an elementary chain ⟨Mα : α ∈ ω1⟩ such that [x � M]

is metrizable but not a singleton, then X is not csD.

Proof. Let ⟨Mα : α ∈ ω1⟩ be an elementary chain and suppose that [x � M] is metrizable but not
a singleton. By Lemma 2.6, we may assume that [x � M] is a Gδ-set. That is, we may assume
that there is a δ ∈ ω1 such that [x � M] = [x � Mδ]. So [x � Mδ] is metrizable and equal
to [x � Mα] for all α ≥ δ. We apply elementarity to this statement to choose an elementary
ω1-sequence that will not be ω1-separated. For α ≥ δ, we make the observation that Mα+1 is a
model of the statement

(∃x ∈ X)([x � Mα] = [x � Mδ] is metrizable and not equal to {x}).

By elementarity, we can take such a point xα ∈ X ∩ Mα+1 and take yα ∈ [xα � Mα] ∩ Mα+1
witnessing that [xα � Mα] ≠ {xα}. Since [xα � Mα] is a compact metrizable set which is a
member of Mα+1, the basic open sets in Mα+1 will contain a base for it.

The remainder of the proof follows that of Gruenhage for the metrizably fibered case (see [3]),
because the subspace


{[xα � Mδ] : α ∈ ω1 \δ} is metrizably fibered over Xδ . Indeed, it follows

from the construction that xα � Mδ ≠ xβ � Mδ for δ < α < β. Let J be any uncountable subset
of ω1. Working in the space Xδ , there is an α ∈ J such that prMδ

(xα) is a condensation point
of the set {prMδ

(xβ) : β ∈ J }. Since prMδ
is a closed map and [xα � Mδ] is compact, there is a

point z ∈ [xα � Mδ] that is a condensation point of {xβ : β ∈ J \ α}. Although z itself may not
be a member of Mα+1, the basic open sets from Mα+1 contain a local base at z. In addition, for
each basic open neighborhood U of z from Mα+1 and for each β ∈ J \ α + 1 we have xβ ∈ U
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if and only if yβ ∈ U . It therefore follows that z is also a condensation point of {yβ : β ∈ J }.
This shows that ⟨⟨xβ , yβ⟩ : β ∈ ω1⟩ is not ω1-separated; and completes the proof that X is not
csD. �

2.3. Luzin sets

A set of reals is a Luzin set if every uncountable subset is dense in some interval. Luzin sets
exist if the Continuum Hypothesis holds but Martin’s Axiom plus the negation of Continuum
Hypothesis implies they do not exist. The existence of Luzin sets has some influence on the
structure of csD spaces.

Theorem 2.8. If there is a Luzin set, then every csD space contains points that are Gδ-sets.

Proof. Let X be a csD space. If X has any isolated points then there is nothing to prove, so
assume that it does not. Let M be a countable elementary substructure of H(θ) that contains X .
Then prM [X ] is a compact metrizable space with no isolated points. If there is any point x ∈ X
such that [x � M] = {x} then we are done as well. Let Y be a dense subset of prM [X ] that
is homeomorphic to the space of irrational numbers, and let L ⊂ Y be a dense Luzin set of
cardinality ω1. For each z ∈ L choose distinct xz, yz ∈ X so that prM (xz) = prM (yz) = z. We
show that ⟨⟨xz, yz⟩ : z ∈ L⟩ is not ω1-separated. Let A be an uncountable subset of L; we show
that the closures of {xz : z ∈ A} and {yz : z ∈ A} intersect.

Since L is Luzin, there is a basic open set W in M such that A contains a dense subset of
prM [W ]. Since X has a dense set of points of countable π -character we may choose x ∈ W ∩ M
so that it has a countable local π -base B consisting of basic open sets from M that are contained
in W . However, since each member of B belongs to M and A ∩ W is dense in W each member
of B contains xz and yz for some z; this implies that x is in the closure of both {xz : z ∈ A} and
{yz : z ∈ A}. �

2.4. Local π -bases and nets

A family F of nonempty closed sets is a local π -net at a point x if every neighborhood of x
contains a member of F . If F is a countable family of Gδ-sets and is a local π -net at x , then x
has a countable local π -base, provided the ambient space is compact.

Theorem 2.9. Let K be a compact Gω1 -set in a csD space X. Then each countable local π -base
in K expands to a countable local π -net in X consisting of Gδ-sets.

Proof. For ease of exposition we will assume that X is zero-dimensional; the modifications for
the general case are tedious but straightforward. Let x ∈ K and let {bn : n ∈ ω} be a family
of relatively clopen subset of K such that each neighborhood of x contains one. For each n let
Kn = {K n

α : α ∈ ω1} be a filter base of clopen sets such that bn =


Kn . Fix an ultrafilter
U on ω so that for each neighborhood U of x , the set {n : bn ⊂ U } is a member of U . Fix
an elementary ω1-sequence ⟨Mα : α ∈ ω1⟩ for X so that x , K , {Kn : n ∈ ω} and U are in
M0. For each α ∈ ω1, assume that the family {Z(α, n) : n ∈ ω} is not a local π -net at x
where Z(α, n) =


{K n

β : β ∈ Mα}. Let Uα ∈ Mα+1 be a clopen set containing x so that
Z(α, n)\Uα ≠ ∅ for each n ∈ ω. Choose yα ∈ Mα+1 so that yα is in the U -limit of the sequence
⟨Z(α, n) \ Uα : n ∈ ω⟩. It follows that prMα

(yα) = prMα
(x), and so ⟨⟨x, yα⟩ : α ∈ ω1⟩ is an

elementary ω1-sequence and we prove it is not ω1-separated by showing that ⟨yα : α < ω1⟩

converges co-countably to x .
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Let W be any neighborhood of x and let U = {n ∈ ω : bn ⊂ W }. For each n ∈ U there is, by
compactness some αn < ω1 so that K n

αn
⊂ W . Let α ∈ ω1 be larger than all αn . It follows that

Z(δ, n) ⊂ W for all n ∈ U and all δ ≥ α. Since yδ is in the closure of


{Z(δ, n) : n ∈ U }, we
find that {yδ : δ > α} ⊂ W . �

Corollary 2.10. If A is an uncountable subset of a csD space, then A has a condensation point
which has a countable local π -base in clA. �

2.5. OCA and sequential compactness

In the paper [1] it is shown that the Proper Forcing Axiom (PFA) implies that all csD spaces
are metrizable. We can use the results of this paper to give a shorter proof for sequentially
compact csD spaces, and one that uses only a consequence of Todorčević’s open coloring axiom
(OCA). PFA implies that compact spaces with countable tightness are sequential, but we do not
know if OCA (or ZFC!) implies that csD spaces are sequentially compact.

First we prove a strengthening of Gruenhage’s result that shows how badly non-metrizably
fibered a csD non-metrizable space would have to be.

Lemma 2.11. If {Mα : α ∈ ω1} is an elementary chain for a non-metrizable csD space X, then
there is a δ ∈ ω1 such that the set of non-metrizable sets in {[x � Mδ] ∩ X0 : x ∈ X} contains a
perfect set.

Proof. It is implicit in [4] that a non-metrizable csD space (of countable tightness) will contain
a separable non-metrizable subspace. By elementarity M0 will contain such a separable set, and
so X0 = cl(X ∩ M0) will itself not be metrizable. Fix any elementary ω1-sequence of pairs
⟨⟨xα, yα⟩ : α ∈ ω1⟩ for the sequence ⟨Mα : α ∈ ω1⟩, but chosen so that {xα, yα} ⊂ X0 for all α.
Let A be an uncountable subset of ω1 witnessing that the sequence is ω1-separated. Find a δ ∈ ω1
so that for each basic open set U from Mδ the implication “if U ∩ {xα : α ∈ A} is uncountable,
then U ∩ {xα : α ∈ A \ Mβ} is infinite for all β < δ” holds. Let K ⊂ X Mδ be the projection of
cl{xα : α ∈ A \ Mδ} by the map prMδ

. It follows from the choice of δ that K is a perfect set. In
addition each point in K is a limit point of prMδ

[{xα : α ∈ A \ Mγ }] for all γ ∈ ω1.

We show that for each z in K the set [z] = pr−1
Mδ

(z) is not metrizable. We assume we have a
z in K such that [z] is metrizable and derive a contradiction. For each x ∈ [z] the set [x � M] is
metrizable and a Gδ-set because it is a subset of [z]. By Lemma 2.7 it follows that [x � M] = {x}.
Therefore, the mapping prM restricted to [z] is a homeomorphism. Since prM [[z]] is a compact
metrizable subset of [0, 1]

κ∩M there is some αz < ω1 such that the basic open sets in Mαz

contain a base for [z]. Now choose a sequence ⟨βn : n ∈ ω⟩ in A \αz so that ⟨prMδ
(xβn ) : n ∈ ω⟩

converges to z. There is a point x ∈ [z] that is a cluster point of the sequence ⟨xβn : n ∈ ω⟩.
By thinning out we can assume that the latter sequence converges to x . Since the sequence
⟨prMαz

(xβn ) : n ∈ ω⟩ converges to prMαz
(x) in Xαz , the sequence ⟨prMαz

(yβn ) : n ∈ ω⟩ converges
to prMαz

(x) as well. Since ⟨yβn : n ∈ ω⟩ accumulates at some point in [z] and prMαz
is one-to-one

on [z], it follows that x is a limit of ⟨yβn : n ∈ ω⟩. �

We will make use of the following application of OCA by Todorčević. Let X be a family of
disjoint pairs of subsets of a countable set S. Say that the family X is countably separated if
there is a countable family Y of subsets of S such that for each pair ⟨a, b⟩ ∈ X , there is a Y ∈ Y
such that a \ Y and b ∩ Y are both finite — in case Y has just one element we say that X is
separated. The following result is taken from [2, p. 145] and is attributed to Todorčević.
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Proposition 2.12 (OCA). If a family X of disjoint pairs of subsets of a countable set S is not
countably separated, then there is an uncountable subcollection {⟨aα, bα⟩ : α ∈ ω1} of X with
the property that whenever α ≠ β in ω1 the set (aα ∩ bβ) ∪ (aβ ∩ bα) is not empty. In particular,
for all uncountable A ⊂ ω1 the collection {⟨aα, bα⟩ : α ∈ A} is not separated.

Theorem 2.13 (OCA). If X is a sequentially compact csD space then X is metrizable.

Proof. Assume that X is not metrizable, and apply Lemma 2.11. Let S denote the countable set
M0 ∩ X . We work in the non-metrizable subspace X0. Let f denote the projection map from X0
onto X M0 , which is onto by elementarity. Let Z be a perfect set of points of X0 with the property
that f −1(z) = [z] is not metrizable for each z ∈ Z . Let {Yz : z ∈ Z} be a listing of all countable
sequences of subsets of S. For each z ∈ Z we will show that there are disjoint subsets az and bz
of S that are not separated by Yz and converge to distinct points of [z].

Let {Yn : n ∈ ω} be an enumeration of Yz . For each n ∈ ω, let Y 0
n = S \ Yn and Y 1

n

= Yn . For each function h ∈ 2ω, let [z]h denote the closed set


n∈ω cl


i<n Y h(i)
i . Since [z] is

not metrizable, there must be some h ∈ 2ω such that [z]h is not a singleton. Choose open sets U
and W of X0, with disjoint closures, that both intersect [z]h . Additionally, fix a descending neigh-
borhood base {Un : n ∈ ω} for the Gδ-set [z]. Each of the families {U ∩Un ∩


i<n Y h(i)

i : n ∈ ω}

and {W∩Un∩


i<n Y h(i)
i : n ∈ ω} are descending sequences of infinite subsets of S. There are in-

finite sets az and bz such that for each n, az is almost contained in U∩Un∩


i<n Y h(i)
i and bz is al-

most contained in W∩Un∩


i<n Y h(i)
i . Since we are assuming that X is sequentially compact, we

may assume that az converges to a point xz ∈ [z]∩clU and bz converges to a point yz ∈ [z]∩clW .
Now we apply Proposition 2.12 to the family X = {⟨az, bz⟩ : z ∈ Z}. It is evident by the

construction that this family is not countably separated. Therefore there is an uncountable subset
Y of Z such that for all uncountable A ⊂ Y the families {az : z ∈ A} and {bz : z ∈ A} cannot be
separated.

It now follows easily that the ω1-sequence of pairs ⟨⟨xz, yz⟩ : z ∈ Y ⟩ is not ω1-separated. To
see this assume that U is an open set containing {xz : z ∈ A} for some uncountable A. Then
az \ U will be finite for each z ∈ A. By considering all possible uncountable subsets of A it fol-
lows that for all but countably many z in A the intersection bz ∩ U is infinite and hence yz ∈ clU
for all these z. �

3. Questions

Needless to say, the main open problem is to determine if every csD space is metrizable.
However, here are some other questions which certainly seem difficult and interesting.

Question 3.1. Assume that X is an infinite csD space.

(1) Is X sequentially compact? Does it even contain a non-trivial converging sequence? Does X
contain a point of countable character?

(2) If X is first countable, is it metrizable?
(3) Does X contain a copy of the Cantor set?
(4) Can the cardinality of X be greater than 2ℵ0?
(5) Is each countably compact subset closed?
(6) Does Martin’s Axiom imply that X is metrizable?
(7) If X is hereditarily separable, is it metrizable? Gruenhage [3] has shown that hereditarily

Lindelöf csD spaces are metrizable.
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Another question is what happens if we modify the csD property by analogy with separated
versus countably separated families of pairs.

Question 3.2. Define X to be σ -sD to mean that for each collection {⟨xα, yα⟩ : α ∈ ω1} of pairs
from X , there is a countable cover {An : n ∈ ω} of ω1, such that for each n the sets {xα : α ∈ An}

and {yα : α ∈ An} have disjoint closures. If X is σ -sD, is it metrizable?
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