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Abstract. We employ a dual version of the Löwenheim-Skolem theorem to

obtain a factorization theorem for maps with hereditarily indecomposable

fibers. This enables us to obtain universal hereditarily indecomposable com-

pact spaces as well as hereditarily indecomposable compactifications of any

prescribed weight and dimension. We also reprove theorem of Maćkoviak on

the existence of universal hereditarily indecomposable continua.

1. Introduction

All spaces are assumed to be normal. By a map we mean a continuous func-
tion. We say that a compactum X is hereditarily indecomposable if for every two
intersecting continua in X one is contained in the other. The main result of this
note is the following theorem.

Theorem 1.1. Let f : X → Y be a perfect map with hereditarily indecompos-
able fibers from a separable metrizable space X onto a zero-dimensional separable
metrizable space Y . Then there are a hereditarily indecomposable metrizable com-
pactification X? of X with dimX∗ = dimX and a zero-dimensional metrizable
compactification Y ∗ of Y such that f can be extended to a map f∗ : X∗ → Y ∗.

Let us note that this result, combined with a pseudosuspension method, yields a
theorem of Maćkowiak [10] on the existence of universal n-dimensional hereditarily
indecomposable continua. This theorem was obtained by Maćkowiak by a quite
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different method based on a subtle use of inverse limits. We comment on this in
Corollary 4.1.

Rather unexpectedly, our proof uses, in an essential way, large nonmetrizable
compactifications and a considerable strengthening of Mardešić’s Factorization
Theorem (see [3, Theorem 3.4.1]). This strengthening is a dual version of the
Löwenheim-Skolem theorem from model theory; it appears as Theorem 3.1 in [2]
and it was put to good use in [4] and [12]. In Section 2 we explain some general
facts concerning this technique and in section 3 we show how our theorem follows
from these results. Among other consequences of this technique is the following
theorem, proved in section 3.

Theorem 1.2. For every cardinal τ and n ∈ {0, 1, . . . ,∞} there exists a heredi-
tarily indecomposable compactum X(n, τ) of weight τ and dimension n that con-
tains a copy of every hereditarily indecomposable compactum of weight not more
than τ and dimension at most n.

The following property of a space X was formulated by Krasinkiewicz and
Minc [6]:

Property (KM). For every two disjoint closed sets C and D in X and disjoint
open sets U and V in X with C ⊂ U and D ⊂ V there exist closed sets X0, X1

and X2 in X such that X = X0 ∪ X1 ∪ X2, C ⊂ X0, D ⊂ X2, X0 ∩ X1 ⊂ V ,
X1 ∩X2 ⊂ U and X0 ∩X2 = ∅.

To avoid having to write down the six conditions each time we shall call a triple
〈X0, X1, X2〉 a fold of X for the quadruple 〈C,D,U, V 〉.

Theorem 1.3 ([6]). A compact space is hereditarily indecomposable if and only
if it has Property (KM).

2. A factorization method

The factorization method alluded to in the Introduction is based on a mix of
Model Theory and Set-Theoretic Topology. It works best in the realm of compact
Hausdorff spaces, as will become clear shortly.

The first ingredient is Wallman’s representation theorem, [13], for distributive
lattices: if L is such a lattice then the set wL of ultrafilters on L carries a natural
compact T1-topology. This topology has the family {ā : a ∈ L} as a base for the
closed sets, where ā = {u ∈ wL : a ∈ u}.

If X is compact and T1 and L is the family of closed subsets of X, with union
and intersection as its lattice operations then x 7→ ux = {a ∈ L : x ∈ a} is a
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homeomorphism from X onto wL; this remains true if L is a base for the closed
sets of X that is closed under unions and intersections. See, e.g., [1] for a short
introduction to Wallman representations.

For a normal space X one can obtain the Čech-Stone compactification, βX, as
the Wallman representation of the lattice of closed sets of X. This is the key to
the next theorem.

Theorem 2.1. If X has Property (KM) then so does its Čech-Stone compactifi-
cation βX and, in particular, βX is hereditarily indecomposable.

Proof. To begin: it should be clear that Property (KM) can be (re)formulated
in terms of closed sets only and that it is a finitary lattice-theoretic property;
one can express it as an implication involving seven variables. Thus if X has
Property (KM) then the canonical base, B, for the closed sets of βX satisfies
this implication. This does not automatically imply that βX has Property (KM),
because that means that the full family of closed sets of βX satisfies the lattice-
theoretic formula. However, in the present case one can start with arbitrary C, D,
U and V and use compactness and the fact that B is closed under finite unions
and intersections to find C ′, D′, U ′ and V ′ such that C ⊆ C ′ ⊆ U ′ ⊆ U and
D ⊆ D′ ⊆ V ′ ⊆ V , and such that C ′, D′, βX \U ′ and βX \ V ′ belong to B. One
can then find a fold 〈X0, X1, X2〉 for 〈C ′, D′, U ′, V ′〉 in B and this will also be a
fold for 〈C,D,U, V 〉. �

The second ingredient is the use of notions from Model Theory, especially
elementary substructures and the Löwenheim-Skolem theorem. In the context
of lattices elementarity is perhaps best explained in terms of solutions to equa-
tions. One can interpret Property (KM) as saying that certain equations should
have solutions: the quadruple 〈C,D,U, V 〉 determines six equations and a fold
〈X0, X1, X2〉 is a solution to this system.

One calls M an elementary sublattice of L if every lattice-theoretic equation
with constants from M that has a solution in L also has a solution in M .

To illustrate its use we prove the following lemma.

Lemma 2.2. Assume X is a hereditarily indecomposable compact space and let
L be an elementary sublattice of the lattice of closed subsets of X. Then wL is
also hereditarily indecomposable.

Proof. By elementarity the lattice L satisfies Property (KM): if C, D, X \ U
and X \V belong to L then there is a fold 〈X0, X1, X2〉 in the full family of closed
sets, hence there is also such a fold in L.
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Next, in wL the same argument as in the proof of Theorem 2.1 applies: an
arbitrary quadruple can be expanded to a quadruple from the base. �

The Löwenheim-Skolem Theorem provides us with many elementary substruc-
tures: given a lattice L and some subset A of L one can construct an elementary
sublattice LA of L that contains A and whose cardinality is at most |A| × ℵ0.

Theorem 2.3 ([2, 12, 4]). Let f : X → Y be a continuous surjection from a
hereditarily indecomposable compact space onto a compact space. Then there are
a compact space Z and continuous maps g : X → Z and h : Z → Y such that
Z is hereditarily indecomposable, dimZ = dimX, w(Z) = w(Y ) and f = h ◦ g.

Proof. Let B be a base for the closed sets of Y of cardinality w(Y ). Via B 7→
f−1[B] we can identify B with a sublattice of the lattice D of closed subsets of X.

Apply the Löwenheim-Skolem Theorem to find an elementary sublattice C of D
that contains B and has the same (infinite) cardinality as B; we let Z = wC. The
two inclusions B ⊆ C ⊆ D induce continuous surjections g : X → Z and h : Z → Y

that, as one readily shows, satisfy f = h ◦ g. By Lemma 2.2 the space Z is
hereditarily indecomposable. The same argument shows that dimZ = dimX:
one can use, for example, the Theorem on Partitions, [3, Theorem 1.7.9], to turn
the statement dimX 6 n into an equation Φn. By elementarity C andD satisfy Φn
for exactly the same values of n. The expansion trick applies in this case as well
so that dimZ 6 n for exactly the same values of n for which C satisfies Φn. �

We refer to [5] for basic information on Model Theory.

Remark. The thesis [12] contains a systematic study of properties that are pre-
served by continuous maps that are induced by elementary embeddings.

3. Proofs of the main results

We start with the following

Theorem 3.1. Let f : E → F be a perfect mapping from a space E onto a
strongly zero-dimensional paracompact space F such that for every y ∈ F the
fiber f−1(y) is hereditarily indecomposable. Then E has Property (KM).

Proof. Let C and D be disjoint closed subsets of E and let U and V disjoint
open subsets of E around C and D respectively.

Let us fix y ∈ F . We shall find a (clopen) neighbourhood Oy of y and a fold
of f−1[Oy] for 〈C ∩ f−1[Oy], D ∩ f−1[Oy], U, V 〉. Since f−1(y) is compact and
hereditarily indecomposable, by Theorem 1.3 it has Property (KM) and hence
there exists a fold 〈X0, X1, X2〉 of f−1(y) for 〈C ∩ f−1(y), D ∩ f−1(y), U, V 〉.
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Apply [3, Theorem 3.1.1] to find a sequence B = 〈W0,W1,W2, OU , UV 〉 of open
sets such that their closures form a swelling of the sequence A = 〈C ∪X0, X1, D∪
X2, X\U,X\V 〉, which means that each term of A is a subset of the corresponding
term B and whenever I is such that

⋂
i∈I Ai = ∅ then

⋂
i∈I clBi = ∅. Specifically

this means that

(1) f−1(y) ⊆W0 ∪W1 ∪W2;
(2) clW0 ∩ clW1 ⊆ V ;
(3) clW1 ∩ clW2 ⊆ U ;
(4) clW0 ∩ clW2 = ∅.

As the map f is perfect and the space F is zero-dimensional we can find a clopen
neighbourhood Oy of y such that f−1[Oy] ⊆ W0 ∪ W1 ∪ W2. It follows that
〈clW0, clW1, clW2〉 is a fold of f−1[Oy] for 〈C ∩ f−1[Oy], D ∩ f−1[Oy], U, V 〉.

By strong zero-dimensionality and paracompactness we can find a disjoint
clopen refinement O of {Oy : y ∈ F}; it is then a routine matter to combine
the ‘local’ folds into one ‘global’ fold of E for 〈C,D,U, V 〉. �

We are now ready to prove the first main result.

Proof of Theorem 1.1. To begin we construct a zero-dimensional compactifi-
cation Y ∗ of Y , a compactification X1 of X and a continuous extension f1 : X1 →
Y ∗.

One way of doing this is by assuming that X is embedded in the Hilbert
cube Iℵ0 , that Y is embedded in the Cantor set {0, 1}ℵ0 and then to identify X
with the graph of f , i.e., X is identified with G(f) =

{(
x, f(x)

)
: x ∈ X

}
⊆

Iℵ0 × {0, 1}ℵ0 via x 7→
(
x, f(x)

)
. After this identification f is simply π2 � G(f),

where π2 is the projection onto the second factor of the product; we can then
let X1 = clG(f) (in the product) and Y ∗ = clY (in the Cantor set), the desired
extension f1 of f then is π2 �X1.

Next let j : βX → X1 be the natural map (the extension of the inclusion
of X into X1). By Theorem 3.1 X has Property (KM) so by Theorem 2.1 βX is
hereditarily indecomposable. Apply Theorem 2.3 to obtain a factorization of j
consisting of maps g : βX → X∗ and h : X∗ → X1 in which X∗ is hereditar-
ily indecomposable, second-countable and satisfies dimX∗ = dimβX = dimX.
Then X∗ is a metrizable compactification of X as g �X is a homeomorphism. It
remains to set f∗ = f1 ◦ h. �

Let us note that since f is perfect and X∗ is a compactification of X, the
extension f∗ satisfies (f∗)−1(y) = f−1(y) for y ∈ Y .
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To get universal hereditarily indecomposable compacta we use the factorization
method again.

Proof of Theorem 1.2. Let {Xs}s∈S be the family of all compact hereditarily
indecomposable subspaces of the Tychonoff cube Iτ whose dimension is not larger
than n, and let is : Xs → Iτ be the inclusion. Let X =

⊕
s∈S Xs be the free

union of the Xs’s and let i : X → Iτ be defined by i(x) = is(x) for x ∈ Xs. Let
f : βX → Iτ be the extension of i over βX. Obviously, X has Property (KM),
so by Theorem 2.1 βX is hereditarily indecomposable. By Theorem 2.3 f can be
factored as h ◦ g, where g : X → Z and h : Z → Y and where Z is hereditarily
indecomposable, w(Z) 6 τ and dimZ = dimX. We can take X(n, τ) = Z. �

4. Corollaries and Remarks

Let us note that as a corollary to either Theorem 1.1 or Theorem 1.2 one can
obtain the following theorem of Maćkowiak [10].

Corollary 4.1. For every n ∈ {1, 2, . . .∞} there exists a hereditarily indecompos-
able metric continuum Zn of dimension n containing a copy of every hereditarily
indecomposable metric continuum of dimension at most n.

Proof using Theorem 1.1. Let P be the subset of the hyperspace 2I
ℵ0 of the

Hilbert cube consisting of all hereditarily indecomposable continua of dimension n
or less. Then P is a Gδ-subset of 2I

ℵ0 (see [8, § 45, IV, Theorem 4 and § 48, V,
Remark 5]). Therefore there is a continuous surjection ϕ : Y → P, where Y is
the space of the irrationals. Then let X be the following subset of Iℵ0 × Y :{

(x, t) : t ∈ Y and x ∈ ϕ(t)
}

and let π : Iℵ0 × Y → Y be the projection. The restriction f = π �X : X → Y

is a perfect map (cf. [7, § 18] or [11, Exercise 1.11.26]) with hereditarily inde-
composable fibers. By Theorem 1.1 there exists a hereditarily indecomposable
n-dimensional compact space X∗ that contains X and hence a copy of every
hereditarily indecomposable continuum of dimension n.

The decomposition of X∗ into its components yields a compact zero-dimen-
sional space. The pseudo-arc P contains a copy of this decomposition space (as
indeed does any uncountable compact metrizable space). Let q : X∗ → P be
a map such that A = q[X] is that decomposition space and q : X → A is the
quotient map.

By Theorem 15 of [9] there exist a hereditarily indecomposable continuum Zn
and an atomic mapping r from Zn onto P such that r �r−1(P \A) is a homeomor-
phism and r−1(A) is homeomorphic to X∗ (Zn is a so-called pseudosuspension
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of X∗ over P by q). Since dimZn 6 n by the countable sum theorem and Zn con-
tains X∗ topologically, the space Zn has the required properties. �

Proof using Theorem 1.2. Use the second half of the previous proof but now
take the pseudosuspension of the spaceX(n,ℵ0) over P by q, where q : X(n,ℵ0)→
P is a quotient map such that A = q[X(n,ℵ0)] is the decomposition space
of X(n,ℵ0) into its components. �

There is an obvious difference between Maćkowiak’s result and our Theo-
rem 1.2: Maćkowiak obtained universal continua whereas we obtain universal
hereditarily indecomposable compacta.

Question. Does there exist, for a given cardinal τ and natural number n, a
universal hereditarily indecomposable continuum of weight τ and covering di-
mension n?

Remark. If one uses Theorem 2.3 instead of Mardešić’s Factorization Theorem,
and standard topological reasoning (see [3, proofs of Theorems 5.4.3 and 3.4.2])
one gets the following results.

Proposition 4.2. For every hereditarily indecomposable compact space X such
that dimX = n and the weight of X is equal to τ , there exists an inverse sys-
tem S = {Xσ, π

σ
ρ ,Σ}, where |Σ| 6 τ , of metrizable hereditarily indecomposable

compact spaces of dimension n whose limit is homeomorphic to X. If X is a
continuum, then all Xσ are continua.

Proposition 4.3. Every normal n-dimensional space X of weight τ that has
Property (KM) has a hereditarily indecomposable compactification X̃ of dimen-
sion n and of weight τ .

Remark. The results of this paper remain valid if in the formulation of Prop-
erty (KM) one replaces closed sets by zero-sets and open sets by cozero-sets.
This implies that in Theorem 2.1 one can relax the assumption of normality to
complete regularity.
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