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Abstract

In this paper we show that, when we iteratively add Sacks reals to a model of ZFC we have for
every two reals in the extension a continuous function defined in the ground model that maps one of
the reals to the other.

0 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

In [4] Dow gave a proof of the Rudin—Shelah theorem about the existencepufits
in BN that are Rudin—Keisler incomparable. The proof actually shows that whenever a
family F of ¢ continuous self-maps @#N (or N*) are given there is a sét of 2¢ many
F-independent points iBN (or N*). This suggests that we measure the complexity of
a spaceX by the cardinal numbetf(X), defined as the minimum cardinality of a st
of continuous self maps such that for ally € X there isf € F such thatf (x) =y or
f(y) =x. Let us call such arF transitive. Thus Dow’s proof show$(SN), tj(N*) > ¢t.

We investigatef(C), whereC denotes the Cantor set. Van Mill observed ttfar) >
N1; a slight extension of his argument shows that (dduntablg implies tf(C) = ¢. Our
main result states that in the Sacks model the continuous functions on the Cantor set
that are coded in the ground model form a transitive set. Thus we get the consistency
of tf(C) =Ry < No=c.

The gap betweetf(C) andc cannot be arbitrarily wide, because Hajnal’s free setlemma
implies that for any spack¥ one hagX| < tf(X)*.

In [7] Miller showed that it is consistent with ZFC that for every set of reals of size
continuum there is a continuous map from that set onto the closed unit interval. In fact he
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showed that the iterated perfect set model of Baumgartner and Laver (see [2]) is such a
model, and noted that the continuous map can even be coded in the ground model.

Here we will show that in the iterated perfect set model, for every two reataly there
exists a continuous function with code in the ground model that maps or y to x.

Definition 1. By a transitive set of functiong we mean a set of continuous functions
such that for every two realsandy there exists an elemeifte F such thatf (x) = y or
f(y) =x holds.

Let us also define the cardinal numbgby

tf =min{|F|: F is a transitive set of functiofhs i.e., tj=t(C).

The paper is organized as follows: in Section 2 we prove some simple fadfs tre
minimal size of transitive sets of functions. We also state and prove the main theorem of
this paper in Section 2, using theorems proved later on in Section 3. As a corollary to the
main theorem we have the consistencytjok ¢ with ZFC. Finally in Section 4 we will
make a remark on the effect efwhen we add many Sacks reals side-by-side to a model

of ZFC+CH.

2. Notation and preliminaries

For the rest of this paper 18t be a model of ZFC. We will use the same notations and
definitions as Baumgartner and Laver in [2], so for any ordinak letP, denote the poset
that iteratively adds: Sacks reals to the mod#&l, using countable support. L& = P,
wherelP denotes the ‘normal’ Sacks poset for the addition of one Sacks real.

Let G, beP,-generic ovelV, we defineV,, by V, = V[G,] for every ordinak. Note
thatif 8 < o we have thaG,, [ g is alPg-generic subset oveéf. If we denote théa + 1)th
added Sacks real by, then we can also writ®, = V[(sg: B < a)].

AssumingV = CH, the proof of the following facts can be found in [2]:

(1) Forcing withP,, does not collapse cardinals.

(2) V., is amodel of ZFG}- 2% = R,

(3) Let Ps denote the result of definings in V,. Then for anya, 8 > 1, Ik,

“Py.+p iS isomorphic taPg”.
We will now prove some facts on the carditfalThe first is Van Mill's observation alluded
to above.

Theorem 2. tf > Ri.

Proof. SupposeF is a countable set of functions. Lét; denote the setx: int( £~ 1(x)) #
0} forevery f € F. EveryA  is at most countable becauseig separable. So choose.an
in 22\ J cr Ay, then we know that for every € F the setf ~1(x) is nowhere dense in
2. For such an the set{ f 1(x): f € F} is countable. Because the $¢t(x): f € F}is
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also countable the Baire category theorem tells us that théﬂs@gef({f(x)} U )
is nonempty, thus showing th#t is not transitive. O

Theorem 3. tf <c¢ < tft.

Remark 4. The proof of Theorem 2 shows thgtis at least the minimum number of
nowhere dense sets needed to cavefhen Theorem 3 and M@&ountablg imply tf = c.

The second inequality is a consequence of the following lemma. The proof of this lemma
can be found in [8].

For this we need some more notation. ISebe an arbitrary set. By set mapping on
S we mean a functiorf mappings into the power set of. The set map is said to be of
order A if A is the least cardinal such thgt(x)| < A for eachx in S. A subsetS’ of S is
said to befree for f if for every x € S we havef (x) N 8’ C {x}.

Lemma5 (Free set lemma).et S be a set withS| =« and f a set map or§ of orderi
wherei < k. Then there is a free set of sizdor f.

Proof of Theorem 3. The proof of the first inequality is easy. We simply have to observe
that the set of all constant functions on the reals is a transitive set of functions.

Now for the second inequality. Striving for a contradiction, supposecthatfi ™. Let
F be a transitive set of functions such th&i = tf. We define a set map on the reals by
F(x)={f(x): f e F}foreveryx € 2°. BecausgF (x)| < tf, this set mapF is of order
tf™, which is less thar. According to the free set lemma there exists aXset 2 such
that|X| = ¢ and for every € X we haveF (x) N X C {x}. This is a contradiction, because
every two reals in provide a counter example @ being a transitive set. O

Closed subsets of the Cantor set can be coded by sub-treg®ofas follows: if A is
closed then lef’y = {x [ n: x € A, n € w}; one can recoved from T4 by observing that
A={xe®2:Vnew, x [n€Tx}.

When we say that a closed sgis coded in the ground modele mean thaf’y belongs
to the ground model.

We shall always construct a continuous functigrbetween closed set$ and B by
specifying an order-preserving magdrom T, to T, whereT; denotes the set of splitting
nodes ofT4. Onceg is found one defineg by

f(x) ="“the path througi's determined by the restriction @fto {x | n: n € w}”.

We say thatf is coded in the ground model ¢f belongs toV. In what follows we shall
denote the map by f as well.
Let us define the sé&t (in any V,) by

G ={f: fis acontinuous function with code i}.
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Now we can explicitly state the main theorem of this paper. Section 3 is completely devoted
to the proof of this theorem by parts, so we will prove the theorem here and refer to the
needed theorems proved in that section.

Theorem 6 (Main Theorem)The seg is transitive inV,, for every ordinake.

Proof. We will show by transfinite induction that is a transitive set irV,, for all «. For
«a = 0 this is obvious. Suppose the theorem is true fopal «. Letx andy be reals inV,,.
If o is a successor ordinat,= 8 + 1, then we use Theorem 11 in the case that at least
one ofx andy is not in Vg to show that there exist a continuous functiprefined inV
(so f € G) such that inV, we havef(x) =y or f(y) =x.
Since we are forcing with countable support and because reals are countable objects,
there are no new reals addedBy for cf(a) > Ro. So if ¢ is a limit ordinal we only have
to consider the case whergef = Xg and at least one of, y is not in Uﬁ<a Vg. Then we
use Theorem 17 to show the existence of an continuous fungtidefined inV such that
inVy, f(x)=yor f(y)=xholds. O

As is well known, ifV = CH thenV,, = ¢ = R». This enables us to show thét< ¢ is
consistent.

Corollary 7. If V =CHthenV,, =tf <c.

In this paper we shall repeatedly use the fact that any homeomorpghimtween two
closed nowhere dense subsets of the Cantor set can be extended to a homeomorphism
of the Cantor set onto itself (see [6]). Furthermore it is straightforward to extend a
continuous function between to closed nowhere dense (disjoint) subsets of the Cantor set
to a continuous self map of the Cantor set.

Because we can make sure that the subsets of the Cantor set that define the added reals
x andy are nowhere dense and closed, when we show that there exists a homeomorphism
(or a continuous functionf mapping of one of these sets onto the other, in such a way that
in the extensionx is mapped toy or vice versa, we actually have shown that there exists
a self map of the Cantor that is a homeomorphism (continuous function) mapping, in the
extensiony to y or y to x.

3. Thecontinuous functionswith codein the ground model V form atransitive set
in Vg

In this section we prove that for evesyand any new reat in the Baumgartner and
Laver modelVy (i.e.,x € Vo \ Ug-, V) andy any real inV, there exists a functiorf
defined in the ground mod#! such that inV,, the equationf (x) = y holds.
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We make the following definition. For any € <2 we leti(o) € w denote thdength
of 0. So for everys € <“2 we haver € (“)2. To show how we construct our continuous
maps we reprove the familiar fact that Sacks reals are minimal, see [5].

Lemma 8. Supposer is a real in V[G]\ V, whereG is a P-generic filter overV, and
that p € P is such thatp I-“x ¢ V. Then there exists & > p and a homeomorphisrfi
defined inV such thatg IF“ f(s) = x". Heres denotes the name of the added Sacks real.

Proof. We will construct a fusion sequendép;,n;): i € w} such that eactp; 1 will
know all the firsti splitting nodes of every branch of the perfect tpgeand(p; 1, ni+1) >
(pi,n;) for everyi.

Becausep forces thatx is a new real, there exists an elemepte <“2 with maximal
length myg, such thatp I+ “x | my = uyg” and p does not decide(my). There exist
Py, Py = po such thatpy IF“x(mg) = k" for k € {0, 1}. Without loss of generality
the stems op g and p(1y are incompatible. Leto = min{n € w: po) [ n # pyy [ n} and
let po denote the element) U p1).

Now assume we havg; = | J{po: o € *12}. Considerr € ‘12, we have an element
u; € <?2 of maximal lengthm, such thatp, IF “x | m; = u;”. There exist p; o,
Pr~1 = pr Such thatp, —x IF“x(m;) =k” for k € {0, 1}. Again without loss of generality
the stems op, o andp, ~1 are incompatible. Let; denote the integer min € w: p; o |
n# pr~o [ n}andn; 1 =maxn,: o € T12}. We letp; 1 denote the elemeit){p,: o €
i+22}. Now the induction step is completed, becapser knows all the first + 1 splitting
nodes of every branch ip; and(p;+1, ni+1) > (pi, n;) for everyi € w.

We define the functiorr by

FHlus) D [stempy)] foro e <22.

As stenip,) is a finite approximation of the added Sacks réalwe have by the
construction of ourp, for o € <“2 and the functionf that p, IF“ f(s) € [us]" for
everyo € <“2. And so the fusiory of the sequencé(p;,n;): i € w} forces that in the
extensionV [G] the equalityf (s) = x holds. Thisf, being a continuous bijection between
two Cantor sets, is (of course) a homeomorphism.

Remark 9. In the lemma we have also defined a n@from the finite sub-trees of the
fusiong to the finite sub-trees df = , c<w, 4o Which induces our homeomorphism. We
have¢ (¢) =T and

#(lg 10])= U{uf: o Ct andr € =“2}.
We note thafT] is the set of all the possible interpretationsiofn V[G] and thatT
depends o andg only. In Theorem 11 we will use this interpretation of the previous
lemma.

As a warming up exercise we prove the following.

Theorem 10. The se( is transitive inVj.
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Proof. Supposer andy are two reals oV1(= V[sg]). We consider two cases.

Casel. x is a real inV. The constant functior, = {{y,x): y arealinVi} is a
continuous function defined i, thus a member o, and inV; it mapsy ontox.

Case2. Bothx andy arereals notirV. Let p € IP be a witness of this, spl-"x,y ¢ V.
According to Lemma 8 there existsga> p and a homeomorphisrfi defined inV such
thatg IF“ f (so) = x”, wheresg denotes the added Sacks real. If we apply the lemma again
we get anr > g and a homeomorphisgndefined inV such thay; IF*“ g(sp) = y”. But now
we have that IF “(g o f~1)(%) = y” and we see thag o f~1 is the element of we are
looking for. O

Theorem 11. For « an ordinal andx andy reals in V1 such thatx ¢ V,, there exists an
f € G suchthatinV,,1 f(x) =y holds.
Moreover if alsoy ¢ V, then f can be chosen to be a homeomorphism.

Proof. This is an immediate consequence of Lemmas 14 and @b.

We make the following definitions. Fgr € P ands € <“2 we letp, denote the sub-tree
{te p: s CtortCs}of p. Of coursep; is a perfect tree if and only if € <“2N p. To
generalize this td®,, supposep is an element oP,, F is a finite subset of dofp) and
n € w, we say that a functiom: F — "2 is consistent witlp if the following holds for
everyg e F:

(plTo)IBlFg T(B) € p(B)".

So we have for everg € F that(p [ ) [ BIFg “(p(B))-(p) iS a perfect tree”.
Furthermore let us suppose thatand H are two sets such tha@ c H, andn andm
are two integers such that < n, if ¢ is a function mapping into ”*2 then we say that a
functiono : H — "2 extendghe functionr if for everyi € F we haves (i) [ m = 1(i).

For later use we will prove the following:

Lemma 12. Let p € Py, F € [dom(p)]=® andn € w. Suppose : F — "2 is consistent
with p then for everyr > p | t there exists a7 > p such thatg [t =r andq | B IFg
“(p(B))s = (g(B))s for everys € "2 such thats # t(B8)” for everyg € F.

Proof. Define the element € P, as follows forg < «a:

r(B), Bé¢F,
g1 BIg q(B) =1 rBYU{(p(B))s: s €"2N p(B)
suchthak #1(8)}, BeF"

In this way we strengthen the trgg ) abover (8) keeping the rest of the perfect tree
intact (according ta@ anyway). O
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We need the following lemma to make sure that the maps we will construct in
Lemmas 14 and 15 are well-defined and continuous.

Lemma 13. Let p € Py11. SupposeF, H € [dom(p)]=® are such thatF ¢ H and
m,n € @ are such thatn < n. If 7: F — ™2 is consistent withp, N is an integer and
T is afinite tree such that

(pl1) [oell—“p(oe)ﬂgN2=T",

then there exist d¢, j) >y (p | t,n) and anM > N such that for every: H — "2
extending, if o is consistent witly, then there exist$, suchthayy | o IF“g(@)NSM2 =
T,”. Also |(T,), N M2| > 2 for everyr € T and[T,] N [T:] =¥ whenevew and ¢ are
distinct and consistent with.

Proof. Let X; denote the set of alt : H — "2 extending. Becausep(«) is a perfect tree
there exists &,-nameM such that for every e T we have

(P10 Tal-*|(p@), N "2 > 2|2, ]".

According to Lemma 2.3 of [2] there exists (@', jT) >x ((p | ©) | @, n) such that
if o € X, is consistent wity" we have anM, such thatg® | o I+ “M = M,". Put
M =maxM,: o € X, consistent withy T}. We havegT I “|(p(@)); N M2| > 2| =, |” for
everyreT.

Enumeratdo € X,: o consistent withy T} as{ox: k < K}. Letr > ¢ | o0 be such that
rlF“pla) N SM2=5,", whereS,, is such that(S,,); N M2| > 2| | for everyt e T.
Use Lemma 12 to find g0 > ¢ such thatyg | oo =r.

We continue this procedure with all thg € X; . So if oy is consistent witly 1 we find
anr > g1 | ox such that I+ “p(a) N SM2=5,,”, and also that(S,,), N M2| > 2| 2, |
for everyt € T. And we use Lemma 12 to defigg > gx—1 such thaly; [ ox =r. If of is
not consistent witly;_1 we choosey;, = gx—1.

We now have for every € ¥, consistent withyx _1 a finite treeS, ¢ S¥2 extending
the treeT such that every branch ifi has (at least) |2, | different extensions i, N ¥ 2
andgx_1 o lF“pl@)NSM2=5,".

As gk _1 forces that, for each e T the size of the seb(«); N M2 is at least 2X;| we
can find foro € X, consistent withyx 1 a sub-treef,, of S, such that(7,), N ¥2| > 2
and wheneves andg are distinct and consistent withx 1 we have[T, 1 N [T ] = ¢.

Defineq € P41 such thayy | « = gx—1 and choose («) such that for every consistent
o € X; we haveg | o I+ “g(a) = p(a) N [T,]". If we let j be equal to maf T, M} the
proof is complete. O

Lemma 14. Given an ordinak, a p € P,1 andPy41-namest andy such thatp IF“x ¢
Ve andy € V,,” then there exists a continuous functigrdefined inV and ag > p such
thatg I-* f(x) = y”.
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Proof. By Remark 9 we know that there is ar p | « and there exisP,1 hamesp for
a map on the finite sub-trees pfa) and7 for a perfect tree such that- “¢(p(a)) = 7.
Without loss of generality we assume that o = r.

Let us construct a fusion sequen¢e;, n;, F;): i € w}. Let po=p1=p,no=n1=0,
Fo = and choosé € [dom(p)]=“ in such a way that we are building a fusion sequence.

Suppose we have constructed the sequence idabus construct the next element of
the fusion sequence. We lgt;: k < K} denote allz : F;_1 — "i-12 consistent withp;.
If we choose in Lemma 13 = 19, F = F;_1 andm = n;_1 we get a(qo, mo) >r; (pi |
10, n;) such that for every : F; — <" 2 extendingrg, consistent withyg, we have a finite
sub treel, ¢ SM™)2 (M (1p) € w follows from Lemma 13) ofp; («) = p(«) such that

(1) 7. is an extension ofy,,

(2) for every branch in T, there exist at least two different branches of lengttro)

in T, extending,

(3) if o andg are two distinct members &, consistent withyg we have[ 7, 1N [T ] =

.
We chooseq € Py +1 with Lemma 12 such that > go andrg | T0 = go.

We iteratively consider all the: F;_; — "i-12. In the general case if; is consistent
with rz_1 then Lemma 13 gives us @ and anmy € o such that(gx, mi) >F, (rr—1 [
1, n;). We choosey in the same way as above, using Lemma 12 suchrihatg, and
re | e = gk. If ¢ is inconsistent withr,_1 then we choosey = ry—1 andmy = my_1.
After considering all they’s we definep;+1 =rg—_1 andn;+1 = maxmy. k < K}. This
ends the construction of the next element of the fusion sequence.

For everyi < w if o: F; — "2 is consistent witlp; 1 and extends : F;_1 — "i-12
then

pisrlolFpl@)ynSMO2=T1, "
Considering our functiom, let us denote the finite treg(7,,) by S, . We have
pi+1 1o - ¢(To) = S5

When we are building the fusion sequence we can of course make sure that the fusion
determinesy as well. Suppose we have that | t; IF“t;, C ¥", #, of lengthi 4+ 1. With
Lemma 13 we can choogg strong enough such that for everye X, consistent withy;

we have &, of lengthi + 2 such thaty [ o IF“t, C ¥". So assume we have made sure this

is the case and let us define the functjpin V by f(b) =1, for every maximal branch

b e S, for everyo : F; — "i2 consistent witlp; for somei € w. The functionf is well-
defined by Lemma 13 and we have for everyw ando : F; — " 2 consistent withp; that

pi 1o IF*f([Ss]) Cltz]"and thusg IF“ f(x) =y". O

Lemma 15. Given an ordinale, a p € P,41 and Py11-namesx and y such thatp I+
“x,y ¢ V," then there exists a homeomorphigimwith code inV, and ag > p such that
gl f@ =5
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Proof. By applying Remark 9 twice we have an> p in Pyy1 andPy1 namesg,,
q'by and 7y, Ty for maps and perfect trees respectively such thaw IF “¢. (p(a)) =
T, andg, (p(a)) = T,". Without loss of generality we can assume thato = r.

During the construction of possible finite sub-tré&s), for x, when constructing the
fusion sequence in the proof of Lemma 14 we could of course at the same time also have
constructed a similar sequence of finite sub-t@&$, for y.

Without loss of generality we could also have made sure that in the proof of Lemma 14
item 2 is replaced by

(2" for every maximal branchin T+, there are exactly two different branches of length

M (1p) in T, extending.
Following the proof of Lemma 14 we have for every F; — "2 consistent withp; ;1
finite sub-treess; andsS) such that

pir1 1o ¢ (T)o) =S5 and ¢, ((Ty)s) = 5.

We are ready to define the homeomorphigrm V that maps to y in the extension.
Suppose : F; — "2 ando : F;+1 — "i+12 such that extendsr. Every maximal branch
in (Ty), corresponds to exactly one maximal branch(T)).. Let f map the splitting
pointin (7). above any maximal branch {iT,). to the splitting pointin(7y), above the
corresponding maximal branch {ffy).. The functionf thus defined will be a continuous
and one-to-one mapping between two Cantor sets, so a homeomorphism. Furthermore the
fusiong forces thatf mapsx to y in the extension. O

Lemma 16. Suppose that is a limit ordinal of cofinalityXq. Letx be a real inV, such
thatx ¢ Uﬂ<a Vg, and letp € P, be a witness of this. Also |&t, H € [dom(p)]=* such
that F Cc H and letn andm be two integers such that < n. If t: F — ™2 is consistent
with p, andu, € <“2is such that

pltl- u, Cx”,

then there exists &, j) >g (p | T, n) such that for every : H — "2 consistent withy,
we have au, € <“2 such thaty [ o IF"u, C x”; in addition we havé(u,) ={(u.) and
us # uc whenever andg are distinct and consistent win

Before we prove the lemma we need some more notation. We*lelenote forcing in
Vs overPs,. Here we use again the same notation as in [2] wheré fowx Ps, = {p €
P,: dom(p) C {€: § <& <a}}, andif p e P, thenp® = p\ (p | 8) € Pso. The mapping
which carriesp into (p | 8, p®) is an isomorphism oP, to a dense subset @; x Ps,
(see [2]).

Proof of Lemma 16. Choose & suchthat magH) < § < «a. Lett: F — ™2 be consistent
with p and letX; denote all the extending functions : H — "2.

Becausep forces thatx ¢ V;, there is an antichain below® of size | ¥;| such that
all these elements force different interpretationsioi the extension. In other words
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there exist a sequenc{tf},: o € X;} of Ps names for elements dfs, and a sequence
{us: o € X} of Ps names for elements 6f°2 such that for alb € X; we have

(p1) 18- fr = p® and f IF* “ity C X7, (1)
and ifo and¢ are distinct then
(plo)[8IF 1) =1 anditg #uc”. (2)

Repeatedly using Lemma 2.3 of [2] we see that there exigtaj) >y ((p | 7) | §,n) and
sequencesf,: o € X.}, {us: o € ¥} C 2 for some integet such that for every € X,
we have

g5 fy = fr andity = u,". (3)

Now let g denote the element @, such thaly | § = ¢, and(q | o) [ 8§ IF“¢° = f,”
for everyo € ¥, consistent withy . This completes the proof.o

Theorem 17. For « a limit ordinal of cofinality®g andx and y reals in V, such that
x ¢ Ugq Vs, there exist a continuous functighdefined inv' such thatinV, the equation
f(x) =y holds.

Ifalsoy ¢ Uﬁ<a Vg then f can be chosen to be a homeomorphism.

Proof. For the first part of the theorem suppose that we hawelP, such thatp I “x ¢
Ug<o Vg andy € Ug_, Vp". We will construct a fusion sequence belgwand define a
continuous functiory in V such that the fusion of the sequence forces fhay = y holds
in V.

Let po = p1 = p, no=n1 =0, Fp =@, and choosd1 € [dom(p)]=* in such a way
that we are building a fusion sequence. Suppose we have constructed the sequerice up to
we will construct the next element of the fusion sequence.{kgt k < K} denote an
enumeration of all maps frorh;_1 into "i-12 consistent withp; .

According to Lemma 16 there exists(o, jo) >F, (pi [ To,n;) such that for every
o : F; — "i2 consistent witlyg we have distinct,'s in (™2 (wherem (o) follows from
Lemma 16), such thaty [ o IF “u, C X”. Now use Lemma 12 to construgg € P, such
thatrg > go andro | 10 = qo.

We now iteratively consider all the . In the general casef; is not consistent withy, _1
then we make sure that = r,_1 and jr = jy—1. If 7 is consistent withr,_1 we find
by Lemma 16 &(gx, jx) >F, (rk—1 [ ., ni) such that for every : F; — "2 consistent
with ¢; we have distinct,’s in (%) 2 such thaty; [ o I- “u, C %”. Now use Lemma 12 to
constructry € P, such thaty > ry_1 andry | ©x = gx. After considering all; we define
pi+1=rk—-1andn;11 =maxji: k < K}.

If we take a closer look at Lemma 16 we can also let the fusion sequence that we just
constructed determing. Because if we have | t IF “¢, C y”, following the proof of
Lemma 16 we can make sure that (by some strengthening of the f,’s, if necessary)
there existz,’s in =“2, not necessarily distinct, extendimg such that foro : H — "2
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consistent withy we also havey | o I "1, C y”. So assume we have done this. We have
for everyo : F; — "i2 consistent withp; 11

pi+1 ] ol us C x andt, C y”. (4)

Now we are ready to define our functignwhich will mapx in V,, continuously onto.
Let f([us]) C [t,] forall o: F; — "2 and alli € w. Thenp; [ o IF* f(X) € [t,]" for
o : F; — "2 consistent withp; andi € w. It follows that the fusiory forces that inV, we
have f (x) = y. Moreoverf is a continuous function, this follows from Lemma 16.

For the second part of the theorem suppose phét“x, y ¢ Uﬁ<a Vg". Just as in
Lemma 16 we can choose not only tiag's in Eq. (4) distinct but also thg's for o € X,
andt: F;, — "2 for somei € w. With this, the constructed continuous functighis
actually a homeomorphism.o

As there are no reals added at limit stages of cofinality largertihave have as a corollary
to Theorems 11 and 17.

Corollary 18. For everya and everys andy Py-names for reals iV, \ Uﬁ<a Vg there
exists a homeomorphisyhdefined inV such that inV,, we havef(x) = y.

Remark 19. Itis not the case that th¢ number is the same for all compact metric spaces,
e.g., every Cook continuuti hastf(X) = ¢ (it only has the identity and constant mappings
as self-maps, see [3]). On the other hand, in the Sacks model ong(bas= tf(R) =
tf([0, 1]) = R1. To see this, observe that our proof produces, givamdy, two copies of
the Cantor sefA and B containingx andy respectively and a continuous mgpA — B,
say, with f(x) = y. One can then extend to a continuous map?: [0,1] — [0, 1] (or
f:R — R), whose code will still be irV/.

Remark 20. If cov(nowhere denge= ¢ for the unit intervall, then Remark 4 shows that
tf(1) = c. Suppose that camowhere denge= « < ¢, for 7, then we can covelr by « many
Cantor set§C,}, <« in such a way that for every two realsandy there exists ai such
thatx, y € C,. For everyox we have a transitive family of continuous functiafig on C,
such thaiF,| = tf(C). We can extend every € F, to a continuous self mayp of /. So
F={f: thereisanx < « and f € F,} is a transitive set of continuous functions bn
and its cardinality is less than or equaltoc tf(C) = tf(C).

So if we can cover the unit interval with less thamany nowhere dense sets we have
(1) < H(C).

4. Thecardinal tf and side-by-side Sacks forcing
In this paper we showed that after addigmany Sacks reals iteratively to a model of

ZFC+ CH we end up with a model af < ¢. Now consideiPS(«), the poset for adding
many Sacks reals side-by-side (see [1]). We haveRfiat) has thg2¥0)*-chain condition
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and preserve8;. Suppose that > 81 and cix) > R1. If V is a model of CH and5 is
PS(x)-generic ovelV, we have inV[G] that 2% = « and all cardinals are preserved.
A natural question would be if we get a modeltpf< ¢ when we addk,; many Sacks
reals side-by-side to a model of ZFC+CH. The answer to this question is in the negative.
Suppose thaV is a model of ZFC. Consider the podet= PS({1, 2, 3, 4}) that adds
four Sacks reals side-by-side to the mottelWe definelP; to be the p.o.-séPS({1, 2})
andP to be the p.o.-sé®S({3, 4}). Suppose& is P generic ovelV thenG12= G [ {1, 2}
is P1 generic ands34 = G | {3, 4} is P2 generic ovelV. The following holds.

Lemma?2l. In V[G] we haveV[G12] N V[G34] =

Proof. Suppose thak is alP name and] an element o such thay IF“X V[G12]N
V[G3a]". So there exists &£; nameY and aP, nameZ such thatg I+ “X=Y=2"
Aiming for a contradiction assumk is a name for an object not ivi. There exists a € w
such thay; does not decide € X. Now we havej; = ¢ | {1, 2} does notdecide € ¥, and
g2 =q | {3, 4} does not decide € Z. So we can find ifP; ar > g1 such that I-“n e ¥”
and inP» ar > ¢» such that I+ “n ¢ Z”. This gives the contradiction we are looking for
because Ut l-"Y # Z”andr Ut > ¢g. SoX must be a name of an elementiin O

Now we can prove that addingp many Sacks reals to a model of ZFC+CH we do not
produce a model off < c.

Theorem 22. SupposéV/ = CH and G is a PS(x)-generic filter overV, wherex > 83
andcf(x) > 81, thenV[G] = tf =c.

Proof. For everya < g < « we have that there exists a functigh g € V[G | {«, 8}]
mappings, to sg or vice versa. This functioif,, g is not a member o’ for the obvious
reason that assuming th#t g mapss, to sg we getsg € V[G | {a}], which, of course,
is false. Using Lemma 21 and the fact that2 « we see that the size of is at least,
because2q,2q0+1 7 f28,28+1 for everya # g. By Theorem 3 we are done.O
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