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We investigate separation properties of wr-trees. We show that the property y of Devlin 

and Shelah is equivalent to hereditary collectionwise normality. We show that monotone normality 

and divisibility are both equivalent to orderability. Finally we show that Souslin trees are examples 

of trees with property y which are not retractable. 

AMS(MOS) Subj. Class. (1980): 04A20, 54C15, 54D15, 54F05 

hereditary collectionwise normal 

0. Introduction 

In this note we continue the investigation of separation properties in tree spaces 

which was started in [4] and [7]. First we show that trees with property y are 

hereditarily collectionwise normal, improving [7; Theorem 2.11. Next we consider 

some separation properties which every locally compact zero-dimensional Linearly 

Ordered Topological Space has, namely monotone normality, divisibility and 

retractability. We show that the first two are equivalent to orderability for or- trees. 

As a byproduct we see that monotonically normal trees are retractable, it is unknown 

whether the converse holds. Finally we show that Souslin trees are not retractable, 

thus showing that HCWN trees need not be retractable. 

1. Definitions 

A tree is a poset T=(T,<,) such that for all XET, x*={y~TIy<~x} is well 

ordered by <T. The order type of x* is denoted by ht(x), the height of x. T, = 

{xET]ht(x)=a} is the a-th level of T. Tra={xET]ht(x)<a}. If C is aset of 

ordinals, then T 1 C = {x E T 1 ht(x) E C}. A branch is a maximal chain. An CY- branch 

is a branch of length (Y. An antichain is a subset of pairwise incomparable elements. 
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152 K.P. Hart / So&in properties and trees 

A={~Ew~]~ isalimit}.ForxET,TX={yET]x<ry}. Tisanwr-treeiff 

(i) T,, =0. 
(ii) Va~wl: O<IT,~SW~, 

(iii)V~EpEW1VxET,3y~,yz~Tg:(y~Zyz~x<~y1~x<~y2), 

(iv)VaEwrVx,yETa(lim(cY)+(x=yejxI=y^)). 

We assume in addition that TO consists of one point 0, the root of the tree. 

The tree topology on T is defined by taking the following collection as an open 

basis: 

With this topology T is first-countable and locally compact. 

Clause (iv) in the definition of oi-trees ensures that these trees are Hausdorff 

and zero-dimensional. 

An wr-tree T is called Aronszajn iff it has no uncountable branches and Souslin 

iff it has no uncountable antichains. T is said to have property y [4] iff the following 

holds: 

If A c T is an antichain, then there are a cub set C c o1 and an open set U c T 
such that A c UC ocT\(TlC). 

T is said to have property S iff there is a function f : T f A + T such that 

(i) VX E T~A~(x)<Tx 

(ii) Vx,y~TrAif[f(x>,x]n[f(y),y]Z!%thenx==yory~x. 

For standard topological notions we refer to [6], additional definitions will be 

given when needed. 

2. Normality properties 

In [7] Fleissner showed that an wl-tree is collectionwise normal iff it has property 

y. Modifying his proof we get the following result: 

2.1. Theorem. Let T be an wl-tree. Then 

T has property yUT is hereditarily collectionwise normal 

Proof. Only ‘j, needs proof. So assume T is collectionwise normal. Let %t= 

{Fi Ii E I} be a collection of subsets of T such that Vi E I: Fi nUiziFj=8. We have 

to find a family {Vi 1 i E I} of disjoint open sets s.t. Vi E I: Fi c Vi. 
For a E US we pick i(a) E I s.t. a E Fit,, and we put 

B(a) = {x /x is minimal in T” n U Fj}. 
j#i(e) 

We define, for all q E wl, A,, c US as follows: 

-A,, = {a 1 a is minimal in lJ m. 

-A .+l=LJ{B(a)la~A,l. 
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-If~isalimitputD,={d~~~~Q~~~:A,n~#0}andletA,={a~aisminimal 

in D,}. 

Furthermore for all a E A, choose X~ <T a in such a way that {(x,, u]}~~~, is 

discrete (by CWN) and 

Vu EA,: (xa,u]n U Fj=0. 
j#i(a) 

Note that (x., a] n UYE,, A, = 0, for if p E (x~, a] A A, and 4 E (xa, a] A A,+I, then 

i(P) # i(q). 

Put A =&a> A,, and define, for all a E A, X(u) as follows: 

- If a E A,, and q is a successor or 0 put 

x(u)=T”\U{Tb16EB(u)}. 

- If a EA, and 77 is a limit put 

X(u)= (xa, U]” T”\lJ{Tb]6 EB(U)}. 

It is easy to see that each X(u) is clopen in T. 

NextweshowthatX(u)nX(b)=Elifu#6. 

If a, 6 EA, for some q this follows from the fact that A, is an antichain and 

that - in case n is a limit - (x~, a] n (xb, 61 = 0. 

If a E A,, 6 E A,, with Y E 7, then let 6’ be the point of A, below 6. 

If6’=u,thenX(6)cTcforsomec~B(u);if6’#u,thenX(6)~Tb’.Ineither 

caseX(b)nX(a)=ld. 

Furthermore UScLJaEAX(u)uAo. 
For take x~lJ.97 If inA=0, then x must be minimal in ~JF so xcAo. If 

x^ n A # 0, then let 77 be the first ordinal for which x^ n A,, = 0. If n = Y + 1, then 

x EX(U) where a is the point in A, nx^, if n is a limit, then x ED, but since 

x^ n A, = 0, we have x E A,, so x E X(x). 

Finally, for each a EA, Fi(,,nB(u) =0, so we can find disjoint open sets U,, 

V, OX around F;:(a) nX(u) and B(u), respectively, furthermore we can find 

disjoint open sets around the points of B(u), contained in V,. We can also find 

disjoint open sets around the points of Ao. If we now form appropriate unions we 

get the desired collection of open sets separating .9. 0 

We remark that virtually the same proof shows that normality and hereditary 

normality are equivalent for wl- trees. Next we consider some separation properties 

which are possessed by linearly ordered topological spaces and which imply 

hereditary collectionwise normality, namely monotone normality and divisibility. 

It turns out that these properties are equivalent to orderability in WI-trees. We 

start with the definitions. 

2.2. Definition. Let X be a topological space. 

(a) X is called monotonically normai [8] iff to each pair (U, x) with U CX open 

and x E U one can assign an open set U, such that (i) x E U, c U and (ii) if 

U, n V, # 0, then x E V or y E U. (This is in fact a characterization from [l]). 
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(b) X is called halvable (for lack of a better name) iff for each neighborhood 

assignment x + U, there is another one x + V, such that if V, n V, # 0, then x E U, v 

y E U,. Halvability is a property of monotonically normal spaces which in some 

proofs is the only thing used. For instance, the proof that monotonically normal 

spaces are hereditarily collectionwise normal uses only halvability. Furthermore all 

countable regular spaces are easily seen to be halvable, so halvable spaces need 

not be monotonically normal. These facts were observed by I. Juhasz. 

(c) X is called divisible iff the collection of all neighborhoods of the diagonal 

A(X) in X xX is a uniformity or equivalently if for each open set U 2 A(X) there 

exists an open set V 3 A f3 (X) s.t. Vo V c U. The name divisible appears in [2] 

and [3], the name strongly collectionwise normal in [9], however these spaces need 

not be strongly normal, which is why we adopt the name divisible. 

Using the usual Pressing Down Lemma it is easy to prove the following. 

Lemma (Pressing Down Lemma for wi-trees). Let T be an ml-tree and let A c T 

be a set which meets stationary many levels. Let f : A + T be a function s.t. f(x) <TX 

for all x E A. Then f is constant on a set which meets stationary many levels. 

We now come to our orderability theorem for w 1- trees. 

Theorem 2.2. The following are equivalent for an ml-tree T: 

(a) T is monotonically normal. 

(b) T is halvable. 

(c) T is divisible. 

(d) T has property 6. 

(e) T is orderable. 

Proof. (a)+(b). See the definition 

(b)+(d). Consider the assignment x + [0, x]. Let x + V, be as in the definition. 

Define f: T I_4 + T s.t. Vx E T 114 f(x) <TX and [f(x), X]C V,.Then f isasrequired. 

(c)+(d). Let u=UxcT [0, x]’ and let V =I AT be open such that Vo V c U and 

V = V-‘. For allx E Tl_4 take f(x) <TX such that [f(x), x]’ c V. Assume [f(x), x]n 

[f(y), y] #0 and take z in the intersection. Then (x, Z)E V and (z, y)~ V so 
(x,y)~U,hence{x,y}c[O,u]forsome~~T.Butthenx~~yOry~Tx. 

(e)+(a) and (e)+(c) are well known, so we now prove: 

(d)+(e) Let f : T 1 A + T witness property S, we can assume that f(x) SE T r A for 

all x. From now on we let z, denote f(x). Let 

A={z,]xETIA}, Pz={x]z,=z}, ZEA, 

notethatx,yEPZJx~Tyory~rx, 

Qz = u [z, xl, 
XEP, 

B = {z 1 P, meets stationary many levels}. 
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Note that Q, is linearly ordered since P, is. 

Claim. If zl, z2 E B, then Q,, n Q,, = 0 v Q,, c Q,, v Q,, c Q,,. 
Proof. Suppose Q,, c Q,, and Q,, e Q,,. Then 3x E Q,,, 3y E Q,, s.t. x and y are 

incomparable. For if not we have, say, z I c T ZZ. Take y E Q,, and choose x E Q,, s.t. 
ht(y) < ht(x). It then follows that y <TX so y E [ZZ, x] c [z1, x3 c Q,,. Hence Q,, c 
Q,,. Hence Q,, c Q,,, a contradiction. So pick x E Q,, and y E Q,, s.t. x and y are 
incomparable, take u E Pz, and u E Pz, s.t. x CT u and y GT u. Then u and u are 
incomparable so [zl, U] n [z2, u] = 0 and hence Q,, n Q,, = 0, which completes the 
proof of the claim. 

Now let z E B and consider {u E B 1 Q, c Q,}. Let z. be its minimum. Then Q, c Q,, 
andQ,,ismaximalin{Q,(u~B}.PutC={z~B(Q,ismaximal}.Thenforz~,z2~C 

we have z1 #z2~Qz,nQoz2=0 and we have Q =UzeBQz =UzECQz. Now each 
Q, is clopen in T since z r$ T I,4 so Q = OZEc Q, (topological sum). Q is open 
since Q, is open. Q is closed: Let x E T\Q be non-isolated i.e. x E T 1 A. Then 
[zX, x] n Q = 0. If not, then [zX, x] n Q, f 0 for some z. Pick y E P, s.t. ht(x) < ht(y). 
Then [zX, x] n [z, y] # 0 and hence x cTy. But then x E [z, y] c Q,, contradiction. 

So Q is clopen. 
Next suppose S = {ht(x) (x E T\Ql is stationary. By the P.D.L. for trees there is 

a z E T and a set K c (T\Q) n (T 1 A) such that {ht(x) Ix E K} is stationary and 
Vx E K : t, = Z. But then z E B since K c P, and hence K c Q, c Q contradiction. 
Let M c w1 be c.u.b. s.t. (T\Q) n (T IM) = 0 and let {m, 1~ E WI} be its monotone 
enumeration. Put 

L,={xET\QI mp<ht(x)<m,+i}, (Y owl. 

Each L, is countable and metrizable, so T\Q = @,,,, L, is metrizable and strongly 
zerodimensional and hence orderable. Now T = (T\Q)O $zccQz can be ordered 
as follows: Order the Qz’s two by two in type wT+ol, i.e. as (-I[-_) but keep 
one Q,, aside. Order the union of the paired Q, ‘s in type w I X (w T + w I) lexicographi- 
tally and put Q,, at the beginning giving the following picture: 

[-) (-I[-) t-1 c-3 * * * C-1 L-4 b-1 L-4 * * * 
Now order T\Q in some way and place it at the beginning or somewhere in the 

middle so as not to create any pseudogaps. 0 

Remark. The P.D.L. for trees can be used to show two more things: 
(1) No Aronszajn tree has property 6. For let f : T + T r A be a function s.t. 

Vx E T :A : f(x) <TX. There is an uncountable set on which f is constant. This set 
is not linearly ordered by cT. So we find incomparable x and y such that [f(x), x] n 

[f(Y), Ylt’0. 
(2) No wr-tree is metalindelof (=every open cover has a point-countable 

refinement). For let Ccr be an open refinement of ([O, xnxpT. Let f: T fA + T be a 
function such that Vx E T rA :f(x) <TX and [f( x , x c some V E “Ir. Again we find > ] 

an uncountable set A c_ T 1 A and a point z E T s.t. f(x) = z for all x E A. But then 
z is contained in uncountably many elements of Y i.e. “zr is not point-countable. 
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3. Retractability 

We start with the definition. 

3.1. Definition. A topological space X is called retractable iff each closed subset 

of X is a retract of X, i.e., for each closed set A c X there is a continuous map 

r:X+A s.t. rrA=id*. 

See [5] for more information. In [5] it is shown that retractable spaces are 

hereditarily collectionwise normal and that locally compact zero-dimensional 

linearly ordered topological spaces are retractable. So, by Theorem 2.2, trees with 

property S are retractable. Two questions now arise naturally: (1) Must retractable 

wi- trees have property 6, and (2) must wl- trees with property y be retractable. 

We were unable to answer question (l), but we shall provide a negative answer to 

question (2). In fact we shall show that if T is a Souslin tree, then T rA is not a 

retract of T. 

First we reduce the problem a little bit. For convenience we assume in this section 

that 0 is also a limit ordinal. 

3.2. Lemma. Assume f : T + T 1 A is a retraction, then we can find another retraction 

r : T + T 1 A with the following property : 

Ifx E T\(T 1 A), then 

(1) r(x) G-x, or 

(2) x <=r(x), ht(r(x))=ht(x)+o andx<~y <4x)+r(y)=r(x). 

Such a retraction will be called a nice retraction. 

Proof. We put A* = {(Y E o1 1 a is a limit of limits}. If ht(p) E A\A2, then p is isolated 

in T rA so we can define 

xp = minb EP* IfKx, PI1 = {PI}. 

Now define r : T + T 1 A as follows: 

-1fpETlA putr(p)=p=f(p). 
- IfxE[xp,p]forsomepputr(x)=p=f(x). 

-Ifxe(TrA)uU,[x,,p]putr(x)=max(x*nTrA). 

Obviously r is a map satisfying (1) and (2), so it remains to show that r is 

continuous. Take q E T. 

If ht(q) is a successor or 0, then q is isolated and hence r is continuous at q. 
If ht(q) E A\A2, then r is constant on the neighborhood [x,, q] of q, hence r is 

continuous at q. 

Finally assume ht(q) E A2 and let y <Tq. By continuity off there is a z <Tq such 

that f[(z, q]] c (y, q], we can assume that y cT.z and that z =xP for some p E 

T IA nq^. Take x E (2, q). If x E (xs, s] for some s, then r(x) = s = f(x), so r(x) E (y, q]. 
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If x & (xs, s] for all s, then p <I-X, hence by definition of r: p CTT(X) <x <q. So 

r[(z, 411 c (y, 41 and we can conclude that r is continuous at q. q 

Now we prove the main result of this section. 

3.3. Theorem. Let T be an ml-tree s.t. T IA is a retract of T. Then T contains an 
uncountable antichain. 

Proof. By the lemma let r : T + T 1 A be a nice retraction. For q E T 1 (A*) put 

xq = min{x E 4 I AIx, 411= LO, 411. 

If xq E T IA, then 3y <TX,: r[[y, x,]] E [0, x,], contradicting the choice of xq. 

Consider r(x 4). We cannot have r(xJ <x, for in that case r[[xi, q]] c [0, q], and 

if xq <r(xq), then because r is nice, r(xq) = r(xJ, so again r[[xq, q]] c [0, q] which 

contradicts the choice of xq. We conclude therefore that r(xJ and xq are incom- 

parable. 

Now put K = {x, 1 q E T r (A ‘)}. K has the following two properties: 

(a) ForalltET3xEK:t<T~. 

Take t E T and fix a point p above t such that ht(p) = ht(t) + w. Pick x E [t, p)s.t. 

r[[x, p]] = {p}, let x+ be a successor of x not below p and take q E T 1 (A2) above 

x’.ThenxEq butr(x)=pE[O,q],sotsx<x,. 

(/3) For all t E T, inK is finite. 

Suppose to the contrary that for some t E T, inK is infinite and let {xiii E W} be 

its initial segment of length o. Note that 

Let x = sup “EW x” = SUPlIE” x ?z. - Since, for all n, r(xJ and x, are incomparable we 

have that r(xi)g[O,x] for all n. On the other hand x,+x, so r(x,)+r(x)=x, so 
r(x J E [0, x] for at least one n E o, which is a contradiction. 

By (a) K is uncountable, by (/3) K = IJipwKi where Ki = {x EK 1 Ii nKI = i}, 

that is, K is the union of countably many antichains. One of these antichains is 

uncountable. 0 

3.4. Reformulation. No Souslin tree T admits a retraction r : T + T r A. 

4. Remarks and questions 

4.1. S. Todorcevic [lo] showed that for an ml-tree having property 6 is equivalent 

to being (isomorphic to) an initial segment of 

T(0) = {s E wCol 1 s(a) # 0 for only finitely many a}. 
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T(0) is an example of a tree with property 8: 

f(s)=sr(a(s)+l) where a(s)=max{a]s(~)#O}, 

defines a function f: T(0) IA + T(P)), which witnesses the fact that T(0) has 

property 8. 

4.2. Question. Is there (in some model of set theory) a retractable oi-tree which 

does not have property S? Possible candidates are Aronszajn trees (they do not 

have property 6) or Kurepa trees (they have too many branches to be initial 

segments of T(0)). 

4.3. Remark. In [ll] it is shown than KO- and Kr-trees are retractable and that 

for n 3 2 a tree has property K,, iff the tree is collectionwise Hausdorff. See [5] for 

the definition of K,-spaces. There it is shown that retractable spaces are Ko, that 

K1-spaces are hereditarily collectionwise normal and for all n every K,-space is a 

K,,+i-space. So by the results in this paper Souslin trees are examples of locally 

compact Kz-spaces which are not K1. Their one-point compactifications are compact 

spaces with this property. 

Note added in proof 

Recently S. TodorEeviE showed that it is consistent relative to the existence of 

an at least inaccessible cardinal that all collectionwise Hausdorff (hence all retract- 

able) trees are orderable. 
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