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Abstract

We show that the continug andH™* are nonchainable and have span nonzero. Uatehis can
be strengthened to surjective symmetric span nonzero.

We discuss the logical consequences of this.
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1. Introduction

Chainable (or arc-like) continua are ‘long and thin’; in an attempt to capture this idea
in metric terms Lelek introduced, in [6], the notion of span. Chainable continua have span
zero, which is useful in proving that certain continua are not chainable. The converse,
a conjecture by Lelek in [7], is one of the main open problems in continuum theory today.
While the particular value of the span of a continuum depends on the metric chosen, the
distinction between span zero and span nonzero is a topological one. As chainability is a
topological notion as well, Lelek’s theorem and conjecture are meaningful in the class of
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all Hausdorff continua. We investigate the chainability and span of several continua that
are closely connected to ti@ech—Stone compactification of the real line.

2. Preliminaries
2.1. Various kinds of span

The kinds of span that we consider in this paper are, in the metric case, defined as
suprema of distances between the diagonal of the continuum and certain subcontinua of
the square. The following families of subcontinua feature in these definitions:

S(X): the symmetric subcontinua &f?, i.e., those that satisfg = Z1;
¥ (X): the subcontinua ok? that satisfyr1[Z] = 72[Z]; and
Yo(X): the subcontinua ok ? that satisfyro[Z] C m1[Z].

Here,r1 andn, are the projections onto the first and second coordinates, respectively. It is
clear thatS(X) € ¥ (X) C Xo(X) and hence that(X) < o (X) < oo(X), where

(1) s(X) =supd(A(X), Z): Z e S(X)};
(2) o(X) =supd(A(X), Z): Ze ¥(X)};and
(3) 0o(X) =sudd(A(X), Z): Z € Xp(X)}.

These numbers are, respectively, siyenmetric sparthespanand thesemi-sparof X .

If one uses, in each definition, only the contindawith 71[Z] = X then one gets the
surjective symmetric span*(X), the surjective spans*(X), and thesurjective semi-
span oy (X), of X, respectively. The following diagram shows the obvious relationships
between the six kinds of span.

s(X) —— o(X) —— o00(X)

I | | @

s¥(X) —— o"(X) —— oj(X)

Topologically we can only distinguish between a span being zero or nonzero. A span is
zero if and only if every continuum from its defining family intersects the diagonal. This
defines span zero (or span nonzero) for the six possible types of span in general continua.
Below we will show that for the continud* andl, all six kinds of span are nonzero.
Diagram (1) shows that it will be most difficult to show thdtis nonzero (or dually that it
would be hardest to show thag is zero). Indeed, we will give successively more difficult
proofs that the various spans are nonzero, where we traverse the diagram from top right to
bottom left.
The need for these different proofs lies in their set-theoretic assumptions. We need noth-
ing beyondzFC to show that*(H*) ando (I,,) are nonzero; to show that the other spans
(in particulars*) are nonzero we shall need the Continuum Hypothezig.
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2.2. Chainability

A continuum ischainableif every open cover of it has an open refinement that is a
chain cover, wher€ = {C4, ..., C,} chain coverif C; N C; is nonempty if and only if
li—JjI<l

One readily shows that every chainable continuum has span zero, whatever kind of span
one uses. This follows from the fact that chainability is a hereditary property of continua
and from the following theorem whose proof we give for completeness sake.

Theorem 2.1. Every chainable continuum has surjective semi-span zero.

Proof. Let X be a chainable continuum and [&tbe a subcontinuum ot ? that is disjoint
from A(X). Let{ be a finite open cover of such thatU? N Z = ¢ for all U € . Next
let {V1, Vo, ..., V,} be an open chain cover that refiriésDefine open set®1 and O2 in
X2 by

o= JtvixVviii<jl,  O2=JWVixVjii>j)

ThenZ Cc 01U 02 and 01N 02 = @. As Z is connected, it is contained in one 6k
or Oy, sayZ C 0. Thenm1[Z] € |, _, Vi andmo[Z] € ;.1 Vi. This means that neither
mi[Z] normp[Z] is equaltoX. O

i<n

2.3. The continud,, andH*

In this paper we will be investigating the different kinds of span and the chainability of
the continudl, andH*. These two spaces are related to one another. Following [8,4], we
will use the spac®l = w x I in our investigation of the spacés andH*, wherel denotes
the unit interval0, 1].

The mapr : M — w given byr (n, x) = n is perfect and monotone, as is@ech—Stone
extensiondrz. The preimage of an ultrafilter € »* is a continuum and denoted by.

Given any sequence, e, in I and anyu € o* there is a unique point, denoteg,
in I, such that for everysM-neighborhoodO of x,, the set{n € w: (n,x,) € O} is an
element ofu, i.e., x, is the u-limit of the sequencé(n, x,)),co- These points form a
dense seC, of cut points ofl,, for details see [4]. The séi, is in fact the ultrapower
of I by the ultrafilteru, i.e., the set’T modulo the equivalence relation~, y defined by
{n: xp =y} €eu.

The continuuni, is irreducible between the pointg @nd 1, (defined in the obvious
way) and as it has a natural pre-ordegy defined byx <, y iff every subcontinuum of
I, that contains p andy also contains. The equivalence classes under the equivalence
relation “x <, y andy <, x" are called layers and the set of layers is linearly ordered
by <,,. The points ofC, provide one-point layers, the restrictiongf to this set coincides
with the ultrapower order defined lyy: x, < y,} € u. We shall freely use interval notation,
allowing nontrivial layers as end points.

If (x,)new IS @ strictly increasing sequencelip then its supremund is a nontrivial
layer. Becaus@M \ M is an F-space the closure ¢k,: n € w} is homeomorphic t@w;
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by upper semicontinuity the remainder (which is a copyptf must be contained ih. We
call such a layer a countable-cofinality layer.

The continuunil* is the remainder of thEech—Stone compactificatigitl, whereH
is the half line[0, c0). Letq : M — H be given byg (n, x) = n + x, theng is a perfect map
and itsCech—Stone extensi@dy : BM — BH mapsM* onto H*. Again, for properties of
H* and its relation td, see [4].

3. Thespan of H*

In this section we show that the surjective (semi-)spaHdfs nonzero. The following
theorem more than establishes this.

Theorem 3.1. There exists a fixed-point free autohomeomorphisii‘af

Proof. Let f:H — H be the map defined by : x — x + 1. It is clear that3f mapsH*
ontoH*. The restrictionf* = gf | H* is a fixed-point free autohomeomorphismiof.

To see thatf* is an autohomeomorphism considerH — H defined byg(x) =
max0, x — 1}. From the fact thalf (g(x)) = x andg(f(x)) = x for x > 1 it follows that
f*og*andg* o f* are the identity ortl*.

That f is fixed-point free onH* follows by considering the following closed cover
{Fo, F1, F», F3} of H, defined byF; = J,[2n + 5,21 + 51]. Observe thatf*[F}] =
Ff 5 mod 4@Nnd thatF* N FY 5 4 41S always empty, so that*(x) # x forx e H*. O

Corollary 3.2. o*(IH*) is nonzero.

Proof. The graph off* is a continuum irH* x H* that is disjoint from the diagonal and
whose projection on each of the axedlis. O

Later we shall see that undeH evens*(H*) is nonzero.
By Theorem 2.1 we also know thEE* is not chainable. The reader may enjoy showing
that the four open setdy, Ui, U2 andUs defined by

U; = U(8n+2i,8n+2i—|—3)

n<w

induce an open cover @f* without a chain refinement.
3.1. More fixed-point free homeomorphisms

We use the description of indecomposable subcontinua from [2] to show that many
subcontinua ofl* have fixed-point free autohomeomorphisms.

We use the shift-mag : v — w, defined bys (n) =n + 1, and its extension tfw. We
note thats is an autohomeomorphism af. We also writex + 1 for o (1) andu — 1 for
ail(u).
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For F C w* we putMg = |, I, andCr = Bq[MFr]. We say thatF is o -invariant
if u+1,u—1e F whenevew € F. Clearly then, ifF is o-invariant thenf* | Cr is an
autohomeomorphism of z, where f* is the autohomeomorphism &f* defined in the
proof of Theorem 3.1.

From [2] we quote the followingCr is a subcontinuum whenevét is closed,o -
invariant and not the union of two disjoint proper closednvariant subsets. In that case
Cr is indecomposable if and only i is dense-in-itself.

From [2] we also quote: iK is an indecomposable subcontinuumtbf then there is a
strictly increasing sequenge, ), in H that diverges t@o and such thak = ¢,[CF] for
some closed dense-it-itsetfinvariant subsef’ of w* that is not the union of two disjoint
proper closedr -invariant subsets and wheug : H* — H* is induced by the piecewise
linear self-map ofl that sends to a,,.

We can combine all this into the following theorem.

Theorem 3.3. Every indecomposable subcontinuumlIéf has a fixed-point free auto-
homeomorphisrtand hence surjective span non2ero

4. Thespanof I,

In this section we show thd}, has span nonzero for any ultrafiltey the next section
will be devoted to the surjective versions of span.

The following theorem, akin to Theorem 3.1 and with a similar proof, provides a con-
tinuum witnessing that, has nonzero span.

Theorem 4.1. Every countable-cofinality layer has a fixed-point free autohomeomorphism.

This follows from Theorem 3.3 but for later use we give a direct construction, which
establishes a bit more, namely that the intef@gl L] has a fixed-point free continuous
self-map.

Proof. We prove the theorem for one particular layer but the argument is easily adapted to
the general case.

Form € w putx,, =1 —27"; then{x,,}. <o IS a strictly increasing sequencelithat
converges to 1 and withp = 0. Letx,, , denote the point of, that corresponds to the
constant sequende;, }, <., in I. Then{x,, ,}mew iS a strictly increasing sequencelif let
L denote the limit of this sequence, a nontrivial layefi,of

We define a mag : 1, — I, by defining it onM, taking itsCech—Stone extension and
restricting that tdl, .

(1) Let f | Ip be equal to the identity.
(2) Foralln > 1let f | I,, be the piecewise linear map that mapsx,,) to (n, x,,+1) for
all m < n and the pointn, 1) to itself.
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Claim 1. The Cech-Stone extension of the mApnaps[0,, L] homeomorphically onto
[x1,u, L].

Proof. It is not hard to see thatf maps the intervalx,, i, x;+1.,1 of I, homeomorphi-
cally onto[x,;+1,u, Xm+2.4] for all m € w. This implies thatsf maps[0,, L) homeomor-
phically onto[x1 ,, L). The fact tha{O,, L] = g[0,, L) now establishes the claim.c

We leth denote the restriction g8f to [0,, L]. The fact thafO,, L] = 8[0,, L) also
establishes the following claim.

Claim 2. The restrictionk | L mapsL homeomorphically ontd..

To see that: has no fixed points we argue as in the proof of Theorem 3.1.

For everym leta,, be the mid point of the intervak,,, x,,+1). Note that the mag maps
(n, a) onto the point(n, a,,4+1) whenevem < n. Define the following closed subsels
fori=0,1,2and3:

Fo= U({n} X U [x2m, a%]), b= U<{n} x U (X2m41, 02m+1]),

F1= U<{”} x | lazn. x2m+1])’ F3= U({n} x | lazmy1. X2m+2])-

Note that the closure iAM of the union of theF;’s contains the intervdD,, L] of I,. Also
note that the closed sét is mapped onto the closed 8t, 2 od 4 SO f[F; 1N F; =#. As
in the proof of Theorem 3.1 this implies thiahas no fixed points. O

As before we get the following corollaries.
Corollary 4.2. The surjective span df is nonzero, hence (I,,) is honzero.
Corollary 4.3. The surjective semi-span [,, L] is nonzero.

It will be more difficult to prove the same fdy,.

5. Thesurjective spans of I, and H*

Using the map from the previous section and the retraction we get from the next theorem
we will show that unde€H there exists a fixed-point free continuous self map,ofs the
map is not onto this only implies that the surjective semi-spal) & nonzero. However,
the special structure df, will allow us to build, using the graph of this map, a symmetric
subcontinuum oﬁﬁ that will witnesss*(I,) # O; it will then also be possible to show that
s*(H™*) is nonzero.

We retain the notation from the previous section but we wrjte= x,, , for ease of
notation and we recall that layér is the supremum, ifi,, of the set{a,,: m € w}. The
following theorem is what makes the rest of this section work.
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Theorem 5.1. (CH) L is aretract of[L, 1,].
Before we prove the theorem we give the promised consequences.
Theorem 5.2. (CH) The continuuni,, does not have the fixed-point property.

Proof. Leth:[0,, L] — [0,, L] be the map constructed in the proof of Theorem 4.1 and let
r:[L,1,] — L be the retraction from Theorem 5.1. Extendingy the identity or{Q,, L]
yields a retraction* from I, onto [O,, L]. The compositior o r* is then a fixed-point
free continuous self-map @f. O

Corollary 5.3. (CH) The surjective semi-span kf is nonzero.
Proof. The graph of: o r* is a withess. O

We now show how to make*(I,,) nonzero.
Corollary 5.4. (CH) The surjective symmetric span kf is nonzero.

Proof. Let G be the graph of: o r*. We completeG to symmetric continuum by adding

the following continua{l,} x [O,, L1, [A(0,), 1.1 x {0,}, G~ 1, [0,, L] x {1,}, and{0,} x

[2(0,), 1,]. Itis straightforward to check that the uni@nis a continuum (each continuum
meets its successor) that is symmetric and projects onto each axis. As none of the pieces
intersects the diagonal we get a witness*td,,) being nonzero. O

Corollary 5.5. (CH) The surjective symmetric span Bf* is nonzero.

Proof. We begin by taking the grapR of the mapf from Theorem 3.1 and its inverse
F~1: unfortunately the uniorF U F~1 is not connected, ag and F~1 are disjoint. To
connect them we take one ultrafilteron « and observe that the imaggl,,] connects
the ultrafiltersu andu + 1. The imageK = (¢ x ¢g)[Z], whereZ is from the proof of
Corollary 5.4 meets both (in («, u +1)) andF~1 (in (u+1, «)). The unionF UK U F~1

is a withess to*(H*) #0. O

5.1. Proof of Theorem 5.1

We will construct the retraction by algebraic, rather than topological, meansR Let
be the family of finite unions of closed intervals bivith rational endpoints. For every
f € “R we define the closed subséf of M by

Ap= U{n} x f(n).
n<w
These sets form a lattice base for the closed seld dfe., it is a base for the closed sets
and closed under finite unions and intersections. It is an elementary exercise to show that
disjoint closed sets ifvl can be separated by disjoint closed sets of the fdrm This
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implies that the closures dly form a lattice base for the closed setsg¥I. It follows
thatB={clAyNL: f € “R}is a base for the closed sets bfand similarly thaiC =
{clAyN[L,1,]: fe®R}isabasefofL,1,].

Theorem 1.2 from [3] tells us that in order to construct a retraction frbni, ] onto L
it suffices to construct a map: B — C that satisfies

1) @) =0, andif F # @ thenp(F) # @,

(2) if FUG =L thenp(F)Ue(G)=I[L,1,];

@) if FN---NF, =@ thenp(F1)N---Ne(F,) =0, and
4) op(F)NL=F.

The retractiorr: [L, 1,] — L is then defined by (x) = ‘the unique point in"\{F: x €
¢(F)}'. The first three conditions ensure thats well-defined, continuous and onto; the
last condition ensures that L is the identity.

There is a decreasing;-sequence(by)e<w; Of cut points inl, such thatL =
ﬂm’a[am,ba]: by [4, Lemma 10.1], such a sequence must have uncountable cofinality
and byCH the only possible (minimal) length thends . For eachy choose a sequence
(ba.n)new in I such thaby = by 4.

Again by CH we list ®R in an wi-sequence fy)q<w;- We will assign to eacly, a
g« €“Rinsuchawaythatcl s, NL— clA,, N[L,1,] defines the desired map

The assignment will be constructed in a recursion of lengthwhere at stage we
assume the conditions (1)—(4) are satisfied forAhe and A,, with 8 < o and choose
g« In such a way that they remain satisfied oK «. At every stage we will listx in an
w-sequence; this means that it suffices to consider theccase only.

We need a few lemmas that translate intersection properti8saimdC to R.

Lemma5.6. clAy N L =g if and only if there aren and« such that the sefn: f(n) N
[am,ns ba,n] =@} b9|0ngS tae.

Proof. By compactness el N L = ¢ if and only if there aren anda such that ci ; N
lam, be] = ¥ and the latter is equivalent toi: f(n) N [am.n, ba.n] = B} € u, again by
compactness and the formula

clAfNlam. bal= (") cl< = (ren [am,n,ba,,,])). O

Uecu nelU

Lemma 5.7. clAy N L =clA; N L if and only if there arem and « such that the set
{n: f(n) N [am,nv ba,n] =gm)N [am,nv ba,n]} belongs tau.

Proof. The ‘if’ part is clear. For the ‘only if’ part letD be the set of all mid points of
all maximal intervals inA s \ Ag; thenclD CclAy\ clA, and so cD N L =§. Observe
that D = A; for some#h, so there are: anda as in Lemma 5.6 foD. By convexity, for
eachn the intervalla, ,,, by.,] Meets at most two of the maximal intervalsfiiz) \ g(n)
—one,I,, at the top and one/,,, at the bottom. The two sequendgs <., (bottom points
of the I,,) and {j,) < (top points of theJ,) determine cut points, and j, of I,,, which
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cannot belong td.. Therefore we can enlarge and« such that(n: iy, ju ¢ [am.n, ba.nl}
is inu. A convexity argument will now establish thi: (f(n) \ g(n)) N [am.n, ba.nl = 3}
belongs ta:. The same argument, interchangifigindg will yield our final m ande. O

Lemma 58. L C clAy if and only if there arem and a < w1 such that the set
{n: [am.n, ba.n] < f(n)} belongs tas.

Proof. Apply Lemma 5.7 tof and the constant function— 1. O

Now we are ready to perform the constructiorggf given subset§fi }r<» and{gi <o
of “R such thatthe map d , N L — cl A, N[L, 1,] (k < w) satisfies the conditions (1)—
(4) from our list.

The conditions that need to be met are

(@ LNclAy, =LNclA,,;

(b) if LCSclAy UclAy, then[L,1,]SclAg UclA,, ;and

(c) if FCwis finite andL NclAy, N (cpClAy =@ then [L,1,] N clAg, N
Mier ClAg =0

The first condition takes care of (1) and (4) in our list, except possibly whén ¢h L = ¢

but in that case it suffices to lgt, be the constant functiom— @. The second and third
condition ensure (2) and (3), respectively. There is one more condition that we need to
keep the recursion alive; it is needed to take care of combinations of (b) and [cE if
ClAy UclAy, andL NclAy N(),cpClAj =9 then we must have room to be able to
ensure that botf, 1,] S cl A, UclAg, and[L, 1,]NclAg, N(),cp ClAg, = 0. Note that

the antecedent implies that, in the subspagthe intersectior. N, Cl A 5, is contained

in the interior ofL N cl A ;. A moment’s reflection shows that we need

(d) if LN(,cpClAy is contained inint L NclAy, then[L,1,]1N(),cpClAg is con-
tained inintz 1,)[L, 1,1 NclAy,.

For everyk as in (b) choose:; andoy as per Lemma 5.8 such thidt = {n: [am,.n, ba;.n]
C fr(n) U f,(n)} belongs ta:. Likewise, for everyF as in () choose:r anday as per
Lemma 5.6 such thallr = {n: [amp.n. bap.nl N fu(n) N (ep fi(n) =@} belongs tou.
And, finally, for every pail(F, k) as in (d) (withF finite but withk < w in this case) choose
mpx andar g, andUr x € u such that for everyr € Up i we havelan . n, bap i .n] N
Mier fi(n) S int fi(n) and[amp 0. 110 (e p g1(n) S intgg(n) (the latter only ifk < w
of course).

We fix an ordinake larger than they, o andar x and use it instead in the definitions
of the setdJi, Ur andUy x—they will still belong tou. Next take a decreasing sequence
(Vp) pew Of elements ofr such thatV), is a subset of

e U, whenevek < p;
e Urp wheneverF C p; and
e Ur; wheneverF C p andk < p ork = w.
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In addition we can, and will, assume that wheneket p andL N(),cxClAs =¥ then
[ba, 11 N () &1 (n) = P—that this is possible follows from the assumption that (c) holds
for maxr.

Now we are truly ready to defing,. If n ¢ Vg defineg,(n) =1. Incasen € V), \ V41
observe first that ik < p is asin (b) andF C p is as in (c) then(F, k) is as in (d) so that
certainly

[am > 11N () g1(n) Sintgi(n). (+)
leF

Defineg,(n) as the union off,,(n) N[0, by (n)] and an elemeni(n) of R that is a subset
of [by (n), 1] and satisfies

e h(n)U gr(n) 2 [by(n), 1] wheneverk < p is as in (b);
o n(n) N[ )er 81(n) =¥ wheneverF C p is as in (c); and
o h(n) 2 [bgn, 11N (;cr 81(n) Whenever F, w) is as in (d).

This is possible because 6f) and becausg);.r g/(n) N (e &1(n) =¥ wheneverF is
asin (c) andG, w) is as in (d). This gives us just enough room to chologe.

It is now routine to verify that all conditions og,, are metu-often: e.g., ifF Cw is
finite andL NclAy, N(,cpClAy =@ then[ay . n, 11N gw(n) N (cp &1(n) =¥ for all
n € Vy,, wherep =1+ maxF.

5.2. Further considerations

The proof in the previous section can be used to show that, WCideall other layers
of the continuuni,, are retracts of,. If the layer is a point then this is clear. If the layler
is nontrivial then the cofinality of0,, L) and the coinitiality of(L, 1,,] arews. Itis then a
matter of making the proof of Theorem 5.1 symmetric to get our retraetip— L. The
details can be found in [9].

The fixed-point free homeomorphisim L — L from Theorem 3.3 can then be used to
construct another witness t6(Il,, ) # 0, almost exactly as in the proof of Theorem 5.4.

6. Remarks

The results of this paper grew out of an attempt to find nonmetric counterexamples

to Lelek’s conjecture. The fairly easy proof, indicated after Corollary 3.2,Itais not
chainable, which also works for layers of countable cofinality lead us to conkides a
possible candidate.

A secondary goal was to convert any nonmetric counterexample into a metric one by an

application of the L6wenheim—Skolem theorem [5, Section 3.1], to its lattice of closed sets.

This produces a countable sublattice with exactly the same (first-order) lattice-theoretic
properties; its Wallman representation space, see [10], is a metrizable continuum with
many properties in common with the starting space, e.g., covering dimension unicoher-

ence, (hereditary) indecomposability, , see [9, Chapter 2], for a comprehensive list.
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The results of this paper cast doubt of the possibility of adding (non)chainability and
span (non)zero (of any kind) to this list. The reason for this is that the famjly=
{clA;NI,: fe®R}isisomorphic to the ultrapower & (from the proof Theorem 5.1)
by the ultrafilteru; this follows in essence from the equivalence ad¢lN T, =clA, NI,
and{n: f(n)=g(n)} € u. By the Los Ultraproduct Theorem [5, Theorem 8.5.3], we see
thatR andR, have the same first-order lattice theoretic properties yet their Wallman rep-
resentations] andl,, respectively, differ in chainability and in various kinds of span (all
kinds if CH is assumed).

Chainability is a property that can be read off from a lattice base for the closed sets
(or dually for the open sets): using compactness one readily shows that a continuum is
chainable iff every basic open cover has a chain refinement from the base. Thus we deduce
that chainability is not a first-order property of the lattice base.

For span (non)zero there are two possibilities: it cannot be read off from a base or, if it
can be, it is not a first-order property of the lattice base.

7. Questions

The remarks in the previous section suggest lots of questions. We mention the more
important ones.

Question 7.1. Is there a nonmetric counterexample to any one version of Lelek’s conjec-
ture?

It should be noted that, as mentioned in [1], H. Cook has shown that the dyadic solenoid
has symmetric span zero.

In spite of the results ohandl, it is still possible that the Léwenheim—-Skolem method
may convert a nonmetric counterexample into a metric one. The reason for this#,that
is special base for the closed setslpfand not an elementary sublattice of its lattice of
closed sets.

Question 7.2. If L is an elementary sublattice of the full lattice of closed sets of the con-
tinuum X, does its Wallman representation inherit (non)chainability and or span (non)zero
from X?

Section 3.7 of [9] gives a positive answer for very special sublattices, but unfortunately
except for span zero. Further, more specialized, questions can be found in that reference.
The corollaries in Section 5 were derived from Theorem 5.1, which ne€teid its
proof. This clearly suggests the question whether a more insightful analysis of the structure
of thel,, and the use of more intricate combinatorics will make the usgHbfinnecessary.

Question 7.3. Can one show iZFC only that all spans off* andI,, are nonzero?

It would already be of interest if one could find at least anguch that all spans df,
are nonzero.
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We have shown implicitly that the fixed-point property is like chainability and span zero
in thatI has it butl,, does not, at least undeH.

Question 7.4. Is there inZFC at least one: such thatl, does not have the fixed-point
property?
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