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Abstract

We show that the continuaIu andH
∗ are nonchainable and have span nonzero. UnderCH this can

be strengthened to surjective symmetric span nonzero.
We discuss the logical consequences of this.
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1. Introduction

Chainable (or arc-like) continua are ‘long and thin’; in an attempt to capture this
in metric terms Lelek introduced, in [6], the notion of span. Chainable continua have
zero, which is useful in proving that certain continua are not chainable. The con
a conjecture by Lelek in [7], is one of the main open problems in continuum theory t
While the particular value of the span of a continuum depends on the metric chose
distinction between span zero and span nonzero is a topological one. As chainabil
topological notion as well, Lelek’s theorem and conjecture are meaningful in the cla
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all Hausdorff continua. We investigate the chainability and span of several continu
are closely connected to theČech–Stone compactification of the real line.

2. Preliminaries

2.1. Various kinds of span

The kinds of span that we consider in this paper are, in the metric case, defin
suprema of distances between the diagonal of the continuum and certain subcont
the square. The following families of subcontinua feature in these definitions:

S(X): the symmetric subcontinua ofX2, i.e., those that satisfyZ = Z−1;
Σ(X): the subcontinua ofX2 that satisfyπ1[Z] = π2[Z]; and
Σ0(X): the subcontinua ofX2 that satisfyπ2[Z] ⊆ π1[Z].

Here,π1 andπ2 are the projections onto the first and second coordinates, respectivel
clear thatS(X) ⊆ Σ(X) ⊆ Σ0(X) and hence thats(X) � σ(X) � σ0(X), where

(1) s(X) = sup{d(∆(X),Z): Z ∈ S(X)};
(2) σ(X) = sup{d(∆(X),Z): Z ∈ Σ(X)}; and
(3) σ0(X) = sup{d(∆(X),Z): Z ∈ Σ0(X)}.

These numbers are, respectively, thesymmetric span, thespanand thesemi-spanof X.
If one uses, in each definition, only the continuaZ with π1[Z] = X then one gets th

surjective symmetric span, s∗(X), the surjective span, σ ∗(X), and thesurjective semi-
span, σ ∗

0 (X), of X, respectively. The following diagram shows the obvious relations
between the six kinds of span.

s(X) −−−−→ σ(X) −−−−→ σ0(X)�
�

�
s∗(X) −−−−→ σ ∗(X) −−−−→ σ ∗

0 (X)

(1)

Topologically we can only distinguish between a span being zero or nonzero. A s
zero if and only if every continuum from its defining family intersects the diagonal.
defines span zero (or span nonzero) for the six possible types of span in general co

Below we will show that for the continuaH∗ andIu all six kinds of span are nonzer
Diagram (1) shows that it will be most difficult to show thats∗ is nonzero (or dually that i
would be hardest to show thatσ0 is zero). Indeed, we will give successively more diffic
proofs that the various spans are nonzero, where we traverse the diagram from top
bottom left.

The need for these different proofs lies in their set-theoretic assumptions. We nee
ing beyondZFC to show thatσ ∗(H∗) andσ(Iu) are nonzero; to show that the other spa
(in particulars∗) are nonzero we shall need the Continuum Hypothesis (CH).
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2.2. Chainability

A continuum ischainableif every open cover of it has an open refinement that
chain cover, whereC = {C1, . . . ,Cm} chain coverif Ci ∩ Cj is nonempty if and only if
|i − j | � 1.

One readily shows that every chainable continuum has span zero, whatever kind
one uses. This follows from the fact that chainability is a hereditary property of con
and from the following theorem whose proof we give for completeness sake.

Theorem 2.1. Every chainable continuum has surjective semi-span zero.

Proof. Let X be a chainable continuum and letZ be a subcontinuum ofX2 that is disjoint
from ∆(X). Let U be a finite open cover ofX such thatU2 ∩ Z = ∅ for all U ∈ U . Next
let {V1,V2, . . . , Vn} be an open chain cover that refinesU . Define open setsO1 andO2 in
X2 by

O1 =
⋃

{Vi × Vj : i < j}, O2 =
⋃

{Vi × Vj : i > j}.
ThenZ ⊂ O1 ∪ O2 andO1 ∩ O2 = ∅. As Z is connected, it is contained in one ofO1
or O2, sayZ ⊆ O2. Thenπ1[Z] ⊆ ⋃

i<n Vi andπ2[Z] ⊆ ⋃
i>1 Vi . This means that neithe

π1[Z] norπ2[Z] is equal toX. �
2.3. The continuaIu andH∗

In this paper we will be investigating the different kinds of span and the chainabil
the continuaIu andH

∗. These two spaces are related to one another. Following [8,4
will use the spaceM = ω × I in our investigation of the spacesIu andH

∗, whereI denotes
the unit interval[0,1].

The mapπ :M → ω given byπ(n, x) = n is perfect and monotone, as is itsČech–Stone
extensionβπ . The preimage of an ultrafilteru ∈ ω∗ is a continuum and denoted byIu.

Given any sequence〈xn〉n∈ω in I and anyu ∈ ω∗ there is a unique point, denotedxu,
in Iu such that for everyβM-neighborhoodO of xu, the set{n ∈ ω: (n, xn) ∈ O} is an
element ofu, i.e., xu is the u-limit of the sequence〈(n, xn)〉n∈ω. These points form a
dense setCu of cut points ofIu, for details see [4]. The setCu is in fact the ultrapowe
of I by the ultrafilteru, i.e., the setωI modulo the equivalence relationx ∼u y defined by
{n: xn = yn} ∈ u.

The continuumIu is irreducible between the points 0u and 1u (defined in the obvious
way) and as it has a natural pre-order�u defined byx �u y iff every subcontinuum o
Iu that contains 0u andy also containsx. The equivalence classes under the equivale
relation “x �u y andy �u x” are called layers and the set of layers is linearly orde
by �u. The points ofCu provide one-point layers, the restriction of�u to this set coincides
with the ultrapower order defined by{n: xn � yn} ∈ u. We shall freely use interval notatio
allowing nontrivial layers as end points.

If 〈xn〉n∈ω is a strictly increasing sequence inIu then its supremumL is a nontrivial
layer. BecauseβM \ M is anF -space the closure of{xn: n ∈ ω} is homeomorphic toβω;
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by upper semicontinuity the remainder (which is a copy ofω∗) must be contained inL. We
call such a layer a countable-cofinality layer.

The continuumH
∗ is the remainder of thěCech–Stone compactificationβH, whereH

is the half line[0,∞). Let q :M → H be given byq(n, x) = n + x, thenq is a perfect map
and itsČech–Stone extensionβq :βM → βH mapsM∗ ontoH

∗. Again, for properties o
H

∗ and its relation toIu see [4].

3. The span of H
∗

In this section we show that the surjective (semi-)span ofH
∗ is nonzero. The following

theorem more than establishes this.

Theorem 3.1. There exists a fixed-point free autohomeomorphism ofH
∗.

Proof. Let f :H → H be the map defined byf :x 
→ x + 1. It is clear thatβf mapsH
∗

ontoH
∗. The restrictionf ∗ = βf � H

∗ is a fixed-point free autohomeomorphism ofH
∗.

To see thatf ∗ is an autohomeomorphism considerg :H → H defined byg(x) =
max{0, x − 1}. From the fact thatf (g(x)) = x andg(f (x)) = x for x � 1 it follows that
f ∗ ◦ g∗ andg∗ ◦ f ∗ are the identity onH∗.

That f is fixed-point free onH∗ follows by considering the following closed cov
{F0,F1,F2,F3} of H, defined byFi = ⋃

n[2n + i
2,2n + i+1

2 ]. Observe thatf ∗[F ∗
i ] =

F ∗
i+2 mod 4and thatF ∗

i ∩ F ∗
i+2 mod 4is always empty, so thatf ∗(x) �= x for x ∈ H

∗. �
Corollary 3.2. σ ∗(H∗) is nonzero.

Proof. The graph off ∗ is a continuum inH∗ × H
∗ that is disjoint from the diagonal an

whose projection on each of the axes isH∗. �
Later we shall see that underCH evens∗(H∗) is nonzero.
By Theorem 2.1 we also know thatH

∗ is not chainable. The reader may enjoy show
that the four open setsU0, U1, U2 andU3 defined by

Ui =
⋃
n<ω

(8n + 2i,8n + 2i + 3)

induce an open cover ofH∗ without a chain refinement.

3.1. More fixed-point free homeomorphisms

We use the description of indecomposable subcontinua from [2] to show that
subcontinua ofH∗ have fixed-point free autohomeomorphisms.

We use the shift-mapσ :ω → ω, defined byσ(n) = n + 1, and its extension toβω. We
note thatσ is an autohomeomorphism ofω∗. We also writeu + 1 for σ(u) andu − 1 for
σ−1(u).
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For F ⊆ ω∗ we putMF = ⋃
u∈F Iu andCF = βq[MF ]. We say thatF is σ -invariant

if u + 1, u − 1 ∈ F wheneveru ∈ F . Clearly then, ifF is σ -invariant thenf ∗ � CF is an
autohomeomorphism ofCF , wheref ∗ is the autohomeomorphism ofH

∗ defined in the
proof of Theorem 3.1.

From [2] we quote the following:CF is a subcontinuum wheneverF is closed,σ -
invariant and not the union of two disjoint proper closedσ -invariant subsets. In that ca
CF is indecomposable if and only ifF is dense-in-itself.

From [2] we also quote: ifK is an indecomposable subcontinuum ofH
∗ then there is a

strictly increasing sequence〈an〉n in H that diverges to∞ and such thatK = qa[CF ] for
some closed dense-it-itselfσ -invariant subsetF of ω∗ that is not the union of two disjoin
proper closedσ -invariant subsets and whereqa :H∗ → H

∗ is induced by the piecewis
linear self-map ofH that sendsn to an.

We can combine all this into the following theorem.

Theorem 3.3. Every indecomposable subcontinuum ofH
∗ has a fixed-point free auto

homeomorphism(and hence surjective span nonzero).

4. The span of Iu

In this section we show thatIu has span nonzero for any ultrafilteru; the next section
will be devoted to the surjective versions of span.

The following theorem, akin to Theorem 3.1 and with a similar proof, provides a
tinuum witnessing thatIu has nonzero span.

Theorem 4.1. Every countable-cofinality layer has a fixed-point free autohomeomorph

This follows from Theorem 3.3 but for later use we give a direct construction, w
establishes a bit more, namely that the interval[0u,L] has a fixed-point free continuou
self-map.

Proof. We prove the theorem for one particular layer but the argument is easily adap
the general case.

For m ∈ ω put xm = 1 − 2−m; then{xm}m<ω is a strictly increasing sequence inI that
converges to 1 and withx0 = 0. Let xm,u denote the point ofIu that corresponds to th
constant sequence{xm}n∈ω in I. Then{xm,u}m∈ω is a strictly increasing sequence inIu; let
L denote the limit of this sequence, a nontrivial layer ofIu.

We define a mapf : Iu → Iu by defining it onM, taking itsČech–Stone extension an
restricting that toIu.

(1) Letf � I0 be equal to the identity.
(2) For alln � 1 letf � In be the piecewise linear map that maps(n, xm) to (n, xm+1) for

all m < n and the point(n,1) to itself.
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Claim 1. TheČech–Stone extension of the mapf maps[0u,L] homeomorphically onto
[x1,u,L].

Proof. It is not hard to see thatβf maps the interval[xm,u, xm+1,u] of Iu homeomorphi-
cally onto[xm+1,u, xm+2,u] for all m ∈ ω. This implies thatβf maps[0u,L) homeomor-
phically onto[x1,u,L). The fact that[0u,L] = β[0u,L) now establishes the claim.�

We leth denote the restriction ofβf to [0u,L]. The fact that[0u,L] = β[0u,L) also
establishes the following claim.

Claim 2. The restrictionh � L mapsL homeomorphically ontoL.

To see thath has no fixed points we argue as in the proof of Theorem 3.1.
For everym letam be the mid point of the interval(xm, xm+1). Note that the mapf maps

(n, am) onto the point(n, am+1) wheneverm < n. Define the following closed subsetsFi

for i = 0, 1, 2 and 3:

F0 =
⋃
n

(
{n} ×

⋃
m<n

[x2m,a2m]
)

, F2 =
⋃
n

(
{n} ×

⋃
m<n

[x2m+1, a2m+1]
)

,

F1 =
⋃
n

(
{n} ×

⋃
m<n

[a2m,x2m+1]
)

, F3 =
⋃
n

(
{n} ×

⋃
m<n

[a2m+1, x2m+2]
)

.

Note that the closure inβM of the union of theFi ’s contains the interval[0u,L] of Iu. Also
note that the closed setFi is mapped onto the closed setFi+2 mod 4, sof [Fi] ∩ Fi = ∅. As
in the proof of Theorem 3.1 this implies thath has no fixed points. �

As before we get the following corollaries.

Corollary 4.2. The surjective span ofL is nonzero, henceσ(Iu) is nonzero.

Corollary 4.3. The surjective semi-span of[0u,L] is nonzero.

It will be more difficult to prove the same forIu.

5. The surjective spans of Iu and H
∗

Using the map from the previous section and the retraction we get from the next th
we will show that underCH there exists a fixed-point free continuous self map ofIu; as the
map is not onto this only implies that the surjective semi-span ofIu is nonzero. However
the special structure ofIu will allow us to build, using the graph of this map, a symme
subcontinuum ofI2

u that will witnesss∗(Iu) �= 0; it will then also be possible to show th
s∗(H∗) is nonzero.

We retain the notation from the previous section but we writeam = xm,u for ease of
notation and we recall that layerL is the supremum, inIu, of the set{am: m ∈ ω}. The
following theorem is what makes the rest of this section work.
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Theorem 5.1. (CH) L is a retract of[L,1u].

Before we prove the theorem we give the promised consequences.

Theorem 5.2. (CH) The continuumIu does not have the fixed-point property.

Proof. Leth : [0u,L] → [0u,L] be the map constructed in the proof of Theorem 4.1 an
r : [L,1u] → L be the retraction from Theorem 5.1. Extendingr by the identity on[0u,L]
yields a retractionr∗ from Iu onto [0u,L]. The compositionh ◦ r∗ is then a fixed-poin
free continuous self-map ofIu. �
Corollary 5.3. (CH) The surjective semi-span ofIu is nonzero.

Proof. The graph ofh ◦ r∗ is a witness. �
We now show how to makes∗(Iu) nonzero.

Corollary 5.4. (CH) The surjective symmetric span ofIu is nonzero.

Proof. Let G be the graph ofh ◦ r∗. We completeG to symmetric continuum by addin
the following continua:{1u}× [0u,L], [h(0u),1u]× {0u}, G−1, [0u,L]× {1u}, and{0u}×
[h(0u),1u]. It is straightforward to check that the unionZ is a continuum (each continuu
meets its successor) that is symmetric and projects onto each axis. As none of the
intersects the diagonal we get a witness tos∗(Iu) being nonzero. �
Corollary 5.5. (CH) The surjective symmetric span ofH

∗ is nonzero.

Proof. We begin by taking the graphF of the mapf from Theorem 3.1 and its invers
F−1; unfortunately the unionF ∪ F−1 is not connected, asF andF−1 are disjoint. To
connect them we take one ultrafilteru on ω and observe that the imageq[Iu] connects
the ultrafiltersu andu + 1. The imageK = (q × q)[Z], whereZ is from the proof of
Corollary 5.4 meets bothF (in (u,u+1)) andF−1 (in (u+1, u)). The unionF ∪K ∪F−1

is a witness tos∗(H∗) �= 0. �
5.1. Proof of Theorem 5.1

We will construct the retraction by algebraic, rather than topological, means. LR
be the family of finite unions of closed intervals ofI with rational endpoints. For ever
f ∈ ωR we define the closed subsetAf of M by

Af =
⋃
n<ω

{n} × f (n).

These sets form a lattice base for the closed sets ofM, i.e., it is a base for the closed se
and closed under finite unions and intersections. It is an elementary exercise to sh
disjoint closed sets inM can be separated by disjoint closed sets of the formAf . This
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implies that the closures clAf form a lattice base for the closed sets ofβM. It follows
thatB = {clAf ∩ L: f ∈ ωR} is a base for the closed sets ofL and similarly thatC =
{clAf ∩ [L,1u]: f ∈ ωR} is a base for[L,1u].

Theorem 1.2 from [3] tells us that in order to construct a retraction from[L,1u] ontoL

it suffices to construct a mapϕ :B → C that satisfies

(1) ϕ(∅) = ∅, and ifF �= ∅ thenϕ(F ) �= ∅;
(2) if F ∪ G = L thenϕ(F ) ∪ ϕ(G) = [L,1u];
(3) if F1 ∩ · · · ∩ Fn = ∅ thenϕ(F1) ∩ · · · ∩ ϕ(Fn) = ∅; and
(4) ϕ(F ) ∩ L = F .

The retractionr : [L,1u] → L is then defined byr(x) = ‘the unique point in
⋂{F : x ∈

ϕ(F )}’. The first three conditions ensure thatr is well-defined, continuous and onto; t
last condition ensures thatr � L is the identity.

There is a decreasingω1-sequence〈bα〉α<ω1 of cut points in Iu such thatL =⋂
m,α[am,bα]: by [4, Lemma 10.1], such a sequence must have uncountable cofi

and byCH the only possible (minimal) length then isω1. For eachα choose a sequenc
〈bα,n〉n∈ω in I such thatbα = bα,u.

Again by CH we list ωR in an ω1-sequence〈fα〉α<ω1. We will assign to eachfα a
gα ∈ ωR in such a way that clAfα ∩ L 
→ clAgα ∩ [L,1u] defines the desired mapϕ.

The assignment will be constructed in a recursion of lengthω1, where at stageα we
assume the conditions (1)–(4) are satisfied for theAfβ andAgβ with β < α and choose
gα in such a way that they remain satisfied forβ � α. At every stage we will listα in an
ω-sequence; this means that it suffices to consider the caseα = ω only.

We need a few lemmas that translate intersection properties inB andC to R.

Lemma 5.6. clAf ∩ L = ∅ if and only if there arem andα such that the set{n: f (n) ∩
[am,n, bα,n] = ∅} belongs tou.

Proof. By compactness clAf ∩ L = ∅ if and only if there arem andα such that clAf ∩
[am,bα] = ∅ and the latter is equivalent to{n: f (n) ∩ [am,n, bα,n] = ∅} ∈ u, again by
compactness and the formula

clAf ∩ [am,bα] =
⋂
U∈u

cl

( ⋃
n∈U

{n} × (
f (n) ∩ [am,n, bα,n]

))
. �

Lemma 5.7. clAf ∩ L = clAg ∩ L if and only if there arem and α such that the se
{n: f (n) ∩ [am,n, bα,n] = g(n) ∩ [am,n, bα,n]} belongs tou.

Proof. The ‘if’ part is clear. For the ‘only if’ part letD be the set of all mid points o
all maximal intervals inAf \ Ag ; then clD ⊆ clAf \ clAg and so clD ∩ L = ∅. Observe
thatD = Ah for someh, so there arem andα as in Lemma 5.6 forD. By convexity, for
eachn the interval[am,n, bα,n] meets at most two of the maximal intervals inf (n) \ g(n)

—one,In, at the top and one,Jn, at the bottom. The two sequences〈in〉n∈ω (bottom points
of the In) and〈jn〉n∈ω (top points of theJn) determine cut pointsiu andju of Iu, which
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cannot belong toL. Therefore we can enlargem andα such that{n: in, jn /∈ [am,n, bα,n]}
is in u. A convexity argument will now establish that{n: (f (n) \ g(n)) ∩ [am,n, bα,n] = ∅}
belongs tou. The same argument, interchangingf andg will yield our final m andα. �
Lemma 5.8. L ⊂ clAf if and only if there arem and α < ω1 such that the se
{n: [am,n, bα,n] ⊆ f (n)} belongs tou.

Proof. Apply Lemma 5.7 tof and the constant functionn 
→ I. �
Now we are ready to perform the construction ofgω, given subsets{fk}k�ω and{gk}k<ω

of ωR such that the map clAfk
∩L 
→ clAgk

∩[L,1u] (k < ω) satisfies the conditions (1)
(4) from our list.

The conditions that need to be met are

(a) L ∩ clAfω = L ∩ clAgω ;
(b) if L ⊆ clAfk

∪ clAfω then[L,1u] ⊆ clAgk
∪ clAgω ; and

(c) if F ⊆ ω is finite and L ∩ clAfω ∩ ⋂
l∈F clAfl

= ∅ then [L,1u] ∩ clAgω ∩⋂
l∈F clAgl

= ∅.

The first condition takes care of (1) and (4) in our list, except possibly when clAfω ∩L = ∅
but in that case it suffices to letgω be the constant functionn 
→ ∅. The second and thir
condition ensure (2) and (3), respectively. There is one more condition that we n
keep the recursion alive; it is needed to take care of combinations of (b) and (c): iL ⊆
clAfk

∪ clAfω andL ∩ clAfω ∩ ⋂
l∈F clAfl

= ∅ then we must have room to be able
ensure that both[L,1u] ⊆ clAgk

∪clAgω and[L,1u]∩clAgω ∩⋂
l∈F clAgl

= ∅. Note that
the antecedent implies that, in the subspaceL, the intersectionL∩⋂

l∈F clAfl
is contained

in the interior ofL ∩ clAfk
. A moment’s reflection shows that we need

(d) if L ∩ ⋂
l∈F clAfl

is contained in intL L ∩ clAfk
then [L,1u] ∩ ⋂

l∈F clAgl
is con-

tained in int[L,1u][L,1u] ∩ clAfk
.

For everyk as in (b) choosemk andαk as per Lemma 5.8 such thatUk = {n: [amk,n, bαk,n]
⊆ fk(n) ∪ fω(n)} belongs tou. Likewise, for everyF as in (c) choosemF andαF as per
Lemma 5.6 such thatUF = {n: [amF ,n, bαF ,n] ∩ fω(n) ∩ ⋂

l∈F fl(n) = ∅} belongs tou.
And, finally, for every pair(F, k) as in (d) (withF finite but withk � ω in this case) choos
mF,k and αF,k , andUF,k ∈ u such that for everyn ∈ UF,k we have[amF,k,n, bαF,k,n] ∩⋂

l∈F fl(n) ⊆ intfk(n) and[amF,k,n,1] ∩ ⋂
l∈F gl(n) ⊆ intgk(n) (the latter only ifk < ω

of course).
We fix an ordinalα larger than theαk , αF andαF,k and use it instead in the definition

of the setsUk , UF andUF,k—they will still belong tou. Next take a decreasing sequen
〈Vp〉p∈ω of elements ofu such thatVp is a subset of

• Uk wheneverk < p;
• UF wheneverF ⊆ p; and
• UF,k wheneverF ⊆ p andk < p or k = ω.
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In addition we can, and will, assume that wheneverF ⊆ p andL ∩ ⋂
l∈F clAf = ∅ then

[bα,1] ∩ ⋂
l∈F gl(n) = ∅—that this is possible follows from the assumption that (c) ho

for maxF .
Now we are truly ready to definegω. If n /∈ V0 definegω(n) = I. In casen ∈ Vp \ Vp+1

observe first that ifk < p is as in (b) andF ⊆ p is as in (c) then(F, k) is as in (d) so tha
certainly

[amF,k
,1] ∩

⋂
l∈F

gl(n) ⊆ intgk(n). (∗)

Definegω(n) as the union offω(n) ∩ [0, bα(n)] and an elementh(n) of R that is a subse
of [bα(n),1] and satisfies

• h(n) ∪ gk(n) ⊇ [bα(n),1] wheneverk < p is as in (b);
• h(n) ∩ ⋂

l∈F gl(n) = ∅ wheneverF ⊆ p is as in (c); and
• h(n) ⊇ [bα,n,1] ∩ ⋂

l∈F gl(n) whenever(F,ω) is as in (d).

This is possible because of(∗) and because
⋂

l∈F gl(n) ∩ ⋂
l∈G gl(n) = ∅ wheneverF is

as in (c) and(G,ω) is as in (d). This gives us just enough room to chooseh(n).
It is now routine to verify that all conditions ongω are metu-often: e.g., ifF ⊆ ω is

finite andL ∩ clAfω ∩ ⋂
l∈F clAfl

= ∅ then[amF ,n,1] ∩ gω(n) ∩ ⋂
l∈F gl(n) = ∅ for all

n ∈ Vp, wherep = 1+ maxF .

5.2. Further considerations

The proof in the previous section can be used to show that, underCH, all other layers
of the continuumIu are retracts ofIu. If the layer is a point then this is clear. If the layerL

is nontrivial then the cofinality of[0u,L) and the coinitiality of(L,1u] areω1. It is then a
matter of making the proof of Theorem 5.1 symmetric to get our retractionr : Iu → L. The
details can be found in [9].

The fixed-point free homeomorphismh :L → L from Theorem 3.3 can then be used
construct another witness tos∗(Iu) �= 0, almost exactly as in the proof of Theorem 5.4.

6. Remarks

The results of this paper grew out of an attempt to find nonmetric counterexa
to Lelek’s conjecture. The fairly easy proof, indicated after Corollary 3.2, thatH

∗ is not
chainable, which also works for layers of countable cofinality lead us to considerIu as a
possible candidate.

A secondary goal was to convert any nonmetric counterexample into a metric one
application of the Löwenheim–Skolem theorem [5, Section 3.1], to its lattice of closed
This produces a countable sublattice with exactly the same (first-order) lattice-the
properties; its Wallman representation space, see [10], is a metrizable continuum
many properties in common with the starting space, e.g., covering dimension uni
ence, (hereditary) indecomposability,. . . , see [9, Chapter 2], for a comprehensive list.
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The results of this paper cast doubt of the possibility of adding (non)chainability
span (non)zero (of any kind) to this list. The reason for this is that the familyRu =
{clAf ∩ Iu: f ∈ ωR} is isomorphic to the ultrapower ofR (from the proof Theorem 5.1
by the ultrafilteru; this follows in essence from the equivalence of clAf ∩ Iu = clAg ∩ Iu

and{n: f (n) = g(n)} ∈ u. By the Łos Ultraproduct Theorem [5, Theorem 8.5.3], we
thatR andRu have the same first-order lattice theoretic properties yet their Wallman
resentations,I andIu, respectively, differ in chainability and in various kinds of span
kinds if CH is assumed).

Chainability is a property that can be read off from a lattice base for the closed
(or dually for the open sets): using compactness one readily shows that a contin
chainable iff every basic open cover has a chain refinement from the base. Thus we
that chainability is not a first-order property of the lattice base.

For span (non)zero there are two possibilities: it cannot be read off from a base o
can be, it is not a first-order property of the lattice base.

7. Questions

The remarks in the previous section suggest lots of questions. We mention the
important ones.

Question 7.1. Is there a nonmetric counterexample to any one version of Lelek’s co
ture?

It should be noted that, as mentioned in [1], H. Cook has shown that the dyadic so
has symmetric span zero.

In spite of the results onI andIu it is still possible that the Löwenheim–Skolem meth
may convert a nonmetric counterexample into a metric one. The reason for this is thRu

is special base for the closed sets ofIu and not an elementary sublattice of its lattice
closed sets.

Question 7.2. If L is an elementary sublattice of the full lattice of closed sets of the
tinuumX, does its Wallman representation inherit (non)chainability and or span (non
from X?

Section 3.7 of [9] gives a positive answer for very special sublattices, but unfortun
except for span zero. Further, more specialized, questions can be found in that refe

The corollaries in Section 5 were derived from Theorem 5.1, which neededCH in its
proof. This clearly suggests the question whether a more insightful analysis of the str
of theIu and the use of more intricate combinatorics will make the use ofCH unnecessary

Question 7.3. Can one show inZFC only that all spans ofH∗ andIu are nonzero?

It would already be of interest if one could find at least oneu such that all spans ofIu
are nonzero.
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We have shown implicitly that the fixed-point property is like chainability and span
in thatI has it butIu does not, at least underCH.

Question 7.4. Is there inZFC at least oneu such thatIu does not have the fixed-poin
property?
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