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Abstract. We present a method for describing all indecomposable subcon-
tinua of βR \ R. This method enables us to construct in ZFC a new subcon-
tinuum of βR \ R.

We also show that the nontrivial layers of standard subcontinua can be de-
scribed by our method. This allows us to construct a layer with a proper dense
Fσ-subset and bring the number of (known) nonhomeomorphic subcontinua
of βR \ R to 14.

Introduction

The object of study of this paper is the Čech-Stone remainder H∗ of the half line;
the half line, denoted H, is the subset [0,∞) of the real line R. It is readily seen
that βR \R is simply the topological sum of two copies of H∗ so that no generality
is lost by looking at just H∗.

The half line is connected, so βH is a continuum, that is, a compact and con-
nected space. It is not too hard to show that the remainder H∗ is a continuum as
well. Among the earliest known properties of H∗ are its hereditary unicoherence (if
two subcontinua meet then their intersection is connected as well) — established
by Gillman and Henriksen in [6], and its indecomposability (it is not the union of
two proper subcontinua) — established by Woods in [12] and Bellamy in [2].

In this paper we continue the investigation into the number of topologically dif-
ferent subcontinua of H∗. So far through the efforts of van Douwen [11], Smith [10]
and Zhu [13] nine different subcontinua of H∗ have been discovered, in ZFC. We
shall describe these continua briefly in Subsection 1.6.

The purpose of this paper is to construct, in ZFC, a new (tenth) subcontinuum
of H∗ and show how to use this continuum to raise, again in ZFC, the number of
different subcontinua of H∗ to fourteen. We do this by showing how, under CH,
our continuum can be seen as a layer in a standard subcontinuum; because we have
essentially four different layers in standard subcontinua (so far) this gives us four
extra decomposable subcontinua. Under ¬CH we appeal to Dow [3] for at least
six more decomposable subcontinua.

As a prelibation of things to come we give an outline of the rest of the paper. In
Section 2 we show how, with the aid of certain subsets of ω∗, one can parameterize
the indecomposable subcontinua of H∗. In Section 3 we use this parameterization
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with a minimal closed and σ-invariant subset of ω∗ as input to construct our new
continuum. Here σ is the selfmap of ω∗ determined by the shift on ω. We also
show that our continuum has 2c composants, thus providing a ‘naturally occurring’
continuum of this type. In Section 4 we prove in ZFC that H∗ has at least fourteen
topologically different subcontinua although the families differ according to whether
CH holds or not. Finally, in Section 5 we make some remarks and pose some
questions.

1. Preliminaries

In this section we establish some notation and recall some facts that will be
needed later on; occasionally, as an aid to the reader, we give sketches of the argu-
ments but we refer to Hart [7] for complete proofs and proper references. Additional
basic topological material may be gleaned from Engelking’s book [5]; Chapter Five
of Kuratowski’s book [8] is still one of the best references on continua — although
it deals with metric continua, most of the general results are true mutatis mutandis
for arbitrary continua.

1.1. The shift on ω∗. The shift σ on ω∗ is the map determined by the usual shift
on ω: σ(n) = n + 1. For a point u of ω∗ its image under σ is generated by the
family {A+ 1 : A ∈ u}; because of this we sometimes write u+ 1 for σ(u). Likewise
we write u− 1 for σ←(u).

We will adopt the slightly nonstandard convention of calling a subset F of ω∗

σ-invariant if σ[F ] ⊆ F and σ←[F ] ⊆ F (nonstandard because normally one takes
σ-invariant to mean that σ[F ] ⊆ F only). The reason for this will become clear in
Section 2; the closed and σ-invariant subsets occur naturally when we parameterize
indecomposable subcontinua of H∗.

We note that, with our interpretation, the set of accumulation points of a forward
orbit is always σ-invariant. For let q be an accumulation point of cl{p+n : n ∈ ω};
there is an ultrafilter u ∈ ω∗ such that q = u-lim(p + n). But then q − 1 =
u-lim

(
p + (n− 1)

)
and q + 1 = u-lim

(
p+ (n+ 1)

)
. Here, for a sequence 〈xn〉n and

u ∈ ω∗, we say x = u-limxn iff for every neighbourhood U of x the set {n : xn ∈ U}
belongs to u.

1.2. The space M. The remainder M∗ of the space M = ω × I, where I denotes
the unit interval, determines the structure of H∗ completely.

Before we show this we fix some notation. We abbreviate {n}×I by In and we let
π : βM → βω be the map determined by π(n, x) = n. For u ∈ ω∗ the fiber π←(u) is
denoted Iu — it is in a natural sense the u-th term of the sequence 〈In : n ∈ ω〉: in
the hyperspace of closed subsets of βM one has Iu = u-lim In. Similarly, if x ∈ ωI
then we use xu to denote the point u-lim

〈
n, x(n)

〉
of Iu.

The set Iu is a continuum that is irreducible between the two points 0u =
u-lim〈n, 0〉 and 1u = u-lim〈n, 1〉, meaning that the only subcontinuum contain-
ing 0u and 1u is Iu itself. That Iu is irreducible between 0u and 1u follows from
the fact that {xu : x ∈ ωI} \ {0u, 1u} is a dense set of cut points of Iu. There
is a natural quasi-order on Iu: one says x ≤u y if every subcontinuum of Iu that
contains 0u and y also contains x. We shall employ the usual interval notation for
this ordering. We note that if x, y ∈ ωI then xu ≤u yu iff

{
n : x(n) ≤ y(n)

} ∈ u.
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This ordering ≤u divides Iu into sets that we shall call layers; these are the
equivalence classes under the relation

x ≡ y iff x ≤u y and y ≤u x.

With a layer L one associates two subsets of ωI:

AL = {a ∈ ωI : L ∩ cl[0, a] = ∅}
and

BL = {b ∈ ωI : L ∩ cl[b, 1] = ∅}.
Here, for x, y ∈ ωI, the symbol [x, y] abbreviates

⋃
n{n} ×

[
x(n), y(n)

]
.

The pair 〈AL, BL〉 represents a gap in the linearly ordered set ωI/u, meaning
that au <u bu whenever a ∈ A and b ∈ B. If there is x ∈ ωI that fills the gap (that
is, au <u xu <u bu for all a ∈ A and b ∈ B) then L consists of the single point xu.

The following fact will be used in 1.6 in the construction of several different
continua in H∗: if L is such that [0u, L) has countable cofinality then L consists of
more than one point and the interval (L, 1u] has uncountable coinitiality.

One of the key points in the verification of this fact is that the closures of [0u, L)
and (L, 1u] are [0u, L] and [L, 1u] respectively, so their intersection is L. Also, the
interval [0u, L) has countable cofinality iff it is a cozeroset of Iu. Because Iu is an
F -space the sets [0u, L) and (L, 1u] cannot both be cozero sets. Finally, if 〈an〉n is
a cofinal sequence in [0u, L) then its set of accumulation points is contained in L
and, again because Iu is an F -space, homeomorphic to ω∗.

1.3. Parameterizing H∗. The map q : M → H is defined by q(n, x) = n+ x; this
map is perfect and its Čech-Stone extension q : βM → βH maps M∗ onto H∗. We
claim that q is one-to-one on every Iu and that the only identifications made by q
on M∗ are those of 1u and 0u+1 for every u ∈ ω∗.

One can deduce this from standard properties of the Čech-Stone compactification
and the following two facts: 1) if

{
[an, bn] : n ∈ ω

}
is a family of subintervals

of (0, 1) then q maps the union
⋃
n{n}× [an, bn] homeomorphically onto the closed

subset
⋃
n[n + an, n + bn] of H∗ and 2) the map q is exactly two-to-one on the

set ω × {0, 1} (except at the point 〈0, 0〉).
One can define a map like q using any sequence a that increases to infinity:

Simply put qa(n, x) = an + x(an+1 − an); we shall call qa the parameterization
of H∗ determined by a. The map q from the first paragraph will be called the
standard parameterization.

1.4. Standard subcontinua. If qa : M∗ → H∗ is a parameterization then, as
noted before, the map qa is one-to-one on every continuum Iu. Therefore qa[Iu]
and Iu are homeomorphic; we call a subcontinuum of H∗ of the form qa[Iu] a
standard subcontinuum of H∗.

The basic facts about standard subcontinua that we shall use here are that every
proper subcontinuum of H∗ is the intersection of the family of all standard subcon-
tinua that contain it and that every nontrivial subcontinuum contains at least one
standard subcontinuum (Theorem 2.6 substantially improves the last statement).

To prove the first statement consider a subcontinuum K and a point x not in
it. First find neighbourhoods U of K and V of x with disjoint closures and then
find a strictly increasing sequence a in H∗ such that U ∩ H ⊆ ⋃

n[a2n, a2n+1] and
V ∩ H ⊆ ⋃

n[a2n+1, a2n+2]. One then readily checks that the family u of those
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subsets A of ω for which K ⊆ cl qa[
⋃
n∈A In] is an ultrafilter and that the standard

subcontinuum qa[Iu] contains K but not x.
The second statement is proved in a similar fashion; one takes two distinct

points x and y in the subcontinuum K and neighbourhoods U and V respectively
with disjoint closures. It turns out that if we take a as above and find u such that
qa[Iu] contains y by not x then in fact qa[Iu] ⊆ K.

1.5. Decomposable versus indecomposable. A continuum is decomposable if
it can be written as the union of two proper subcontinua and indecomposable other-
wise. One can see whether a subcontinuum of H∗ is decomposable or not by looking
at its position inside standard subcontinua.

Lemma 1.1. A subcontinuum of H∗ is decomposable iff it is a nondegenerate in-
terval of some standard subcontinuum.

Here we take the intervals with respect to the quasi-order introduced before.
It follows that decomposable subcontinua have cut points: intervals in standard
subcontinua have (relative) interior and hence contain one of the cut points from
Subsection 1.2. So, whenever an indecomposable continuum sits inside a standard
subcontinuum it sits inside a layer of it. In fact layers of standard subcontinua are
themselves indecomposable. Lemma 1.1 may also be used to prove the following
one.

Lemma 1.2. If of the two subcontinua K and L one is indecomposable and if their
intersection is nonempty then either K ⊆ L or L ⊆ K.

We shall use Lemma 1.2 frequently in showing that one continuum must be
contained in another one.

1.6. The known subcontinua. As noted in the introduction up to now nine
nonhomeomorphic subcontinua of H∗ were known in ZFC. Because we will want to
show that the continuum that we will construct in Section 3 is new we give a brief
description of the nine continua.

The first, K1, consists of one point.
The next six will be constructed from a standard subcontinuum. Let us fix

one such continuum Iu. We take K2 = Iu. Next we take a layer L1 such that
the interval [0u, L1) has countable cofinality and we let K3 = [0u, L1] and K4 =
[L1, 1u]. Next we take L2 <u L1 such that (L2, 1u] has countable coinitiality and
we let K5 = [L2, L1]. Finally we take L3 >u L1 such that (L3, 1u] has countable
coinitiality as well and we let K6 = [L2, L3] and K7 = [L1, L3]. These six continua
are all decomposable and have two distinguished end sets; the number of one-point-
or Gδ-end sets may be used to show that they are mutually nonhomeomorphic; for
example K3 and K4 are nonhomeomorphic: K3 has a one-point end set and a Gδ-
end set, namely L1, but in K4 the end set L1 is not a Gδ-set nor does it consist of
one point.

The continuum K8 will be L1 and the ninth continuum K9 is such that it has an
increasing sequence 〈Cn〉n of proper indecomposable subcontinua such that K9 =
cl
⋃
n Cn. These two continua are indecomposable and distinguished by the presence

of a proper dense Fσ-subset — K9 has one and K8 has none.
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2. Making subcontinua from shift-invariant subsets of ω∗

In this section we describe a method by which all indecomposable subcontinua
of H∗ may be constructed. The idea is quite simple: For a subset F of ω∗ we
abbreviate

⋃
u∈F Iu by MF and we will denote the image of MF under q by CF .

We shall identify F with the set {0u : u ∈ F} and also with the image of this set
under q.

We shall see that CF is an indecomposable continuum whenever F is closed, σ-
invariant, dense-in-itself and not the union of two proper closed disjoint σ-invariant
subsets. Conversely, if K is an indecomposable subcontinuum of H∗ then there
are a subset F of ω∗ and a piecewise linear autohomeomorphism h of H such that
K = h[CF ].

The first lemma enables us to recognize σ-invariant subsets of ω∗ by the behavior
of MF and CF .

Lemma 2.1. The set F is σ-invariant iff MF = q←[CF ].

Proof. Assume F is σ-invariant and let x ∈ q←[CF ]. Choose y ∈ MF and u ∈ F
such that q(y) = q(x) and y ∈ Iu. If y 6= x then either y = 0u and x = 1u−1 or
y = 1u and x = 0u+1; in either case x ∈ MF because u− 1, u + 1 ∈ F .

Conversely assume MF = q←[CF ] and let u ∈ F . Because q(1u) = q(0u+1) we
must have 0u+1 ∈ MF but this means that u+ 1 ∈ F . Likewise one concludes that
u− 1 ∈ F .

Now we can prove the following proposition.

Proposition 2.2. If CF is an indecomposable continuum then F is closed and
σ-invariant.

Proof. Let u ∈ F . Because q[Iu+1] meets q[Iu] it also meets CF . It cannot con-
tain CF because it does not contain q[Iu], therefore q[Iu+1] ⊆ CF and so u+ 1 ∈ F .
Likewise one shows that u− 1 ∈ F .

Finally, F is closed because F = π
[
q←[CF ]

]
and π is a closed map.

For convenience we shall henceforth assume that F is a closed and σ-invariant
subset of ω∗. We determine when the space CF is connected. In the proof of the
next theorem A = B ⊕ C denotes that A is the disjoint union of the non-empty
closed subsets B and C.

Theorem 2.3. The set CF is connected iff F cannot be written as the union of
two disjoint proper closed σ-invariant subsets.

Proof. Necessity: If F = G ⊕ H with G and H both σ-invariant then MF =
MG ⊕MH , hence CF = CG ⊕ CH by Lemma 2.1.

Sufficiency: If CF = G⊕H then we can divide F into two sets G′ = {u : q[Iu] ⊆
G} and H ′ = {u : q[Iu] ⊆ H}. Because every Iu is connected this is a partition
of F .

For every u ∈ F the set q[Iu−1] ∪ q[Iu] ∪ q[Iu+1] is connected, so if u is in G′

(or H ′) then so are u− 1 and u + 1. This shows that G′ and H ′ are σ-invariant.
To see that G′ and H ′ are closed just observe that G = CG′ and so (again by

the lemma) G′ = π
[
q←[G]

]
and likewise for H .

Next we determine when for a set F as in Theorem 2.3 the continuum CF is an
indecomposable continuum.
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Lemma 2.4. If u ∈ F then u is an isolated point of F iff q[Iu] has nonempty
interior in CF .

Proof. If u is isolated in F then O = Iu \ {0u, 1u} is open in MF and it satisfies
O = q←

[
q[O]

]
, so its image is open in CF and contained in q[Iu].

Conversely, if there is an open set O in βM such that ∅ 6= O ∩ CF ⊆ q[Iu] then
q←[O] does the same thing for Iu with respect to MF . One can then find a, b ∈ ωI
such that au <u bu and [au, bu] ⊆ O. By compactness there is U ∈ u such that the
closure of ⋃

n∈U
{n} × [

a(n), b(n)
]

is contained in O. This then implies that U ∩ F = {u}.

Now we can characterize indecomposability of CF .

Theorem 2.5. If CF is a continuum then it is indecomposable iff F is dense-in-
itself.

Proof. We just proved necessity: If u ∈ F is isolated then Iu is a subcontinuum
of CF with nonempty interior (if F = {u} then certainly CF = Iu is decomposable).

To prove sufficiency assume that CF is decomposable. By Lemma 1.1 we can
find a standard subcontinuum Ju such that CF has nonempty interior in Ju and
therefore contains a cut point x of Ju. Choose v ∈ F such that Iv contains x. Then
Iv is a subinterval of Ju and hence has nonempty interior in Ju. So certainly Iv has
nonempty interior in CF ; it follows that v is an isolated point of F .

We conclude that we get an indecomposable continuum in H∗ each time we get
a dense-in-itself σ-invariant subset F of ω∗ as in Theorem 2.3. The converse holds
as well.

Theorem 2.6. Let K be a nontrivial indecomposable subcontinuum of H∗. Then
there are a σ-invariant subset F of ω∗ and a (piecewise linear) autohomeomor-
phism h of H such that K = βh[CF ].

Proof. Take a standard subcontinuum that is contained in K, that is, take a pa-
rameterization qa of H and u ∈ ω∗ such that qa[Iu] ⊆ K.

We claim that for every point v ∈ ω∗ either qa[Iv] ⊆ K or qa[Iv]∩K = ∅. For if
qa[Iv] meets K then it cannot contain K as it cannot contain qa[Iu], so it must be
contained in K.

Now we consider F = {v ∈ ω∗ : qa[Iv] ⊆ K}. From what we have established
above it follows that K = qa[MF ] = βh[CF ], where h : H → H is the unique
piecewise linear map for which h ◦ q = qa.

Because CF apparently is an indecomposable continuum we see that F must be
σ-invariant.

Remark 2.7. Let us note that we cannot distinguish the nontrivial subcontinua
of H∗ by means of cellularity, density or (π-)weight.

As H∗ has weight c it suffices to show that each nontrivial subcontinuum has
cellularity c. Indeed, for every x ∈ (0, 1) we can take the open subset Ox of M∗
determined by

⋃
n{n}× (x− 2−n, x+ 2−n); the family

{
Ox : x ∈ (0, 1)

}
is pairwise

disjoint and every Ox meets every Iu.
Now if K is a subcontinuum of H∗ then we take a parameterization qa : M → H

and u ∈ ω∗ such that qa[Iu] ⊆ K. Then
{
q[Ox] ∩ K : x ∈ (0, 1)

}
is a family of
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pairwise disjoint nonempty open subsets of K. (Note that Ox = q←a
[
qa[Ox]

]
for

every x, so that qa[Ox] is open in H∗.)

3. A new continuum

In this section we apply the construction from Section 2, with very special input,
to construct a new subcontinuum of H∗. The input that we shall use is a minimal
closed σ-invariant subset of ω∗. Such sets are easily constructed: Apply Zorn’s
Lemma to the family of all closed σ-invariant subsets of ω∗.

It is readily verified that a closed set F is minimally σ-invariant iff for every
u ∈ F the orbit Ou = {u + n : n ∈ Z} is dense in F . From this one easily deduces
that for every u ∈ F the set Su =

⋃
n q[Iu+n] is proper dense Fσ-subset of CF .

Each minimal σ-invariant subset is clearly indecomposable and dense-in-itself
so it follows that CF is an indecomposable continuum whenever F is closed and
minimally σ-invariant. The following theorem shows that CF is indeed new.

Theorem 3.1. If F is a minimal closed σ-invariant subset of ω∗ then CF is not
homeomorphic to any one of the continua K1 through K9.

Proof. Since K1 consists of one point and since the continua K2, . . . , K7 are de-
composable we only have to deal with K8 and K9. Now K8 has the property that
every nonempty Gδ-subset of it has nonempty interior but K9 and CF do not have
this property, so we are left with K9.

Remember that K9 has a proper, dense and meager Fσ-subset H =
⋃
n Cn, where

each Cn is indecomposable and nowhere dense in Cn+1. Assume h : K9 → CF is a
homeomorphism and choose x ∈ h[C0]; also pick u ∈ F such that x ∈ q[Iu].

Because h[H ] is dense in CF we know that there is an n such that h[Cn] * q[Iu]
and consequently — because Cn is indecomposable — q[Iu] ⊆ h[Cn]. But now one
shows inductively that q[Iu+k] ⊆ h[Cn] for every k and hence that Su ⊆ h[Cn].

This leads to a contradiction since Su is dense in CF and Cn is nowhere dense
in K9.

Henceforth we shall denote the continuum of Theorem 3.1 by K10.
The composant of a point x in a continuum X is the union of all proper subcon-

tinua of X that contain the point. In an indecomposable continuum the composants
are the equivalence classes under the relation “there is a proper subcontinuum con-
taining both x and y”.

The following proposition identifies the composants of K10. In its proof we apply
Theorem 5.3 from Hart [7] (due to van Douwen) which gives exact information on
how two standard subcontinua intersect (if they intersect). Indeed if K and L are
standard subcontinua, K with end points a and b, and L with end points c and d
that intersect then K ∩L equals L if c, d ∈ K, it equals K if c, d /∈ L, and it equals
one of the standard subcontinua [a, d], [c, b], [a, c] and [d, b] depending on which
of the end points of L is in K and which of the end points of K is in L. Also, if
K and L intersect then K ∪ L is a standard subcontinuum as well.

Proposition 3.2. If u ∈ F then Su is the composant of u in K10.

Proof. Denote the composant of u by Ku. Clearly Su ⊆ Ku, because Su is the
union of a family of proper subcontinua of K10 that contain the point u.

Conversely let K be a nontrivial proper subcontinuum of K10 that contains u.
If K is indecomposable then either K ⊆ q[Iu] or q[Iu] ⊆ K. The latter case will
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give rise to a contradiction; for much as in the proof of Proposition 2.2 we can show
that for each n ∈ Z if q[Iu+n] ⊆ K then also q[Iu+n−1] ⊆ K and q[Iu+n+1] ⊆ K.
This would imply that K10 = clSu ⊆ K.

So assume K is decomposable and choose a standard subcontinuum Jv such that
K is a nondegenerate interval of it. Now if for all n > 0 we would have u + n ∈ Jv
then, by the remarks preceding this proposition we would also have q[Iu+n] ⊆ Jv
for all n ∈ ω. But then

K10 ⊆ cl
⋃
n≥0

q[Iu+n] ⊆ Jv.

Now K ⊆ K10 implies that K10 would be a nondegenerate interval of Jv and hence
decomposable.

We conclude that there is n > 0 such that u+n /∈ Jv and likewise that u+m /∈ Jv
for some m < 0. Applying the remarks preceding the proposition again we see
that Jv is contained in the standard subcontinuum

⋃
m≤i<n q[Iu+i] and hence that

K ⊆ Su.

Thus composants of K10 correspond to orbits in F and we see that K10 has
2c composants — the first continuum with 2c composants was constructed by Smith
in [9]. This is of interest because the number of composants of H∗ and of all
countable cofinality layers is independent of ZFC: Under CH the number is 2c and
under NCF the number is 1 — we refer to Hart [7] for references. We do not know
the number of composants of K9.

4. Four more subcontinua from CH

In this section we show how our construction may be employed to produce,
using CH, four more subcontinua of H∗. At the end of this section we use a result
of Dow to show that under ¬CH there are always at least six continua different
from K1 through K10.

We shall show that, under CH, the continuum K10 can be constructed as a layer
in some standard subcontinuum Iu. To this end we first investigate how we can
make the parameterization of the layers as in Section 2 more concrete.

4.1. Concrete descriptions of layers. We fix a nontrivial layer L of some stan-
dard subcontinuum Iu and we find F such that L = CF (more precisely, we find a
parameterization qa of H and F ⊆ ω∗ such that L = qa[MF ]).

Consider the gap 〈AL, BL〉 determined by L. Now, because L is nontrivial we
can find a function f : ω → N such that

{
n : b(n) − a(n) > 2−f(n)

}
belongs to u

whenever a ∈ AL and b ∈ BL.
Instead of ω we consider the set Kf =

{〈n,m〉 : m < 2f(n)
}

, and order it
lexicographically. The shift σ on Kf is defined by

σ(n,m) =

{
〈n,m + 1〉 if m+ 1 < 2f(n) and

〈n + 1, 0〉 otherwise.

Furthermore put, for m < f(n),

In,m = {n} ×
[
m · 2−f(n), (m+ 1) · 2−f(n)

]
.
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We define a filter FL on Kf as follows:

FL = {P : L ⊆ clβM
⋃

〈n,m〉∈P
In,m}.

This filter has a base consisting of sets of the form

[g, h, U ] =
{〈n,m〉 : g(n) ≤ m ≤ h(n), n ∈ U

}
,

where g and h are such that g · 2−f ∈ AL, h · 2−f ∈ BL and U ∈ u. From this it
follows that for every subset P of Kf

P ∈ FL iff σ[P ] ∈ FL.
We can now describe F ; it is the set

⋂
P∈FL P

∗ in K∗f . Then L = q∗[MF ].
An alternative description of F is as follows. First we consider the map π :

Kf → ω defined by π(n,m) = n and its Čech-Stone extension π : βKf → βω.
The set Tu = π←(u) contains a dense set of isolated points: Those determined by
graphs of functions below f . For if g ∈ ωω is such that g(n) ≤ 2f(n) for all n then
the closure of its graph meets Tu in exactly one point and this point is therefore
isolated. This set of isolated points is linearly ordered by ≤u and the gaps in this
order are filled — in K∗f — by sets like F . One might call F a layer in the space Tu.

4.2. A new layer. We shall now construct, assuming CH, an ultrafilter u, a func-
tion f and a layer F in Tu such that F is minimally σ-invariant. The corresponding
continuum CF is then a layer in Iu

The following lemma provides a way to recognize minimal σ-invariant sets.

Lemma 4.1. A closed and σ-invariant set F is minimal iff for every open set that
meets F there are finitely many translates that cover F .

Proof. If O is open and meets the minimal set F then the family
{
σn[O] : n ∈ Z

}
covers F , because every orbit is dense and meets O. As F is compact this family
has a finite subcover.

Conversely, if F is not minimal and G is a proper closed σ-invariant subset of F
then ω∗ \G is an open set that meets F and is equal to all of its translates.

Using this lemma we can describe what we need to construct. We must find an
ultrafilter u and a gap 〈F ,G〉 in ωω/u below some function h, with the following
property: if X ⊆ Kh meets every set of the form [f, g, U ] with f ∈ F , g ∈ G, U ∈ u
then there are f ∈ F , g ∈ G, U ∈ u and k ∈ ω such that [f, g, U ] ⊆ ⋃

|i|≤k σ
i[X ].

Here, as above

[f, g, U ] =
{〈n,m〉 : f(n) ≤ m ≤ g(n), n ∈ U

}
for f, g ∈ ωω and U ⊆ ω.

The point is that the family of sets [f, g, U ]∗ is a neighbourhood base for the
set F , so that the previous paragraph expresses the condition of Lemma 4.1 in
terms of the natural base for K∗h.

The desired gap may be constructed, using CH, in an induction of length ω1.
One constructs F = {fα : α < ω1}, G = {gα : α < ω1} and {Uα : α < ω1} such
that

1. {Uα : α < ω1} is decreasing mod finite and generates a P -point u.
2. The pair 〈F ,G〉 is a gap below the identity function Id in ωω/u.
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To take care of our condition and to ensure that we get a gap we enumerate the
family of subsets of Kh as {Xα : α < ω1} and ωω as {hα : α < ω1}. We give a
rough sketch of the construction.

We start the induction by letting f0 be identically 0, g0 = Id and U0 = ω. We
make sure that for every α one has

(1) sup
{
gα(n) − fα(n) : n ∈ Uα

}
= ω (to keep the induction alive).

(2) For all n ∈ Uα+1 either hα(n) < fα+1(n) or hα(n) > gα+1(n) (to create a
gap).

(3) If no finite number of translates of Xα covers [fα, gα, Uα] then Xα is disjoint
from [fα+1, gα+1, Uα+1] (to meet our condition for minimality).

All steps are routine except when we have to take care of (3).
Assume no finite number of translates of Xα covers the set [fα, gα, Uα] and

consider for each n ∈ Uα the longest interval In in
{〈n,m〉 : m ≤ h(n)

}
that

is contained in [fα, gα, Uα] \ Xα. The claim is that supn∈Uα |In| = ω. For if the

supremum equals k < ω then
⋃
|i|≤k σ

i[Xα] contains [fα, gα, Uα]. This enables us

to find functions p and q between fα and gα such that [p, q, Uα] ∩Xα = ∅.
Further modifications of p, q and Uα will be necessary so as to satisfy (2) and to

ensure that the Uβ will in the end generate an ultrafilter.

4.3. The four extra continua. It is clear that we can construct infinitely many
K10-like layers in Iu just by varying the gap. This implies that we can take four
layers L1, L2, L3 and L4 in Iu such that [0u, L1) and [0u, L3) have countable
cofinality, L2 and L4 are like K10 and L1 <u L2 <u L3 <u L4.

We claim that the none of the four intervals [0u, L2], [L1, L2], [L2, L3] and [L2, L4]
is homeomorphic to one of the continua K1 through K10.

As the intervals are nontrivial and decomposable they are different from K1, K8,
K9 and K10. They are also different from K2 through K7: none of these have an
end set with a proper dense Fσ-subset.

Finally, that the intervals are mutually nonhomeomorphic can be seen by looking
at the ‘other’ end set: one point (0u), not a Gδ-set (L1), a Gδ-set (L3) and not a
Gδ-set but not homeomorphic to L1 (L4).

4.4. Six extra continua from ¬CH. In [3] Dow proved a general result on ul-
trapowers that, when interpreted in terms of the continua Iu, produces for every
regular uncountable cardinal κ ≤ c an ultrafilter uκ such that

• if L is a layer in Iuκ such that [0uκ , L) has countable cofinality then (L, 1uκ ]
has coinitiality κ.

We let u = uω1 and v = uω2 , and use Iu to make K2 through K7 and Iv to make
the corresponding K ′2 through K ′7. Then the Ki are mutually nonhomeomorphic,
the K ′i are mutually nonhomeomorphic, and no Ki is homeomorphic to any K ′j
because Ki has layers of type 〈ω, ω1〉 whereas K ′j has none.

5. Concluding remarks

We have, in ZFC, ten ‘honest’ different subcontinua of H∗. Under CH we can
produce four more and under ¬CH even six more. Thus, ZFC proves that H∗ has
at least fourteen different subcontinua.
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This should not be the best we can get. One would expect, given the way things
usually go with the Čech-Stone compactification, to find 2c different subcontinua
in H∗ but at present this number seems very hard to reach.

For instance, in Dow and Hart [4] the authors have shown that under CH all
standard subcontinua of H∗ are homeomorphic, as are all layers that determine an
interval with countable cofinality.

Although trying to vary minimal σ-invariant subsets of ω∗ may look promising
at first, one should realize that in [1] Balcar and B laszczyk showed that all such
sets are all homeomorphic to the absolute of the Cantor cube of weight c

This leads to the (depressing) conjecture that under CH all versions of K10 are
homeomorphic.

A positive answer to the following question would give us five more intervals.

Question 5.1. Can the K9-type continua be (homeomorphic to) layers of standard
subcontinua?
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