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Mathematics. — “Some remarks on the coherence type v.” By
Prof. L. E. J. Brouwes.

In order to introduce the notion of a “coherence type” we shall
say that a set M is normally connected, if to some sequences f of
elements of M are adjoined certain elements of A as their “limiting
elements”, the following conditions being satisfied :

1st. each limiting element of f is at the same time a limiting
element of each end segment of f.

204, for each limiting element of f a partial sequence of f can
be found of which it is the only limiting clement.

3d. each limiting element of a partial sequence of f is at the
same time a limiting elément of f.

4, if m is the only limiting element of the sequence {ny} and
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m, for pu constant the only limiting element of the sequence {m,.},
then cach of the latter sequences contains snch an end segment {m,, 4,
that an arbitrary sequence of clements m,; for which g continually
increases, possesses m as its only limiting element.

The sets of points of an n-dimensional space form a special case
of normally connected sets.

Another special case we get in the following way : In an n-ply
ordered set') we understand by an inferval the partial set formed
by the clements w satisfying for ¢ <n different values of ¢ a relation
of the form

i i i

bl nlei or Lilu or w<eij

we farther define an element m to be a liniting element of a sequence
fo if each interval containing m, contains elements of f not identical
to m, and the given sct to be cverypwhere dense, if none of its inter-
vals reduces  to zero. Then the ereriohere dense, countable, n-ply
ordered sets which will be considered more closely in this paper,
likewise belong to the class of normally connected sets.

A representation of a normally connected set preserving the limiting
clement relations, will be called a continuous representation.

If of a normally connected sct there exists a continuous one-one
representation on an other normally connected sct. the two sets will
be said to possess the same coherence type.

One of the simplest coherence types is the fype % already intro-
duced Ly Cantor ®. From a proof of (Canror follows namely :

Tuwores 1. Al countable sets of points lying everipchere dense ca
the open straiqht line, possess the same coherence type .

The proof is founded on the following construetion of a one-one corre-
spondence preserving the relations of order, between two sets of points
M=t{m,m, ..} and R=t{r.r, ..} of the class considered: To
r, Cantor makes to correspond the point m;; to r, the point m;,
with the smallest index, having with respect to m, the same sitvation
(determined by a relation of order), as », has with respect to »,; to
r, the point m;, with the smallest index, having with respect to m,
and m;, the same situation (determined by two relations of order),
as r, has with respect to », and »r,; and so on. That in this way
not only all points of R, but also all points of M have their turn,
i.o.w. that if among My My, - .- My APPEAT My, My, .. M, but not
my4, there exists » number ¢ with the property that 2,4, =i,

) Comp. F. Riesz, Mathem. Annalen 61, p. 406,
?2) Mathem. Annalen 46, p. 504.
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is evident by choosing for 1. the point of /£ with the smallest
index, having with respect to », 0y, ... r; the same situation, as My
has with respeet tom, iy, . .. mg,. The correspondence constructed in
this way, is at the same time continuous; for, the limiting point
relations depend exclusively on the relations of order, as a point
is then and only then a limiting point of a sequence f, if each
interval containing m contains an infinite namber of points of f.

The above proof shows at the same time the independence of the
coherence type 3 of the linear continuum. For, after Canror it leads
also to the followirg more general result:

TaroreM 2. Al everywhere dense, cowntable, simply ordered scts
possess the coherence type w.")

Theorem 1 may be exiended as follows:

TueoreMm 3. [f on the open straight line be given two countable,
everywhere dense sets of pomts M and B, « continuous, onc-one
transformation of the open straiyht line in iself can be constructed,
by which M passes into R.

In order to define such a tansformation, we first by Cantor’s
method construct a continuous one-one representation of M on R.
Then the order of succession of the points of A is the same as the
order of suceession of the corresponding points of R. We further
make to correspond to each point gin of the straight line not be-
longing to M, the point ¢r having to the points of I the same
relations of order, as g has to the corresponding points, of M. In
this way we get a one-one transformation of the straight line in
itself, preserving the relations of order. On the grounds indicated in
the proof of theorem 1 this transformation must also be a continu-
ous one.

Analogously to theorem 3 is proved:

TuroreM 4. [f within a jinite line seqment be yiven two countable,
everywhere dense sets of points M and B, a continuous one-one trans-
Sormation of the line segment, the endpoints included, initself
can be constructed, by which M passes into I.

We shall now treat the question, to what extent the theorems
1, 2, 8, and 4 may be gencralized to polydimensional sets of points

1) The possibilily of a definition founded exclusively on relations of order, shewn
by CaNTOR not only for the coherence type », but likewise for the coherence type
9 of the complete lincar continuum, holds also for the coherence type ¥ of the
perfect, punctual sets of points in En (comp these Proccedings Xil, p. 790). As
is easily proved, this coherence type belongs to all perfect, nowhere dense, simply
ordered sets of which -the get of intervals is countuble (an *interval” is formed
here by each pair of elements belween which no furthier clements lie).
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on one hand, and to multiply ordered sets on the other hand. In
the first place the following theorem holds here:

Tueorem 5. Al countable scts of points hying everywhere dense
in a cartesian R,, possess the same coherence type wr.')

For, to an arbitrary countable set of points, lying everywhere
dense in I2,, we can construet a cartesian system of coordinates C,,
with the property that no R, _; parallel to a coordinate space con-
tains more than one point of the set. If now two such sets, M and
R, are given, then in the special case that ), and C, are identical,
a one-onc representation of 1/ on R preserving the n-fold relations
of order as determined by (), = (], can be constructed by Cantor’s
method cited above, only maodified in as far as the *“situation”
of the points with respect to each other is determined here not by
simple, but by n-fold relations of order. As on the grounds indicated
in the proof of theorem 1 this representation must also be a conti-
nuous one, theorem 5 has been established in the special case that
Cn and C; are identical. From this the general case of the theorem
ensues immediately.

If on the other hand we have an arbitrary ecverywhere dense,
countable, n-ply ordered set Z, then its n simple projections *), being
cverywhere dense, countable, and simply ordered, admit of one-one
represeniations preserving the relations of order, on n countable sets
of points lying everywhere dense on the n axes of a cartesian system
of coordinates successively ; these n representations determine together
a one-one rvepresentation preserving the relations of order, thus a
continuous one-one representation of Z on a countable set of points,
everywhere dense in [R,. From this we conclude on account of
theorem 5 :

Tuvorem 6. All cverywhere dense, countable, n-ply ovdered sets
possess the coherence type .

As the n-dimensional analogon of theorem 3 the following extension
of theorem 5 holds:

Tarorem 7. If in a cartesian R, be given two countable, everywhere
dense sets of points M and R, a continnous onc-one transformation
of Ry in idtself can be constructed, by which M passes into R.

In the special casc that (, and C, are identical, we can namely first
construct a continnous onec-one correspondence between A and R
in the manner indicated in the proof of theorem 5, and then make
to correspond to each point gm not belonging to A/, the point gr
having to the points of I the same (n-fold) relations of order, as gm has

1) This theorem and its proof have been communicated to me by Prof. BorgL.
%) Comp. F. Rimsz, lc. p. 409.
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to the corresponding points of J/. In this way we get a one-one transfor-
mation of £, in itself preserving the relations of order as determined
by C. = C.. As on the grounds indicated in the proof of theorem |
this transformation is also a continuous one, theorem 7 has been
established in the special case that (), and C, are identical. From
this the general case of the theorem ensues immediately.

The n-dimensional extension of theorem 4 runs as follows:

Tueorem 8. If within an n-dinensional cube be yiven two coun-
table, everywhere dense sets of points M and I, a continuous one-one
transformation of the cube, the boundary included, in uself
can be constructed, by which M passes into I

The proof of this theorem is somewhat more complicated than
those of the preceding ones. We choose in 2, such a rectangular
system of coordinates that the coordinates w,, @, .... &, of the

cube vertices are all either 41 or — 1, and for p=1,2,.. .0
successively we try to form a continuous transition between the
(n—1)-dimensional spaces @, = — 1 and x,=-+}+1 by means of a

onedimensional continunm 5, of plane (n—1)-dimensional spaces
meeting each other neither in the interior nor on the boundary of
the ecube, and containing cach at most one point of A/. In this

n

we succeed as follows: Let .S = X ap ) = ¢ be a plane (n—1)-dimen-

I):l
sional space containing no straight line parallel to a line £, joining
two points of M, and through ecach point (¢, =, =.... =2, =0,
Tp=a,ppi1=2apge=.... ==y, =0) let us lay an (n—1)-dimensi-

onal space: zp + e(l — a’) S=a 4 capa (L —a*); in this way we
get a continuous series ¢, of plane (n—1)-dimensional spaces, and
we can choose a magnitude ¢, with the property that for ¢ <e, two
arbitrary spaces of 6, meet cach other neither in the interior nor on
the boundary of the cube. As further an (n~—1)-dimensional space
belongs to al most one o, thus a line £, is contained in an (n—1)-
dimensional space belonging to o, for at most one value of ¢, and the
lines £, exist in countable number only, it is possible to choose a
suitable value for ¢ < e, with the property that no space of o, con-
tains a line r, , i.o.w. that o, satisfies the conditions imposed to s,

If for each value of p we choose oat of s,, an arbitrary space,
then these n spaces possess one single point, lying in the interier of
the cube, in common. For, by projecting an arbitrary space of s,
together with the sections determined in it by s.9, 5.3, .... Su into
the space &, = 0, we reduce this property of the n-dimensional cnbe
to the analogous property of the (in-—1)-dimensional cube. So if we
introduce as the coordinate x,, of an arbitrary point H lying in the
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interior or on the boundary of the cube, the value of x, in that
point of the Xp-axis which lies with /7 in one and the same space
of s.p. then to each system of values > — 1 and < 1 for iz, T2, + + + Toan
corresponds one and only one point of the interior or of the boundary
of the cube, which point is a binniform, continuous function of @y,
T2y« -+« Pmne LO.W. the transformation {i', = a,,}, to be represented
by 7, , is a continuous onc-onc transformation of the cube with its
boundary in itself, by which ) passes into a countable, everywhere
dense set of points M, of which no (n—1)-dimensional space parallel
tn a coordinate space contains more than one pomt.

In the same way "we can define a continuous one-one transfor-
mation 7’ of the cube with its boundary in itself, by which R passes
into a countable, everywhere dense set of points R, of which no
(n—1)-dimensional space parallel to a coordinate space contains more
than one point.

Further after the proof of theorem 7 a continuous one-one trans-
formation 7" of the eube with its boundary in itself exists, by which
M, passes into R, so that the transformation

r7.7T. 7T,

possesses the properties required by theorem 8.

We now come to a property which at first sight seems to clash
with the conception of dimension :

Tuworem 9. The coherence types - and w are identical.

To prove this property, in an n-dimensional cube for which the
rectangular coordinates of the vertices are all either 0 or 1, we con-
sider the set A, of ecoherence type 7 consisting of those points
whose coordinates when developed into a series of negative powers
of 3, from a certain moment produce exelusively the number 1, and
together with this we consider the set ./ of coherence type % con-
sisting of those real numbers between 0 and 1 which when developed
into a series of negative powers of 3». from a certain moment pro-

¢
7 —

duce exclusively the number - ---. The continuous PraNo represen-

2
tation 1) of the real numbers bLetween 0 and 1 on the n-dimensional
cube with edge 1, then determines a confinuous one-one represen-
tation of M on M, establishing the exactness of theorem 9.

That in reality theorem 9 does not clash with the conception of
dimension, is elueidated by the remark that not every continuous
one-one correspondence hetiween o countable sets of points M and R,

1) Comp. Math. Annalen 36, p. 59, and ScrorsvLigs, Bericht dber die Mengen-
lehre 1, p. 125.
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lying everywhere dense in R, adits of an extension lo a continuous
one-one transformation of R, in itself. 1f e.g. the set of the rational
points of the open straight line is submitted to the continuous one-
one transformation &' = n—l-.;, this transformation does not admit of
an extension (o a continuous one-one transformation of the open
straight line in itself.

A more characteristic example, presenting the property moreover
that in no partial region an extension is possible, we get as follows:
Let ¢, denote the set of those real numbers between 0 and 1 of
which the development in the nonal system from a certain moment
produces exclusively the digit 4, ¢, the set of the finite ternal fractions
between O and 1. Let 7' denote a continuous one-one transformation
of the set of the real numbers between O and 1 in itself, by which
¢, passes into ¢, 4 ¢,, thus a part ¢, of ¢, into ¢, and a part ¢, of ¢,
into ¢,. By a Prano representation 7', the sets ¢, ¢,, ¢,, t, successively
pass into countable sets of points s,,s,,s,, s,, lying everywhere dense
within a square with side unity, and, so far as are concerned, s,, s,, and
s,, containing no points of the boundary of this square. The continuous
one-one representation 7' of ¢, on ¢, now determines a continuous one-
one rvepresentation T, = T.TT,~" of s, on s,, not capable of an
extension to a continuous one-one representation of the interior of the
square in itself. For, if such an extension would exist, it wounld be,
for each set of points in the interior of the square, the only possible
continuous extension of 7,. For s, however, 7,77\~ furnishes
itself such a continuous extension, which we know to be nof a one-
one representation.

The conception of dimension can now be saved, at least for the
everywhere dense, countable sets of points, by replacing the notion
of coherence type by the mnotion of geometric type'). Two sets of
points will namely be said to possess the same geometric type, if a
uniformly continuous one-one correpondence exisis between them.
And it is for uniformly continuous representations that the following
property holds:

Tueorem 10.  Every uniformly continuous one-one correspondence
between two countable sets of points M and R, lying everywhere dense
. an n-dimensional cube, adwmits of an extension to a continuous
one-one transformation of the cube with its boundary in itself.

1) For closed sets the two notions are equivalent. For these they were intro-
duced formerly under the name of geomeiric type of order, these Proceedings XIi,
p. 786.
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For, on acconnt of the uniform continuity of the correspondence
between A and R, to a sequence of points of M possessing only
one limiting point, a sequence of points of R likewise possessing
only one limiting point, must correspond, and reciprocally. On this
ground the given correspondence already admits of an extension to
a one-one transformation of the cube with its boundary in itself of
which we have still to prove the continuity in the property that a
sequence {¢,,} of limiting points of M converging to a single limiting
point gu., the sequence {g,.} of the corresponding limiting points of
R converges likewise to a single limiting point. For this purpose we
adjoin to each point g, a point m, of 3 possessing a distance
< & from g, the distance between ¢,, and the point r, corresponding
to m, likewise being <&, and for » indefinitely increasing we make
e, to converge to zero. Thus {m,} converging exclusively to gua, {7}
likewise possesses a single limiting point g¢,,, and also {g,,} must
converge exclusively to g,..

On account of the invariance of the number of dimensions') we
can enunciate as a corollary of theorem 10:

Tusorem 11.  For m < n the geometric types w™ and v are different.

As, however, for normally connected sets in general the notion
of uniform continuity is senscless, the indeterminateness of the number
of dimensions of everywhere dense, countable, multiply ordered sets,
as expressed in theorein 9, must be considered as irreparable.

1y Comp. Math. Annalen 70, p. 161,

[ii]
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NOTES

[1] The Dutch version was communicated at the meeting of 25 April 1913.
The English version appeared in the Proceedings of the meeting of 25 Aprii 1913,
[2] The strange looking term ‘coherence’ is probably derived from G. Cantor’s
‘Cohérenz’ (= set of accumulation points).
3] Brouwer’s copy of the Dutch text indicates the changes (translated):

2", for each limiting element of f a partial sequence can be found every partial
sequence of which has fas its only limiting element

4" if m is the only limiting element of all partial sequences of the sequence
{m,} and m,, for u constant the only limiting element of all partial sequences of
the sequence {m,,} then ---

[3a] Added in Brouwer’s copy of the Dutch text: (b, < ¢;) before the first ‘or’.
41 F. Riesz 1905.

[51 G. Cantor 1895.

[61 Brouwer 1910B2.

[71 This was probably an oral communication, at the International Congress
of Mathematicians in Cambridge in August 1912 (see Y58). The theorem itself is
superseded by Brouwer’s theorem 9. Brouwer’s formulations seem to indicate that
Borel did not remark that his method allowed him to prove the much stronger
theorem 7. Brouwer’s papers contain a correspondence with E. Borel, of a later
date and related to theorem 8, which he had discussed with Borel at Cambridge,
and for which Borel gave an incorrect proof. See 1916 A, 1916B, Y57, Y58.
[8] M. Fréchet 1910, p. 159 had enunciated a theorem which essentially coincides
with theorem 7, but the proof was wrong as noticed by P. Urysohn 1925, p. 83-89.
Clearly neither Borel nor Brouwer knew about Fréchet’s statement nor Urysohn
about Brouwer’s paper.

M. Fréchet 1928, p. 49 reacted to Urysohn’s remark ; he had noticed his mistake
earlier and found a way of correcting it. M. Fréchet 1928, p. 49 said: ‘Dans l'in-
tervalle, dailleurs, M. Brouwer avait publié en 1913 une communication de M.
Borel, énongant et démontrant le méme théoréme.” This is not correct ; in any case
it does not follow from Brouwer’s text I interpret to mean that Borel gave Brouwer
a proof of theorem 5 and that Brouwer noticed that the method even allows one to
prove theorem 7. In this connection M. Fréchet also mentioned Borel 1922, but
not Borel 1913 nor Brouwer’s criticism (see [[9] and 1916 B [27])).

91 This theorem is related to Borel 1913 (see Brouwer 1916 A).
[101 G. Peano 1890 A, A. Schoenflies 1900.
[117 Brouwer 1911 C.



556 Jahrbuch iiber die Fortschritte 1916 A
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L. E. J. Brouwer. Eenige opmerkingen over het samenhangstype 7. Iy
Amst. Ak. Versl. 21, 1412-1419.

In der Terminologie des Verf, besitzen zwei Mengen denselben ,,Zusammen-
hangstypus*', wenn sie sich eineindeutig und stetig aufeinander abbilden lassen,
und denselben , geometrischen Typus', wenn diese Abbildung iiberdies gleich-
miiBig stetigist. 1s wird gezeigt, dab alle mehrfach geordneten, abziihibaren-und
itherall dichten Mengen denselben Zusammenhangstypus besitzen, nimlich den
Typus 7 der rationalen Zahlen. Weil bei diesen Mengen vom Begrill des geo-
metrisehen Typus keine Rede sein kann, so kommt fir sie die Invarianz der
Dimensioncnzahl in Fortfall. Sodann beweist der Verf. foloéndes geometrische
Theorem: ,,Wenn im Innern eines #-dimensionalen Kubus zwei abzihlbare,
iiberall dichte Punkimengen gegeben sind, so lassen sie sich ineinander iber-
fithren mittels einer eincindeutigen und stetigen Transformation des Kubus
einschlieBlich der Grenze in sich.* Brw.

NOTE
[1] Thisisanauthor’sreview of 1913 B1. Seealso 1913B2. 1916B, Y57. Brou-

wer’s papers contain a manuscript of this review. Deviations are probably due to
the editor of Jahrbuch.
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