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would see how little our activities are related to the real needs of society." Fifteen minutes later, 
he outlined a proof that every sufficiently large integer can be written as a sum, not of 1140 
tenth powers (the best previous result), but of 1046 tenth powers. 

Acknowledgment. R. P. Boas has acted as my Maxwell Perkins. Some of the anecdotes are his. The errors are 
all mine. 
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EULER SUBDUES A VERY OBSTREPEROUS SERIES 

E. J. BARBEAU 

The task of evaluating the infinite series 1-1! +2! -3! + · · · caused Euler to clarify his ideas 
on the meaning of assigning a sum to a series, even one which, in modem eyes, is divergent. In 
this article, we summarize these ideas and outline four ingenious approaches of Euler to evaluate 

The author received his Ph.D. from the University of Newcastle-upon-Tyne under the direction of F. F. 
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particular), number theory, differential equations, and mathematical education in the schools.-Editors 
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the above series. The consistency of these approaches is discussed, with reference to summability 
methods, extrapolation, continued fractions, and infinite differential operators. 

1. Assigning a value to a divergent series. In the late seventeenth and early eighteenth 
centuries, mathematicians were busily developing what promised to be a significant body of 
powerful techniques consequent to the creation of the calculus. However, there was considerable 
uncertainty about the best formulation of the underlying concepts. Probably no better example 
of this can be found than in the discussion of the meaning of the sum or value of an infinite 
series. Since sums of monomials can be easily differentiated and integrated, the discovery by 
Newton and his contemporaries that a great many functions could be developed as power series 
meant that calculus had quite wide applicability. Consequently, the question of attaching a sum 
to a series attracted much interest and controversy. 

Although mathematicians of this period were aware intuitively that, for some series, the sum 
could be regarded as the limit of the partial sums, in their view this did not adequately cover the 
matter. Even when this limit did not exist, many series nevertheless seemed to possess a natural 
value. Their attitude was influenced in part by their notion of a function as an analytic 
expression defined over the widest possible domain, including complex numbers and quantities 
infinitely great or small. Not being in possession of pathological counterexamples, they consid­
ered that two analytic expressions agreeing on a continuous set must agree everywhere. Thus, for 
example, if (I+ xY: is synonymous with its binomial expansion for lxl < 1, then (I+ xY: must be 
the value of that expansion for all x, except possibly for obvious singularities. 

These opinions were buttressed by experience. It was generally found that, where there were 
several ways of determining the value of an infinite series, they gave the same result. Moreover, 
in computations, the practice of interchanging an infinite series with its value did not appear to 
cause trouble. 

Euler's paper, "De seriebus divergentibus" [12), published in 1760, illuminates this spirit well. 
It can be split into two parts. The first subtly treats the question of assigning a value to a series. 
The second is devoted to evaluating "Wallis' hypergeometric series" 

1-l! + 2!- 3! +4!- 5! + .... 
Here we have a somewhat different approach to mathematical acceptability than that of today. 
Euler's concern is to put his result beyond all reasonable doubt, and this he does by arriving at it 
by a number of routes. It is consistency, as much as logical argument, which puts its stamp of 
approval on the mathematics. (See [15] for a wider discussion of this issue.) 

Although the modem investigator would quarrel with details of the work of Euler or of his 
contemporaries, it nevertheless displays a compelling consistency and usually leads to results 
demonstrably correct according to today's standards of rigour. Consequently, unusual methods 
of assigning a value to an infinite series have not been disdained during the past century, but 
rather formalized, studied in detail, compared, and extended. In situations where normal 
convergence fails, it is possible to find an alternative definition of "sum" which retains many of 
the properties associated with the usual concept (and, indeed, agrees with it for series convergent 
in the normal sense) and which will assign to a given infinite series the value of the function 
which generates it. This can be done for the binomial expansion and other power series beyond 
the circle of convergence, as well as for Fourier series, witness Fejer's theorem on the 
Cesaro-summability of the Fourier expansion of a continuous function. A discussion of summa­
bility from the modem point of view can be found elsewhere [5, pp. 5-10], [20], [23). 

2. Euler's general outlook. The prospectus to his paper [12] declares Euler's intention "to 
clarify a concept causing up to now the greatest difficulties." While he would not accept that 
mathematics is necessarily free of controversy, he is confident that mathematical disputes, unlike 
those in other areas, can be completely resolved once the evidence has been thoroughly weighed. 
So it is with assigning values to infinite series. Infinite series can be divided into four categories 
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according as the terms are positive or alternating, bounded or unbounded. Examples of the four 
groups are 

I. 1+1+1+1+··· 

II. I - I + I - I + · · · 
III. 1 +2+4+8+ · · · 

IV. 1-2+4-8+ · · · 

Series in group I present no difficulty. Either they converge to a finite sum in the modern sense, 
or they diverge to the infinite sum, a jO. More contentious are the series of group II. Euler bases 
his discussion on the expansion 1- a+ a2

- a3 + · · · of the fraction I /(1 +a). While no one 
would deny that these two expressions agree when Ia! <I, one might object to assigning the 
fraction as the sum of the series when lal;;. I on the grounds that the remainder term 
±an+ 1 /(1 +a) in the equation 

I an+I 
-- = I-a+a2 -a3 + ···+an±-­
l+a I+a 

cannot be neglected. Some of those who support the fraction as sum counter that, for infinite n, 
the ambiguous sign makes the remainder indeterminate, so that the remainder should be 
forgotten. In any case, they say, when you sum to infinity, you never reach the place where the 
remainder has to be inserted. Euler reserves his own position until later. 

Those who would assign sums to divergent series appear to be in deep trouble with series in 
group III. Although it might seem appropriate to assign for these series, as for those of group I, 
an infinite sum, there occur situations in which the sum indicated by analysis is not only finite 
but negative. For example, substituting -3 for a in the expansion of 1/(l+a) yields the 
paradoxical equation 

1 - 2 = 1 + 3 + 9 + 27 + 81 + .... 

Here one is in the absurd position of adding together positive terms to get a negative sum. 
Nevertheless, explaining this is a mere challenge to the ingenuity! To resolve the paradox (says 
Euler), some try to distinguish between two types of negative numbers, those that are less than 
zero and those that are greater than infinity. An example of the first type is the difference 
between an integer and its successor: - 1 = n - ( n + 1 ). An example of the second type is 
-1 = 1/-1, since it fits naturally into the "increasing" sequence 

... '1/3, 1/2,1/1,1/0,1/-1,1/-2,1/-3, .... 

Euler disapproves of this distinction on the grounds that it "does violence to the certitude of 
analysis" to have two different concepts of -1. However, he is prepared to accept that "the 
same quantities which are less than zero can be considered to be greater than infinity." 

Series in group IV can sometimes be handled as those in group II, already treated For 
example, from the expansion of 1/(l+lf, it is found that l=l-2+3-4+5-6+···. Euler 
says very little about this type in general, except to remark that it "is usually burdened with 
problems of its very own." 

Euler affirms that the real justification for assigning a value to a divergent series does not rest 
in any of the specious arguments given above, but rather in a substitution principle. If an infinite 
expansion can be replaced in a calculation by the expression which generates it without any 
ensuing error, then this replacement should be considered valid. One has only to be careful that 
the rules for doing this are properly investigated. As for the techniques to determine exactly 
what the value of a given series is, their power can be demonstrated by treating the particularly 
violent specimen which occupies the rest of the paper. 
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3. Euler's treatment of WaiUs' series. Euler's attribution of the series 1-1! + 2!- 3! + · · · to 
Wallis is a mystery. While Wallis had much to say about summing progressions, I have found no 
reference in his work to this particular series. His interest in the factorial function lay in 
interpolating its values for non-integral arguments. He discusses this question in the Scholium to 
Proposition 190 in his Arithmetica infinitorum (1655) and, again, in a letter to Leibniz dated 
January 16, 1699 [14, p. 59), where he seeks a formula for n! which makes sense for nonintegral n 
comparable to the formula Hn 2+n) for the sum 1+2+3+· ·· +n. The adjective "hypergeo­
metric" simply signifies that each term is obtained from its predecessor by multiplying by a 
factor which varies (presumably in some regular way) from term to term. This is in contrast to a 
"geometric" progression in which the multiplying factor remains the same. However, with the 
great interest in the factorial function, it is likely that the problem of summing "Wallis"' series 
was formulated in the correspondence of the early eighteenth century. Euler himself discussed it 
in at least two letters to Nicholas Bernoulli [13, pp. 538, 543, 546] before publishing his findings 
in the paper under discussion. The series gets brief mention in the books by Kline [6, pp. 451, 
1114], Bromwich [2, p. 323) and Hardy [5, pp. 26-29). 

Euler evaluates the series by four different methods. In the first he is content to get a rough 
numerical approximation by exploiting the fact that the series is alternating. To motivate his 
approach, let us first consider the sum of an alternating series which converges: I - I 12 +I 13-
114+ 115-116+ · · · =log2. An upper bound for the sum is any partial sum whose last term is 
positive-for example, 1-112+ 113-114+ 115=47 160; a lower bound is any partial sum 
whose last term is negative-for example, 1- I 12 + 113- I I 4 = 7 I 12. Apply the same reasoning 
to Wallis' series. The partial sums are 1, 0, 2, -4, 20, - I 00,620, .... The odd partial sums give 
upper bounds for the value of the series; the even partial sums give lower bounds. However, 
because the general term does not tend to zero, we do not obtain a very good estimate. Indeed, 
all that can be said is that the value lies between 0 and 1. Consequently, we would like to 
transform the series into an equivalent series which is alternating but which is capable of giving 
a better estimate. 

To see how this might be done, notice that the summing of the alternating series a 1 - a2 +a3-
a4 + a5 - a6 + · · · can be achieved by evaluating the power series 

a1 x- a2x 2 + a3x 3- a4x 4 + a5x 5- a6x 6 + · · · 

at x = 1. We effect a change of variables to produce the required transformation. Introduce y by 
the equation 

x= y(l-Y) -1 = y + y2+ y3+ y4+ ... . 

After substitution and some formal manipulation, the power series becomes 

aly -(~al)y2+(~2ai)Y3_ ... +( -I)k-l(~k-lal)yk+ ... 

where ~ is the forward difference operator defined by 

k k-1 k-1 - ~ k-J(k) ~a;=~ a;+ 1 -~ a;-~ ( -1) . ai+J 
j=O } 

for i;;;. 1, k;;;. 2. Since x = 1 corresponds to y = ~. we can evaluate a 1- a2 + a3- a4 + · · · by 
evaluating they-series at y = ~: 

~a 1 - i(~a 1 ) + i{~2ai}- -ft(~3a 1 ) + · · · . 

Euler applies this to obtaining the value 

A= 1-1 +2-6+24-120+ 720-5040+40320- · · ·. 

First remove the first two terms, 1-1, which cancel, and divide by 2 to get 



360 E. J. BARBEAU [May 

A 
12 60 360 2520 20160 181440 2=1-3 + + + -

2 9 48 300 2160 17640 161280 

7 39 252 1860 15480 143640 

32 213 1608 13620 128160 

181 1395 12012 114540 

1214 10617 102528 

9403 919ll 

82508 

The rows under the series give, for the absolute values of its terms, differences of the first, 
second, third, etc., orders, respectively. Applying the transformation, we find that 

A _ 1 2 7 32 181 _ 1214 9403 _ 82508 + ... 
2-2-4+8-16+32 ~+ 128 256 . 

Cancelling the first two terms and multiplying by 2 gives 

A= 7_ _ 32 181 _ 1214 + 9403 _ 82508 + ... 
4 8 + 16 32 64 128 . 

It can be seen that not much progress has been made! However, Euler continues transforming 
the series, to get at the next tum of the crank, 

7 18 81 456 3123 24894 
A= 8- 32 + 128 - 512 + 2048 - 8192 + ... 

Now the second term has smaller magnitude than the first. From the first two partial sums, A 
must be between 7/8 and 5/16. After one more application of the transformation, Euler is 
prepared to say that A is about 0.580. 

The difference operator intervenes also in Euler's second attack on the series. His strategy is 
to define a sequence whose zeroth term is formally Wallis' series and then to compute this zeroth 
term numerically. This requires Newton's method of extrapolation, which will be briefly 
described. For a given sequence, (a 1,a2, ••• ,an), observe that 

am+l =am +(am+ 1 -am)=am+llam=:(I +ll)am 

am+2=am+l +llam+l =(1 +ll)am+l =(1 +ll)(l +ll)am 

= a, + 2/lam + ll2am 

and, for any positive integers m and k, 
k 

am+k=(I+Il) am 

k(k-1) k(k-l)(k-2) 
=:a, + kl:lam + 2 f:l2am + 6 f:l3am + .... (3.1) 

Fork other than a nonnegative integer, the right side of (3.1) still makes sense, so that (3.1) can 
be used to represent "terms" of the sequence corresponding to indices other than natural 
numbers. 

Euler considers the sequence (Pn) whose terms are given by P1=1, P2=2, P3=5, P4 =16, 
P5 =65, and, generally, 

Pn+l = nPn +I for n=2,3,4, ... ,. (3.2) 

From the fact that ll;P1=i! (i=0,1,2,3, ... ,), the formula (3.1) with m=l, k=n-1, yields a 
formula for Pn: 
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P,=(l +11)"- 1P 1 = P1 +(n -1)11P1 +{ nll )112P 1 + { nJI )113P 1 + · · · 

=I+ (n -I)+ (n -l)(n -2) +(n -l)(n -2)(n- 3) + · · · . 

Further, substituting 0 for n gives 

P0 = 1-1!+2!-3!+4!- · · ·. 

How can a numerical value for P0 be found? 

361 

Euler next applies (3.1) with m = I, k = - I to the sequences whose general terms are 
a,= I I P, and a,= log10 P,. In the first case, the zeroth term is found to be 

1-( -112) + (115)- (- 3180) + (- 3611040)- (112711220376) + ... 

= 1 + 0.5 + 0.2 + 0.0375 -0.0364154-0.0511444 + ... 
= 1.651740 (Euler's figure). 

Taking 1.651740 as II P0, we have that P0 =0.60542. Analysis of the second sequence, Oog10P,), 
corroborates this determination of P0 quite well. The zeroth term of the sequence is 

0- 0.3010300 + 0.0969100- 0.0103000- 0.0128666-0.0053006 + ... 
and this Euler, using the transformation procedure of his first method, computes as T.7779089. 
Thereupon, P0 =0.59966. 

This method raises two interesting questions. First, are the series obtained for I I P0 and 
log10P0 actually convergent? Second, if the terms of one sequence are a certain function of the 
corresponding terms of another, how reasonable is it to ~xpect that the functional relation will 
persist to the extrapolated terms as well? This does not always happen; if, for positive integers n, 
a,= n, b, = f(a,) with f(z)= sin?Tz I(?Tz), f(O)= 1, then Newton's extrapolation procedure yields 
ao = b0 = 0; but f( a0) = I. One suspects that it is not enough for f to be analytic but that it should 
have less than exponential growth at infinity as well. 

The last two approaches of Euler hinge on finding a closed expression for a power series in x, 
which, for x = 1, produces Wallis' series. In the third method, he observes that the power series 

s(x)=x-lx2 +2x3 -6x4 +24x5 -l20x6 + · · · (3.3) 

formally satisfies the differential equation 

s'+(slx2)=llx. (3.4) 

This first order equation can be solved in the usual way; the solution which vanishes for x = 0 is 

i
x e-1/t 

s(x)=e 11x --dt. (3.5) 
0 t 

Using the substitution v =exp(l-11 t), t = 11(1-logv), dt It= dvl v(l-logv), Euler transforms 
(3.5) to 

l
ei-ifx dv 

s(x)= e(l/x-l) . 
0 1-logv 

(3.6) 

For future reference, we record here that, making the substitutions= 1 It- 1 I x, the integral can 
be rendered 

l
oo xe-• 

s(x)= --ds. 
0 I +xs 

These three integrals yield the following alternative forms for the value of Wallis' series: 

l
l e-l/t ll dv loo e-• 

s(l)=e --dt= = -ds, 
0 t 0 I -logv 0 I+ s 

(3.7) 

(3.8) 

of which Euler computes the approximate values of the first and second by the trapezoidal rule. 
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Euler checks that the second integral of (3.8) ought to give Wallis' series by substituting y = I 
into the expansion (obtained by integrating by parts), 

l y dv y l·y 

0 1-logv = 1-logy - (l-logy)2 

I · 2 ·y I · 2 · 3 ·y + ... 
+ 3 4 (1-logy) (1-logy) 

(3.9) 

This integral allows for an alternative computation of the value of Wallis' series which Euler 
does not mention in the paper but which he confides in a letter to Bernoulli [13, p. 546]. The left 
side of (3.9) is expanded in ascending powers of (I- v), and the series is integrated term by term. 
Upon substitution of I for y, there results 

1-1 +2-6+24- ... = 1-l/2+ 1/6-1/12+ l/30 
-7 /360+ 19/2520-3/560+... . (3.10) 

Euler's fourth approach is to obtain a "continued fraction" expansion for the power series 

u(x) =s(x)/ x = 1- x+2x2-6x3 +24x4 -l20x5 + · · · . (3.ll) 

This has the form 1/(l +B) where 

x-2x2+6x3
- • • • 

B = -----;;------:---::---
1- x+2x2-6x3 + · · · 

In turn, B can be put in the form xj(t+ C), with 

x-4x2+ I8x3 -96x4 + · · · 
C= ---------=-----

l-2x+6x2- · · · 

So far, we have found that 

1 
u(x)= x , 

I+ l+C 

which, for short, we denote by u(x)=l/l+x/l+C, with the convention that each slash 
incorporates everything which follows. This process is continued: Cis written as x/(1 + /)), D as 
2x /(I+ E), and so on. Carrying on indefinitely, Euler finds 

u(x)= 1/I +x/I +x/I +2x/I +2x/I +3x/l +3x/I +4x/I +4x/ · · · . (3.12) 

The value of u(x) can be approximated by the convergents obtained by stopping the continued 
fraction (3.I2) at any slash. These are p 1(x)jq1(x)=I/I+x; p2(x)/q2(x)=I/l+xji+x; 
p 3(x)/ q3(x) =I/ I+ xj I+ x /I+ 2x. The nth convergent is Pn(x)/ qn(x), where, for small values 
of n, Pn(x) and qn(x) are given in the following table: 

n Pn(x) 

1 
2 1+x 
3 1+3x 
4 1 +5x+2x2 

5 1+8x+llx2 

6 1 + llx+26x2 +6x3 

7 1 + 15x + 58x2 + 50x3 

In general, for n;;;. 1, these relations hold: 

P2n+ l(x) = P2n(x) + (n + l)XP2n-l(x) 

q2n+ 1(x) = q2n(x) + (n + l)xq2n-l(x) 

qn(x) 

1+x 
1+2x 
1+4x+2x2 

1+6x+6x2 

1 +9x+ 18x2 +6x3 

1 + 12x+36x2 +24x3 

1 + 16x+72x2 +96x3 +24x4
• 

P2n+2(x) = P2n+ l(x) + (n + l )XP2n( x) 

q2n+2(x) = q2n+l(x)+ (n + l)xq2n(x). (3.13) 
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The sum of Wallis' series ought to be u(l). For x= I, the convergents of the continued fraction 
(3.12) are 1/2, 2/3, 4/7, 8/13, 20/34, 44/73, 124/209, 300/501, ... forming an apparently 
convergent sequence. 

Euler has another, somewhat curious, way of evaluating the continued fraction at x = I. He 
writes 

A= 1/l + l/1 + 1/l +2/l +2/l +3/1 +3/l +4/1 +4/l +5/ ···/I+ 10/l + 10/l +p 

From this 

where 

where 

where 

p= ll/1 + 11/l + 12/ ... /1 + 15/1 + 15/1 +q, 

q= 16/1 + 16/1 + 17/ · · · /1 +20/1 +20/1 +r, and 

r=21/1 +21/1 +22/1 +22/1 +23/1 +23/ .... 

A= 491459820+ 139931620p 
824073141 + 234662231 p 

- 2381951 + 649286q 
p- 887640+ 187440q 

ll437136+2924816r 
q= 3697925+643025r · 

The calculation depends on determining r. If, in the definition of r, we replace the numbers 
22,23,24,25, ... all by 21, we obtain the approximate equation r=21/(l+r), which is satisfied 
by 

r= -}(\185 -1)=4.10977 .... (3.14) 

Euler has a second way of finding r. We have that 

r=21/1 +21/1 +s=(21 +21s)/(22+s), 

where 

s=22/1 +22/1 + t=(22+22t)/(23+ t) and t=23/l +23/1 +24/1 +24/ · · ·. 

Euler assumes that r, s, and t are in arithmetic progression, so that r + t = 2s. Since t = (23s-
22)/(22- s), he finds that 

r+ t = (2s2 + 925s- 22)/(484- s2
) =2s, 

whence 2s3 + 2s2 - 43s- 22 = 0. This is solved by an approximate method (Newton's) to obtain 
s=4.423, from which r=4.31, q=3.71645446, p=3.0266600163, A =0.5963473621372 (Euler's 
accuracy). Euler notes that close rational approximations can be obtained from the convergents 
of the simple continued fraction expansion of A, 

1/1 + 1/1 + 1/2+ 1/10+ 1/1 + 1/1 + 1/4+ 1/2+ 1/2+ 1/13+ 1/4+ .... 
Euler's ingenuity has brought forth a variety of ways of handling the seemingly impossible 

problem of attaching a value to Wallis' series. If these all lead to the same numerical result, then 
it will reinforce the conclusion that Wallis' series has a natural value and that, within 
computational error, we have found it. Let us make the test. Euler's first method is crude, but 
does give the value 0.580. His second gives the values 0.60542 (from 1/ P0) and 0.59966 (from 
logP0). The trapezoidal rule for approximate integration with ten subintervals gives, respectively, 
0.59637255 and 0.58734359 for the first and second integrals of (3.8). Formula (3.10) gives about 
0.59940472. Using the convergents 124/209 and 300/501 of the expansion (3.12) for u(l) puts 
the value between 0.5933 and 0.5988. Using (3.14) for r gives A =0.59634738, and using r=4.31 
gives 0.596347362. It can be fairly concluded that these results are consistent. Whatever 
differences arise seem to reflect the accuracy or efficiency of the method. What should the 
answer be? Hardy [S, p. 26], by computing (3.7), obtains 
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1-1!+2!-3!+··· =-e(-y-1+ 2.~!- 3.~! +···) 

where y = 0.577215664901533 ... is Euler's constant. The value obtained is about 0.59635. In the 
remainder of this article, we will explore the compatibility of these methods in more detail. 

4. Remarks on Euler's evaluations. Euler's definition of the summation of a1 - a2 + a3 - a4 

+ · · · in terms of the summation of ~a1 - H~a1)+(1/8)(~2a 1)- • • • is the progenitor of the 
(E,q) summability method based on the transformation x=y(l-qy)- 1 [S, Ch. 8]. In his 
discussion of Wallis' series [S, pp. 28, 196], Hardy points out that no application of Euler's 
method will convert the series into a convergent one, although by making sufficiently many 
transformations we can make the error introduced very small by stopping the resulting series at 
a suitable point. By making an adjustment to this method, Hardy shows how to obtain a value 
for Wallis' series, ~n( -l)"n!, which agrees with Euler's third method. Since, 

n! = ( 2 e-ttn dt + rs e-ttn dt + ... + f 2
p+l +2'-l e-ltn dt + ... ' 

lo J2 )2'+2'-'-I 

we write formally 

L(-lfn! = L r2
(-l)ne-'tndt+ L rs(-l)ne-'tndt+ · · · + L f 2'+'+2'-•(-1)ne-'tndt+ · · ·. 

n n Jo n J2 n )2'+2'-'-1 

Each of the series on the right side is (E,q)-summable for q sufficiently large. However, the size 
of q required to evaluate the series becomes arbitrarily large with p. Putting in the values 
obtainable in this way, and adding, we obtain for the right side 

i 2 e-t is e-t ioo e-t 
--dt+ --dt· .. = --dt, 

0 I+t 2 l+t 0 l+t 
(4.1) 

which is the third integral of (3.8). 
Euler's third method amounts to assigning the value (3.7) to the power series (3.3), or 

equivalently the integral f 0e -so + xs)- 1 dY to (3.11 ). His judgment can be vindicated in a 
number of ways. For example, expanding the integrand we find that 

00 -s n+l 
+(-lf+lxn+l r e s dY. (4.2) 

) 0 I +xs 

For positive values of x, the integral in the remainder term is dominated by f 0e-ssn+ 1 dY =(n + 
1)!, so that the remainder term is of the same sign as and of less magnitude than the term 
(- 1y+ 1(n + 1)! xn+ 1• While the ratio test reveals that the series (3.11) does indeed diverge for all 
positive values of x, nevertheless, from (4.2), for each fixed n 

fooo 
1 
:-:s dY= l-x+2!x2 -3!x3 + · · · +( -lfn!xn+ O(xn+l) as x~O. 

(See [4] for further discussion of this type of behavior.) 
Alternatively, an independent evaluation of the power series (3.11) can be made by a 

modification of Borel's integral method of summability [5, pp. 182, 192], which is quite powerful. 
Recall that, to sum the series a0 + a 1 + a2 + a3 + · · · , we define the function 

_ ~ ak k 
U(s)- k"=o k! s . (4.3) 

Assuming an analytic determination of U(s) for 0 .,;;s < oo, the Borel or, more properly, (B*) sum 
is defined to be 

(4.4) 
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For the series (3.11), ak =( -1)kk!xk, so that 
00 

U(s)= L (-1)\xs)k. 
k=O 

When lxsl < 1, U(s) is equal to (1 + xs)- 1; we take this as an evaluation of U(s) for all 
nonnegative s. Then the (B*) sum of (3.11) will be 

fo 00

e-•(l+xs)- 1ds. (4.5) 

Another treatment appears in a 1941 paper of Hardy [16]. In effect, he defines the value of 
~::0-o(- lfn!xn to be the limit, as 8~0, of 

00 

L (-lfe- 6ll..n!xn (4.6) 
n-o 

where Ao=A1 =A2 =0 and\, =nlognloglogn for n > 3. Through the residue theorem, (4.6) can 
be expressed as a sum of two contour integrals which tends, as 8~0. to the limit 

f f(s+ 1) (- x)' ds 
c e2"rs -1 ' 

for any complex number x not lying on the negative real axis, where C is a suitable contour. 
Using the integral form of f(s + 1) and effecting an inversion of the order of integration, Hardy • obtains from this integral the required quantity ( 4.5). 

The consistency between Euler's third method, using the differential equation for s(x), and 
his fourth method, using the continued fraction for u(x), was established by both Laguerre [18] 
and Stieltjes [22]. Both do this by showing that a suitable integral can be developed as a 
continued fraction. Laguerre treats f':e- 1/tdt which, for z= 1/x, t= Ijs, becomes 
fOe-ll•jsds (cf. (3.5)). On the other hand, Stiel~es substitutes z=I/x into (3.12) to get a 
continued fraction of the form 

(4.7) 

The convergents of this continued fraction are rational functions possessing partial fraction 
decompositions of the type ~M;/(z + x;) with both M; and X; positive. Stieltjes writes the nth 
convergent as a special kind of integral 

roo dcf>n 
Jo z+y 

where cf>n is an increasing jump function, cpn{O)=O and limy_oocf>iy)= 1/ a1• For this particular 
case, as n increases, the functions cf>n(Y) tend to a limit cll(y), an increasing function determin­
able by solving the moment problem 

L00

tkdcll(t)=ck (k=0,1,2,-··) 
0 

where the ck are derivable from the known quantities a;. Thus, (4.1) can be written as 
fg>dcll(t)/(z+t) from which (3.12) can be expressed as 

fooo I:-~~ dt. (4.8) 

However, I will take a more direct approach in connecting the continued fraction for u(x) to 
its differential equation. Since u(x)=s(x)jx and since s satisfies (3.4), the differential equation 
for u is 

xlu'+(l+x)u=l (4.9) 

(which can be seen to have the solution (4.8) with u(O)= 1). Our task is to show, first, that for 
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O<x < oo, the sequence (Pn(x)j qn(x)) of convergents of (3.12) converges, and, second, that the 
limit is a solution of (4.9). 

With the help of (3.13), it is straightforward to establish that, for n;;;. I: 
(I) p2n,P2n+ 1,q2n_ 1,q2n are polynomials of degree n whose coefficients are all nonnegative 

and whose constant terms are equal to 1. 

(2) The leading coefficient of both q2n and q2n+ 1 is (n + 1)!. 

(4) Let 

Then 

so that 

(5) 

W2n=-(n+!)xw2n-l and W2n+ 1=-(n+1).xw2n> 

w2n = (n + 1 )( n!)2x2n+ I 

w2n-l = -(n!)2x2n. 

P2n P2n+2 (n+ l)(n!)2x2n+l - - -- = _o__--'-'.__-'. __ _ 

( 1)2 2n P2n+l- P2n-l = n. X 

q2n+l q2n-l q2n+lq2n-1 

P2n P2n+l (n+I)(n!)2x2n+l - - -- = _o__--'-'.__-'.---

(4.10) 

( 4.11) 

Because of (I) and (2), for all positive values of x, the right sides of all four equations are 
positive and of the last two are each less than 1/(n+ 1). Therefore, it follows that, on the 
positive real axis, the odd convergents increase and the even convergents decrease to a common 
limit function u(x). 

In order to check that the limit of the convergents satisfies ( 4.9), we examine the expression 
xlu' + (1 + x)u -1, with u replaced by Pn! qn. This is a fraction, whose numerator is 

x2(p~qn-Pnq~) + rnqn, (4.12) 

where rn = (1 + x)pn- qn is a polynomial satisfying the same recursion relations (3.13) as Pn and 
qn. 

It is readily conjectured that, for n = 1,2, ... and q0 = 1, 

qzn+l =(n + 1)
2
q2n-l 

qzn = n( n + 1 )q2n-2• (4.13) 

which an induction argument shows to be indeed true. This suggests that we should examine 
Pln+ 1-(n+I)p2n-l and P2n-n(n+I)p2n_ 2. Again, an induction argument reveals that, for 
n= 1,2, ... andp0 =0, 

x 2(Pln+ 1- (n + 1 )
2
P2n-l) + r2n+ 1 =0 

X2(P2n- n(n + l)P2n-2) + r2n =0. 

Inserting (4.13) and (4.14) into (4.12), we find that, for every positive integer n, 

(4.14) 
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x2(p~q,-p,q~) +(I+ x)p,q,- q;= w"' 

where w, is given by (4.10). Therefore, 

( p")'+(~)(p")- ___!_ =~ 
q, x2 q, x2 x2q; 

for x > 0. From the above facts (1), (2), and (4), 

w2, (n+ l)(n!)2x2"+ 1 
_ -- < - --:------::-:--

x2qi, x 2((n+l)!)2x 2" (n+l)x 

367 

(4.15) 

so that, as n tends to infinity through even values, the right side of (4.10) converges uniformly to 
zero on compact subsets of (0, oo ). Since p,j q, tends uniformly to u(x) on compact subsets of 
(O,oo), from (4.15), lim,_00(p2,./q2,.)' exists and must be u'(x) for x>O. Therefore, u'+(l+ 
x)x-lu-x-2=0, so that u satisfies (4.9). 

Actually, the convergents give an efficient :1pproximation to u(x) in the sense that the series 
expansion of p,(x)/ q,(x) reproduces the terms in the series (3.ll) up to degree n, which is about 
twice the degree of the numerator or the denominator. Indeed, q,(x)u(x)=p,(x)+(terms of 
degree exceeding n), so that the convergents are among the Pade approximants of u(x) [10, Ch. 
20). The properties of these convergents also give some insight into the dismal failure of (3.11) to 
converge while at the same time u(x) can be evaluated for all nonnegative real x. Consider the 
real zeros of the polynomials q,(x). It is clear that they must all be negative. By inspection, we 
note that q1 and q2 each have a negative zero. Suppose that for k ;;;. 2 it has been established that 
fori= l,2,3, ... ,k, q; has at least one negative zero and that, if b; is the largest real zero of q;, 
then b;_ 1 <b; for 2<i .;;;k. Thus, if I <i <) .;;;k, q;(x)>O for bj<x .;;;O. Then, from (3.13), we can 
deduce that qk+ 1(bk)<0, so that qk+l has a zero in the interval (bk,O). In particular, bk+l exists 
and bk<bk+ 1<0. Therefore, limb,. exists. We now show that the limit is 0. Substituting 
x= -lj(n +I) into the second and fourth equations of (3.11), we find that q211 +2( -l/(n +I))= 
-q2,_ 1(-l/(n+l)). With a little arguing, it follows that b2,.+2 >-l/(n+l), so that indeed 
limb, =0. Consequently, the radius of convergence of the power series expansion of p,(x)/ q,(x) 
becomes arbitrarily small for n sufficiently large, while at the same time the singularities keep 
away from the positive axis. It is not surprising that while (3.11) diverges, the convergents p,/ q, 
can be used to assign a value to (3.9) for nonnegative x. In the next section, we will take up 
Euler's second method. 

5. Extrapolation and factorial series. Euler's second method of evaluation requires the value 
of P0 given that, for each positive integer n, P, = l + (n- I) +(n- l)(n- 2) + (n- l)(n- 2)(n- 3) 
+ · · · . This could be obtained if a natural extension function h(z) were found which is in some 
sense regular and defined on a region of the complex plane containing the nonnegative integers, 
and for which h(n)=P, for positive integers n. 

In fact, there is a great deal of latitude in choosing the function h(z), even if we require it to 
be entire. By the Weierstrass Theorem [1, p. 194], there is an entire function f(z) with simple 
zeros at 1,2,3, .... The Mittag-Leffler Theorem [1, p. 185] then provides a meromorphic 
function g(z) whose only poles occur at 1,2,3, ... and whose singular part at z=n is 

P, 
j'(n)(z-n) · 

If h(z)= f(z)g(z), then h(z) is entire and h(n)= P, (n = 1,2,3, ... ). If this seems too arbitrary, we 
can also require that the recursion relation (3.2) satisfied by P, also extends: 

h(z+l)=zh(z)+l forzEC. (5.1) 

Even this will not pin h down. For, as pointed out by Lome Campbell, if h(z) is one such 
function, then cf(z)sin2wz + h(z) is another for any constant c. We may well ask whether there 
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is a "right" extension for Pn in the sense that the gamma function is the "right" extension of n!. 
Following Euler, we try to get one by Newtonian extrapolation. Let the sequence 

(a1,a2,a3,. .. ) be given and let the ith order difference at the first term be u;: 

(i=O, 1,2,3, ... ). 

Newton's extrapolation formula for a functionj(z) withj(n)=an for positive integral n is 

f(z)=(l +ll)z-ta1 

u2 
=Uo+u1(z-l)+ 

2
! (z-l)(z-2)+··· 

+ z~ < z _ I)( z _ 2)( z _ 3) ... < z - k) + .... 

(5.2) 

(5.3) 

This is a factorial series of the second kind, whose theory is expounded in great detail by 
Norlund [8]. For such a series, there are two real numbers (}0 and (Jt> both finite or both infinite, 
which, when both finite, satisfy 0..;; 91 - (}0 ..;; 1, such that the series converges for Rez >90 and 
converges absolutely for Rez >91• Convergence is uniform on compact subsets of the domain of 
convergence, so that on such subsets f(z) is analytic. This extrapolation has some agreeable 
properties. If, for some polynomial p of degree m, an=p(n}, then uk=O for k;;;.m+1 and 
f(z) = p(z). In particular, the factorial series corresponding to the sequence (1, 1, 1, ... ) is simply 
I. Moreover, suppose that f(z) and g(z) are the factorial series arising from the sequences (an) 
and (bn). Then clearly the factorial series from (can) is cj(z) and from (an+ bn) isj(z)+ g(z). Not 
so clear, but also true, is the fact that the factorial series from the product sequence (anbn) is the 
productf(z)g(z) expanded in ascending factorial powers l,(z -l),(z -l)(z- 2},(z -l)(z- 2)(z-
3}, .... From this, it follows that, if bn = 1/ an, thenj(z)g(z}= I. More generally, if cp is a rational 
function for which bn =cp(an}, then g(z) =cpof(z). In the light of this, it is entirely reasonable that 
Euler should extend (Pn) to P0 by Newton's method and should use the inverse sequence (I/ Pn) 
to compute "1/ P0." Is his use of the sequence Qog10 Pn) equally justifiable? 

Unfortunately, for a,= Pn, the series (5.3) converges nowhere except at the positive integers, 
where it terminates. Therefore we will come to an assessment of the consistency of Euler's 
second method with his others by summing (5.3) by various natural methods. For the modified 
method of Borel discussed above, the function U(s) of (4.3) is 

_ 
00 (z-l)(z-2)· · · (z-k) k 

U(s)- k~o k! s . 

For JsJ < 1, this is equal to (I +s}'- 1, and this expression can be used to extend U(s) along the 
positive real axis. Then, from (4.4}, we find that 

(5.4) 

(The value of (I+ sy-t derives from the real logarithm of (I+ s).) The integral converges for all 
complex values of z and h(z), so determined, is entire. Integrating by parts reveals that h(z) 
satisfies (5.1); if z = n, a positive integer, then h(n) = Pn. Finally, for z =0, h takes the value (3.8). 
We can recover the factorial series 1 +(z -l)+(z -l)(z- 2)(z -3)+(z -l){z -2)(z-3)+ · · · 
from (5.4) by expanding the binomial in the integrand and integrating (invalidly) term by term. 
This relationship between function and factorial series can be made less tenuous. Define the 
incomplete gamma function 

f(z,x) = J 00 

e-ttz-l dt = e- 1J00 

e- 1(1 + t)'- 1 dt 
x x-l 

for nonnegative real x and complex z. Then h(z)= ef(z, 1). Successive integration by parts yields 
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{ 
(z-1) (z-1)(z-2) 

f(z,x)=e-xxz-1 1+-x-+ x2 +··· 

( z - I)( z- 2) · · · ( z - k + I) } + k-l + Rk(z,x) 
X 

where ~(z,x)=(z-I)(z-2) .. ·(z-k)f;'e- 1tz-k-ldt. For fixed z, this remainder becomes 
arbitrarily small for large x. In the language of asymptotic expansions [4, 9], we have 

00 (z-l)(z-2)· .. (z-k) 
ef(z,x)-e1-xxz-l ~ k as x~oo. 

k-0 X 

the right side of which, for x= I, gives the factorial series for h(z). 
There are other methods, somewhat ad hoc but nevertheless convincing, of obtaining the 

same closed expression for h(z). An amusing way begins with the observation that the sum of 
the first n terms of the series e =I+ I/ I!+ I /2! + · · · is Pn/(n -1)!. This suggests that it might 
be worthwhile to consider the x-polynomial 

q(n,x) =I+ x+x2 /2! + x 3 /3! + · · · + xn- 1/(n -1)!. 

We have that q(n,O)= I, Pn=f(n)q(n, 1), and q(n,x) satisfies 

a 
ax q(n,x)-q(n,x)= -xn-lj(n-1)!. 

Define the extension q(z,x) of q(n,x) for z complex (but not a nonpositive integer) as that 
function which satisfies the differential equation 

a 
ax q(z,x)-q(z,x)= -xz-ljf(z) (x >0) 

subject to the initial condition q(z,O)= I. This first order equation has the solution 

q(z,x)= r~:) ~
00 

e-ttz-ldt. 

The resulting extension of Pn is thus 

f(z)q(z, 1) = e foo e-ttz-r dt= (oo e-"(I +st-' dr, 
1 Jo 

which agrees with (5.4), when analytically continued to all of C. 
The foregoing approach is peculiar to the sequence (Pn). We put forward a final method 

which is more general and involves infinite differential operators (cf. [3]). Let (an) be a given 
sequence, and, as above, let U;=tia1 (i=O,l,2, ... ). Define Xk(t)=tk for k=O,I,2, .... Observe 
the similarity between the expansion of f(z) in (5.3) and the binomial expansion 

(I )z-1= ~ (z-l)(z-2)"·(z-k) () 
+t ~ k' Xk I. 

k-0 . 

We search for a linear functional, 4. (the subscript indicates its dependence on the sequence 
(an)), defined on a linear space which contains all the functions XkU) as well as (I+ ty-r for 
complex values of z, for which 

La(xk)= uk for k=O, 1,2, .... 

Then we might take as an evaluation of the series (5.3) 

f(z)= La((I + tt-'). 

We should choose La in such a way that, if for some polynomial p, an =p(n), then we should 
obtain the evaluation f(z) = p(z). 

Let us denote differentiation with respect tot by D or by'. Observe that Dkx,(O)=O when 
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r=l=k while D'x,(O)=r!. Consequently, for suitable w(t), define 

La(w(t))= u0w(O)+ ~; w'(O)+ ~~ w"(O)+ · · · 

+ u, w<'l(O) + ... 
r! 

where the series can be evaluated somehow. Three examples will illustrate the process. 

EXAMPLE I. Letp be any polynomial and let an=p(n). Then U;=d~(l) and 

La( (I+ t)z-l) = p(l) + d~~l) (z -1) + d~~_!l(z -l)(z -2) 

+ ... +0+0+0+ ... 

which is the factorial expansion of the polynomialp(z). 

EXAMPLE 2. Let an= 1/ n. Then U; = ( -IY /(1 + i), so that 

La(w(t))= w(O)- w'(0)/2! + w"(0)/3!- w"'(0)/4! + · · · 

( 
D D

2 
D

3 
) = 1 - 2! + 3f - 4f + · · · w(O) 

1 1 -D 0 = D ( -e )w( ). 

By Taylor's Theorem, formally, 

Thus, 

(1- e-D)w(t) = w(t)- w(t) + w'(t)- w"(t)/2! + · · · 

= w( t) - w( t- I). 

(1- D/2! + D 2/3!- D 3 /4! + · · · )w(t)= D - 1(1-e-D)w(t) 

= D - 1 ( w( t) - w( t- I)) 

=J
1 

w(s)ds+C, 
I-I 

[May 

where D -I can be interpreted as integration and C is the constant of integration. In the case 
that w(t)=xk, 
(1- D /2! + D 2 /3!- D 3 /4! + · · · )Xk 

= tk- ktk- 1/2! + k(k-I)tk- 2 /3! + · · · +0+0+0+ · · · 

= ( k + 1) -t( (k + I)tk- ( k; I )tk-t + ... + ( -1)'-t( k ~I )tk-r+t + ... ) 

tk+!_(t-I)k+! I 

= k+ I = f_/kds. 

Agreement with the previous calculation demands that we take the constant C to be zero. This 
we do for arbitrary w(t). We are in a position to evaluatej(z) by taking w(t)=(l+ty- 1. Since 

v-l(J-e-D)(l+t)'-1= f:-J(l+s)z-lds= (l+t)z-tz' 
z 

we find that f( z) = I/ z, as we would wish. 

EXAMPLE 3. Let the sequence be (Pn)· Since d;P=i!, Lp(w(t))=(I+D+D 2 +··· +Dk 
+ · · · )w(O)=(l- D)- 1w(O). Lety(t)=(l- D)- 1w(t). Then (1- D)y(t)= w(t), i.e., y is a solution 
of the differential equation y'-y = - w. Thus, 

y(t)=e'J<X! e-'w(s)ds+ Ce'. 
I 
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For the particular case w(t)=xk(t), we find that 

( 1 + D + D 2 + · · · + D k + · · · ) w(O) = k! while y(O) = k! + C. 

Again, this indicates that 0 is the appropriate choice for the constant C. Hence, the extension for 
Pn is 

which agrees with (5.4). 
This means of summation might be compared with that of Hughes [17] for summing a 

factorial series of the form ~vnf z(z + l)(z + 2) · · · (z + n), in that integration plays a role similar 
to that of differentiation here. 

The particular form of h(z) suggests that we consider a linear functional defined by 
integrating over the positive real half-line. Thus, given a sequence (an), we might seek out a 
measure p. for which 

fooo tkdp.=!:la1 for k=O, 1,2, .... 

This is the Stieltjes moment problem; it is always solvable, the solution not being unique [25). To 
get an extension functionj(z) withf(n)=an for positive integers n, we choose any p. for which 
(1 + t)'- 1 is integrable, and compute f(z) = f 0(1 + t)'- 1 dp.. The problem is to find a systematic 
way of choosing the "right" measure; how could we be led to the choice of e- 1 dt in the case of 
(Pn)? Going back to the polynomials does not seem to be of much help here, involving as it does 
an inversion of the partial Mellin transform 

p(z)= fo 00

(l+t)'- 1
dllp 

for the measure /lp· 

We conclude this section with one quick observation on the infinite series (5.3) evaluated at 
z = 0. If bn is the sum of the first n terms, it can be shown that, in terms of the given sequence 
(an), 

If Q is the infinite matrix implementing the transformation from (an) to (bn), it is not hard to 
show that Q2 is the identity matrix. Is this indicative of some deeper structure? Can this be 
exploited to justify Euler's consideration of (1/ Pn) and Oog10 Pn) in computing P0? 

6. Closing Remarks. While finding a sum for Wallis' series is hardly of great mathematical 
significance, there is some fascination attached to the problem. Doubtless, Euler's analysis can 
be the starting point for a deeper excursion into mathematical interrelationships in a variety of 
areas-asymptotic expansions, continued fractions, summability, moment problems, factorial 
series, rational function approximations, infinite differential operators. In this, as in Euler's other 
investigations, the breadth and ingenuity justify study in something close to the original form by 
mathematical students. 

It could be pointed out that the difficulty of showing that Wallis' series has a value is a result 
of the field in which we chose to operate. For any prime p, it is clear that Wallis' series 
converges in the p-adic completion of the rationals, and to an integer, too! 

Acknowledgment. I am indebted to Professor Morris Kline for his co=ents on an earlier draft of this article, 
and to the referee for his suggestions on presentation and his indication of [16]. 
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SUMS OF RECIPROCALS OF INI'EGERS MISSING A GIVEN DIGIT 

ROBERT BAILLIE 

The harmonic series ~:'- 11/ n diverges. If we omit those terms for which n has, say, at least 
one "9" in its base 10 representation, then the remaining series converges [6]. In fact, this result 
holds for any base b > 2 and any digit m, 0..;; m..;; b -I. (See [4, Theorem 144, p. 120).) Various 


