IMC 2018, Blagoevgrad, Bulgaria

Day 1, July 24, 2018

Problem 1. Let $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ be two sequences of positive numbers. Show that the following statements are equivalent:
(1) There is a sequence $\left(c_{n}\right)_{n=1}^{\infty}$ of positive numbers such that $\sum_{n=1}^{\infty} \frac{a_{n}}{c_{n}}$ and $\sum_{n=1}^{\infty} \frac{c_{n}}{b_{n}}$ both converge;
(2) $\sum_{n=1}^{\infty} \sqrt{\frac{a_{n}}{b_{n}}}$ converges.
(10 points)

Problem 2. Does there exist a field such that its multiplicative group is isomorphic to its additive group?
(10 points)

Problem 3. Determine all rational numbers a for which the matrix

$$
\left(\begin{array}{cccc}
a & -a & -1 & 0 \\
a & -a & 0 & -1 \\
1 & 0 & a & -a \\
0 & 1 & a & -a
\end{array}\right)
$$

is the square of a matrix with all rational entries.
(10 points)

Problem 4. Find all differentiable functions $f:(0, \infty) \rightarrow \mathbb{R}$ such that

$$
f(b)-f(a)=(b-a) f^{\prime}(\sqrt{a b}) \quad \text { for all } \quad a, b>0
$$

(10 points)

Problem 5. Let p and q be prime numbers with $p<q$. Suppose that in a convex polygon $P_{1} P_{2} \ldots P_{p q}$ all angles are equal and the side lengths are distinct positive integers. Prove that

$$
P_{1} P_{2}+P_{2} P_{3}+\cdots+P_{k} P_{k+1} \geq \frac{k^{3}+k}{2}
$$

holds for every integer k with $1 \leq k \leq p$.

