IMC 2018, Blagoevgrad, Bulgaria

Day 2, July 25, 2018

Problem 6. Let k be a positive integer. Find the smallest positive integer n for which there exist k nonzero vectors v_{1}, \ldots, v_{k} in \mathbb{R}^{n} such that for every pair i, j of indices with $|i-j|>1$ the vectors v_{i} and v_{j} are orthogonal.

Problem 7. Let $\left(a_{n}\right)_{n=0}^{\infty}$ be a sequence of real numbers such that $a_{0}=0$ and

$$
a_{n+1}^{3}=a_{n}^{2}-8 \quad \text { for } \quad n=0,1,2, \ldots
$$

Prove that the following series is convergent:

$$
\sum_{n=0}^{\infty}\left|a_{n+1}-a_{n}\right|
$$

(10 points)
Problem 8. Let $\Omega=\left\{(x, y, z) \in \mathbb{Z}^{3}: y+1 \geq x \geq y \geq z \geq 0\right\}$. A frog moves along the points of Ω by jumps of length 1 . For every positive integer n, determine the number of paths the frog can take to reach (n, n, n) starting from $(0,0,0)$ in exactly $3 n$ jumps.
(10 points)
Problem 9. Determine all pairs $P(x), Q(x)$ of complex polynomials with leading coefficient 1 such that $P(x)$ divides $Q(x)^{2}+1$ and $Q(x)$ divides $P(x)^{2}+1$.

Problem 10. For $R>1$ let $\mathcal{D}_{R}=\left\{(a, b) \in \mathbb{Z}^{2}: 0<a^{2}+b^{2}<R\right\}$. Compute

$$
\lim _{R \rightarrow \infty} \sum_{(a, b) \in \mathcal{D}_{R}} \frac{(-1)^{a+b}}{a^{2}+b^{2}}
$$

