IMC 2018, Blagoevgrad, Bulgaria

Day 2, July 25, 2018

Problem 6. Let k be a positive integer. Find the smallest positive integer n for which there exist k nonzero vectors v_1, \ldots, v_k in \mathbb{R}^n such that for every pair i, j of indices with |i - j| > 1 the vectors v_i and v_j are orthogonal.

(10 points)

Problem 7. Let $(a_n)_{n=0}^{\infty}$ be a sequence of real numbers such that $a_0 = 0$ and

$$a_{n+1}^3 = a_n^2 - 8$$
 for $n = 0, 1, 2, \dots$

Prove that the following series is convergent:

$$\sum_{n=0}^{\infty} |a_{n+1} - a_n|$$

(10 points)

Problem 8. Let $\Omega = \{(x, y, z) \in \mathbb{Z}^3 : y + 1 \ge x \ge y \ge z \ge 0\}$. A frog moves along the points of Ω by jumps of length 1. For every positive integer n, determine the number of paths the frog can take to reach (n, n, n) starting from (0, 0, 0) in exactly 3n jumps.

(10 points)

Problem 9. Determine all pairs P(x), Q(x) of complex polynomials with leading coefficient 1 such that P(x) divides $Q(x)^2 + 1$ and Q(x) divides $P(x)^2 + 1$.

(10 points)

Problem 10. For R > 1 let $\mathcal{D}_R = \{(a, b) \in \mathbb{Z}^2 : 0 < a^2 + b^2 < R\}$. Compute

$$\lim_{R \to \infty} \sum_{(a,b) \in \mathcal{D}_R} \frac{(-1)^{a+b}}{a^2 + b^2}.$$

(10 points)