IMC 2019, Blagoevgrad, Bulgaria

Day 2, July 31, 2019

Problem 6. Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be continuous functions such that g is differentiable. Assume that $\left(f(0)-g^{\prime}(0)\right)\left(g^{\prime}(1)-f(1)\right)>0$. Show that there exists a point $c \in(0,1)$ such that $f(c)=g^{\prime}(c)$.

Problem 7. Let $C=\{4,6,8,9,10, \ldots\}$ be the set of composite positive integers. For each $n \in C$ let a_{n} be the smallest positive integer k such that $k!$ is divisible by n. Determine whether the following series converges:

$$
\sum_{n \in C}\left(\frac{a_{n}}{n}\right)^{n}
$$

(10 points)
Problem 8. Let x_{1}, \ldots, x_{n} be real numbers. For any set $I \subset\{1,2, \ldots, n\}$ let $s(I)=\sum_{i \in I} x_{i}$. Assume that the function $I \mapsto s(I)$ takes on at least 1.8^{n} values where I runs over all 2^{n} subsets of $\{1,2, \ldots, n\}$. Prove that the number of sets $I \subset\{1,2, \ldots, n\}$ for which $s(I)=2019$ does not exceed 1.7^{n}.
(10 points)
Problem 9. Determine all positive integers n for which there exist $n \times n$ real invertible matrices A and B that satisfy $A B-B A=B^{2} A$.
(10 points)
Problem 10. 2019 points are chosen at random, independently, and distributed uniformly in the unit disc $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$. Let C be the convex hull of the chosen points. Which probability is larger: that C is a polygon with three vertices, or a polygon with four vertices?
(10 points)

