
Chapter 1

Definitions and Examples

We define Boolean algebras and give some elementary examples.

1. Definition

A Boolean algebra consists of a set B, two binary operations ∧ and ∨ (called
meet and join respectively), a unary operation ·′ and two constants 0 and 1.
These obey the following laws:

1. x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z;
2. x ∧ y = y ∧ x and x ∨ y = y ∨ x;
3. x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x
4. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z); and
5. x ∧ x′ = 0 and x ∨ x′ = 1.

2. Examples

Here are some elementary examples; more complicated structures will appear
later.

I1. P(N) is a Boolean algebra with intersection as meet, union as join, a′ = N \ a,
0 = ∅ and 1 = N.

I2. Let X be any topological space and let CO(X) be the family of sets that are
simultaneously closed and open (contracted to clopen). The family CO(X) is a
Boolean algebra with respect to the same operations as P(N).

I3. Let X be a topological space and let RO(X) be the family of regular open sets,
i.e., the sets U that satisfy U = int cl U . For U, V ∈ RO(X) define U ∧ V = U ∩ V ,
U ∨ V = int cl(U ∪ V ), U ′ = X \ cl U , 0 = ∅ and 1 = X. This makes RO(X) into a
Boolean algebra.

I4. Let X be any set; the following two families of subsets of X are Boolean algebras.
a. FC(X) = {A ⊆ X : A is finite or X \A is finite}; and

b.CC(X) = {A ⊆ X : A is countable or X \A is countable}.
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2 Definitions and Examples [ Ch. 1, § 3

3. Elementary Properties

One can derive many identities from the laws given above. For example, from
Law (3) it follows readily that x∧1 = x∧(x∨x′) = x and x∨0 = x∨(x∧x′) = x;
from this we deduce that x ∧ x = x ∧ (x ∨ 0) = x and, likewise, x ∨ x = x.

I1. a. If x ∧ y = 0 and x ∨ y = 1 then y = x′.

b.De Morgan’s laws hold: (x ∧ y)′ = x′ ∨ y′ and (x ∨ y)′ = x′ ∧ y′.

A Partial Order

A Boolean algebra carries a natural partial order, indiscriminately denoted 6,
defined by x 6 y if x = x ∧ y or, equivalently, x ∨ y = y.

I2. Let B be a Boolean algebra.
a. For all x, y ∈ B we have x ∧ y = x iff x ∨ y = y.

b. The relation 6 is a partial order on B.

c. For all x, y ∈ B we have x ∧ y = inf{x, y} and x ∨ y = sup{x, y}.

Atoms

An atom in a Boolean algebra is a non-zero element x with the property that
there is no element y with x > y > 0.

I3. a. The atoms in CO(X) are the connected clopen sets.

b. If X is Hausdorff then the atoms in RO(X) correspond to the isolated points
of the space X.

c.What are the atoms of L(H)?



Chapter 2

Stone’s representation theorem

This chapter is devoted to the central result of the course: Stone’s repre-
sentation theorem foor Boolean algebras.

1. Clopen sets

Consider a compact and zero-dimensional Hausdorff space X. We have seen
that CO(X) is a Boolean algebra; what is more remarkable is that X can be
recovered from CO(X). For each x ∈ X put ux = {C ∈ CO(X) : x ∈ C}.

I1. The family ux is an ultrafilter on CO(X), i.e.,
a. ∅ /∈ ux;

b. if C, D ∈ ux then C ∩D ∈ ux;

c. if C ∈ ux and C ⊆ D then D ∈ ux; and

d. for every C either C ∈ ux or X \ C ∈ ux.

I2. If u is an ultrafilter on CO(X) then u = ux for some x.

I3. The atoms of CO(X) correspond to the isolated points of the space X.

Thus X can be seen as the set of ultrafilters on CO(X). By the definition
of zero-dimensionality the family CO(X) is a base for the topology of X.
Therefore X and its topology are completely determined by CO(X).

2. Stone’s Representation Theorem

Stone’s Representation Theorem says that every Boolean algebra determines
a compact zero-dimensional Hausdorff space.

2.1. Theorem. To every Boolean algebra B one can associate a compact
zero-dimensional space X such that B is isomorphic to the Boolean algebra
CO(X) of clopen subsets of X.

The space X is denoted S(B) and is commonly called the Stone space
of B. What we have established already is that this association is surjective:
every compact zero-dimensional space X is homeomorphic to the Stone space
of its own clopen algebra CO(X).
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4 Stone’s representation theorem [ Ch. 2, § 2

Ideals and filters

The Stone space is created using ideals and filters on the Boolean algebra.
An ideal in a Boolean algebra B is a subset I that satisfies
1. 1 /∈ I;
2. if x, y ∈ I then x ∨ y ∈ I; and
3. if x ∈ I and y ∈ B then x ∧ y ∈ I.

The first condition is there to prevent B itself from being an ideal; condi-
tion (3) can be replaced by: if x ∈ I and y 6 x then y ∈ I.

A filter on a Boolean algebra is dual to an ideal, it is a subset F that
satisfies
1. 0 /∈ F ;
2. if x, y ∈ F then x ∧ y ∈ F ; and
3. if x ∈ F and y ∈ B then x ∨ y ∈ F .

As above we can replace (3) by: if x ∈ F and y > x then y ∈ F .
An ultrafilter is a maximal filter, i.e., F is an ultrafilter if it is a filter and

every filter G that contains F is equal to F . By Zorn’s Lemma every filter is
contained in an ultrafilter. The dual to an ultrafilter is a maximal ideal. A
consequence of Exercise 1.b is that an ideal I is maximal iff it is prime, i.e.,
iff it satisfies: if a ∧ b ∈ I then a ∈ I or b ∈ I.

I1. a. If F is a filter then F ′ = {x′ : x ∈ F} is an ideal and vice versa.

b. The following are equivalent for a filter F :
1) F is an ultrafilter;
2) if a is such that a ∧ b > 0 for all b ∈ F then a ∈ F ;
3) if a ∨ b ∈ F then a ∈ F or b ∈ F ; and
4) for all a ∈ B either a ∈ F or a′ ∈ F .

c. A filter F is an ultrafilter iff F ∪ F ′ = B.

I2. Describe the ultrafilters on FC(X).

We have seen that the points of a compact zero-dimensional space corre-
spond to the ultrafilters on the Boolean algebra CO(X). This provides the
main inspiration for the definition of S(B).

2.2. Definition. The Stone space S(B) of the Boolean algebra B has the
set of ultrafilters on B as its underlying set. For every a ∈ B we put

a = {u ∈ S(B) : a ∈ u}
and we use {a : a ∈ B} as a base for a topology on S(B).

I3. Consider the map a 7→ a.
a.0 = ∅ and 1 = S(B);

b. a 6= 0 iff a 6= ∅;

c. a ∧ b = a ∩ b;
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d. a ∨ b = a ∪ b; and

e. a′ = S(B) \ a.

With this topology S(B) becomes a compact Hausdorff space whose
clopen set are precisely the sets a. Once this is established zero-dimensionality
of S(B) is automatic: the given base consists of clopen sets.

I4. Let {a : a ∈ A} be a family of clopen sets, such that no finite subfamily cov-
ers S(B).

a. I =
{
x : (∃a1, . . . , an ∈ A)(x 6

∨n
i=1 ai)

}
is an ideal in B;

b. if u is any ultrafilter that extends the filter I ′ then u /∈
⋃
{a : a ∈ A};

c. S(B) is compact.

I5. Let u and v be distinct ultrafilters on B.
a. There is a ∈ u \ v;

b. u ∈ a and v ∈ a′;

c. S(B) is Hausdorff.

I6. Each a is clopen in S(B) and, conversely, if C is a clopen subset of S(B) then
C = a for some a. Hint: C is compact, take a finite subcover from the family of
basic open sets that are contained in C.

I7. Consider the Boolean algebra FC(X).
a. Is there a topology on X such that CO(X) = FC(X)?

b.Describe the Stone space of FC(X).



Chapter 3

Duality

Stone’s representation theorem enables one to translate any notion from
topology into Boolean algebraic terms and, conversely, any Boolean algebraic
notion can be reformulated into something topological. This general conver-
sion process is known as Stone Duality.

1. Continuous maps and homomorphisms

The first order of business is to see what happens to continuous maps and
homomorphisms.

I1. Let f : X → Y be a continuous map between compact Hausdorff spaces.
a. The map CO(f) : CO(Y ) → CO(X), defined by CO(f)(C) = f←[C], is a

homomorphism of Boolean algebras.

b. If f is onto then CO(f) is one-to-one.

c. If f is one-to-one then CO(f) is onto.

I2. Let ϕ : A → B be a homomorphism of Boolean algebras. Define S(ϕ) : S(B) →
S(A) by S(ϕ)(x) = {a ∈ A : ϕ(a) ∈ x}.

a. S(ϕ) is a well-defined.

b. S(ϕ) is continuous.

c. If ϕ is onto then S(ϕ) is one-to-one.

d. If ϕ is one-to-one then S(ϕ) is onto.

I3. a. If O is an open subset of X then {C ∈ CO(X) : C ⊆ O} is an ideal in CO(X).

b. If I is an ideal in B then
⋃
{a : a ∈ I} is an open subset of S(B).

I4. a. If F is an closed subset of X then {C ∈ CO(X) : F ⊆ C} is a filter on CO(X).

b. If F is a filter on B then
⋂
{a : a ∈ F} is an closed subset of S(B).

I5. Let Y be a closed subspace of the compact zero-dimensional Hausdorff space X.
If f : Y → X is the embedding then the dual map CO(f) is defined by C 7→ C ∩ Y .
The kernel of CO(f) is the ideal I = {C : C ∩ F = ∅}. The algebra CO(Y ) is
isomorphic to the quotient CO(X)/I.
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Chapter 4

Specific examples

Although in general it is hard to get a concrete description of the Stone
space of a Boolean algebra there are some cases where we can really see what
it looks like.

1. Interval algebras

Linear orders offer a rich supply of Boolean algebras.

I1. Let BI be the Boolean subalgebra of P(R) generated by the family
{
(−∞, r] :

r ∈ R
}
, the so-called interval algebra of R.

a. The families
{
(−∞, r] : r ∈ R

}
and

{
(r,∞) : r ∈ R

}
determine ultrafilters

on BI . Denote them by u−∞ and u∞ respectively.

b. For every r the families
{
(q, r] : q < r

}
and

{
(r, s] : s > r

}
determine ultrafilters

on BI . Denote them by u−r and u+
r respectively.

c. Every ultrafilter on BI is of one of the aforementioned forms. Hint: If u 6=
u−∞, u∞ consider r = inf{s : (−∞, s] ∈ u}. Then also r = sup{q : (q,∞) ∈ u}.
If (−∞, r] ∈ u then u = u−r ; If (r,∞) ∈ u then u = u+

r .

d. The topology of S(BI) is the topology induced by the linear order ≺ that is
defined by u−∞ ≺ u+

q ≺ u−r ≺ u+
r ≺ u−s ≺ u∞ whenever q < r < s.

Hint: (−∞, r] = [u−∞, u−r ] and (r,∞), = [u+
r , u∞].

e. The subspaces {u−r : r ∈ R} and {u+
r : r ∈ R} are homeomorphic to the

well-known Sorgenfrey line.

The space S(BI) is known as Alexandroff’s double arrow space. We shall
use S = {u+

r : r ∈ R} as our incarnation of the Sorgenfrey line, or rather the
real line with the topology generated by the intervals of the form (a, b].

One can use any linear order in this construction; one gets the class of
Boolean algebras known as interval algebras.

2. P(N) and some of its subfamilies

The set N of natural numbers and its power set P(N) are basic in Set-Theoretic
Topology. As explained in Appendix B we take the set-theoretical definition
of N as the minimal inductive set. This implies that our notation becomes
very economical: every element n is a subset of N and arithmetic has been
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8 Specific examples [ Ch. 4, § 2

set up in such a way that n = {i ∈ N : i < n} for every n. Thus we can take
initial segments of sequences simply by taking restrictions: if x = 〈xn〉n is a
sequence then x � 3 = 〈x0, x1, x2〉.

As we shall see many constructions employ sets or families of sets of
natural numbers. Using various incarnations of N one can construct many
useful, and sometimes unexpected, families of subsets of N. For example, it
would seem that a chain of subsets of N must be countable because N itself
is countable: distributing N over uncountably many difference sets seems
impossible. The possible misconception here is that the difference sets must
be neatly arranged in some sort of disjoint family and because disjoint families
of subsets of N are countable so is our chain. This misconception can be
dispelled by identifying N with the countable set Q of rational numbers, for
we can then exhibit a chain of subsets of N that is order-isomorphic to R: put
Qx = {q ∈ Q : q 6 x} for every x.

A very useful concept is that of almost disjointness; we say that two
subsets of N are almost disjoint if their intersection is finite. The difference
between disjointness and almost disjointness is perhaps best illustrated by
considering the set <N2 of finite sequences of zeros and ones. Thus, s ∈ <N2
means there is an n ∈ N such that s : n → 2. If we let n2 denote the set
of functions from n to 2 then evidently <N2 =

⋃
n∈N

n2. This makes it clear
that <N2 is countable — each n2 is finite. The set <N2 is naturally ordered
by extension of functions: s 6 t means dom s ⊆ dom t and s(i) = t(i) for
all i ∈ dom s. As such it looks like a tree: if s ∈ <N2 with dom s = n and
t 6 s then t = s �m for some m 6 n. A branch through this tree is a sequence
〈sn〉n in <N2 such that dom sn = n and sn 6 sn+1 for all n. Such a branch
determines an element of N2: put x =

⋃
n sn. Conversely any element x of N2

determines the branch 〈x � n〉n.
For x ∈ ω2 put Bx = {x �n : n ∈ ω}. If x 6= y then Bx∩By is finite: let n

be minimal with x(n) 6= y(n), then |Bx ∩By| = n. We see that {Bx : x ∈ N2}
is an almost disjoint family that is just as big as P(N) is.

The exercises contain some more large and complicated families of subsets
of N; each of them shall, at one time or another, be put to good use.

I1 (Sierpiński [11]). For every irrational number x put Sx =
{

1
n
bnxc : n ∈ N

}
.

Then {Sx : x ∈ P} is an almost disjoint family (in fact if x < y then |Sx∩Sy| < 1
y−x

).

I2 (Hausdorff [3]). Put C =
{
〈s, n〉 : n ∈ N, s ⊆ P(n)

}
and for x ∈ P(N) put

Ix =
{
〈s, n〉 : x ∩ n ∈ s

}
.

The set C is countable and the family {Ix : x ∈ P(N)} is independent, i.e., if x1, . . . ,
xm, y1, . . . , yn are all distinct then

⋂m
i=1 Ixi \

⋃n
j=1 Iyj is infinite.

I3 (Kunen [5]). Put D =
{
〈f, n〉 : n ∈ N, f ∈ P(n)P(n)

}
and for x, y ∈ P(N) put

Ix,y =
{
〈p, n〉 : p(x ∩ n) = y ∩ n

}
.
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The set D is countable and {Ix,y : x, y ∈ P(N)} is an independent matrix, i.e.,
a. for every x the family {Ix,y : y ∈ P(N)} is almost disjoint; and

b. if F is a finite subset of P(N) and f : F → P(N) is a function then the intersec-
tion

⋂
x∈F Ix,f(x) is infinite.

I4 (Kunen [6], Van Mill [13]). Put E =
{
〈p, n〉 : n ∈ N, p ∈ P(n)P(P(n))

}
and for

x, y ∈ P(N) and m ∈ N put

Ix,y,m =
{
〈p, n〉 : y ∩ n ∈ p(x ∩ n) and

∣∣p(x ∩ n)
∣∣ 6 m

}
.

The set E is countable and {Ix,y,m : x, y ∈ P(N), m ∈ N} is an independent linked
family, i.e.,

a. for fixed x and y and for every m we have Ix,y,m ⊆ Ix,y,m+1;

b. for fixed x and m the family {Ix,y,m : y ∈ P(N)} is precisely m-linked, i.e.,
whenever F ⊆ P(N) has m (or fewer) elements then

⋂
y∈F Ix,y,m is infinite but

if it has m + 1 (or more) elements then
⋂

y∈F Ix,y,m is finite; and

c. whenever we take a finite subset F of P(N) and for each x ∈ F a natural
number mx and a subset σx of P(N) with |σx| = mx the intersection⋂

x∈F

⋂
y∈σx

Ix,y,mx (∗)

is infinite.

d.Define π : E → N by π(p, n) = n; the image of (∗) under π is a cofinite subset
of N.

3. More Boolean algebras

Using the families of subsets of N that we have seen above we can define more
Boolean algebras and calculate their Stone spaces.

I1. Let Bad be the Boolean subalgebra of P(<N2) generated by the almost disjoint
family defined in Section 2.

a. Every finite set belongs to Bad.

b. For every s ∈ <N2 the set us = {b : s ∈ b} is an ultrafilter on Bad.

c. For every x ∈ N2 the family ux = {b : Bx \ b is finite} is an ultrafilter on Bad.

d. The family {<N2 \Bx : x ∈ N2} determines an ultrafilter u∞ on Bad.

e. Every ultrafilter on Bad is of the form us, ux or u∞. Hint: If {s} ∈ u for some s
then u = us, otherwise if Bx ∈ u for some x then u = ux, otherwise u = u∞.

f. Let X = <N2 ∪ N2 ∪ {∞}, topologized by making every point of <N2 isolated;
using the sets {x} ∪ {x � n : n > m} as basic neighbourhoods at x ∈ ω2; and by
using the sets X \(Bx∪{x}) as a local subbase at ∞. Then X is homeomorphic
to S(Bad).

g. The subspace X \ {∞} of X is not normal. Hint: Consider the closed sets
P = {x ∈ N2 : x←(0) and x←(1) are infinite} and Q = N2 \ P .

The subspace <N2 ∪ N2 of S(Bad) is known as the Cantor tree.



10 Specific examples [ Ch. 4, § 3

I2. Let I be an independent family in P(N) indexed by P(N) itself, as in Exercise 2
of Section 2, and let Bif be the Boolean algebra generated by I. For x ∈ P(N) put
Ix,1 = Ix and Ix,0 = N \ Ix.

a. Every function t : P(N) → 2 determines an ultrafilter ut on Bif ; it has {Ix,t(x) :
x ∈ P(N)} as a subbase.definition of

subbase? b. If u is an ultrafilter on Bif then u = ut, where t(x) = 0 if Ix /∈ u and t(x) = 1
if Ix ∈ u.

c. S(Bif) is homeomorphic to the product P(N)2. Hint: Ix,1 = {ut : t(x) = 1} and

Ix,0 = {ut : t(x) = 0}.
d. For n ∈ N define tn by tn(x) = 0 if n /∈ Ix and tn(x) = 1 if n ∈ Ix; the set

{tn : n ∈ N} is dense in P(N)2.

I3. Let B′if be the Boolean algebra generated by Bif and the finite subsets of N;
describe S(Bif).



Chapter 5

M and P(N)

We discuss two important algebras: the measure algebra and the power
set of N.

1. The Measure algebra

The family B of Borel subsets of [0, 1] is a Boolean algebra and the family N

of sets of measure zero is an ideal in B. The quotient algebra M = B/N

is known as the measure algebra. We let q : B → M denote the quotient
homomorphism.

I1. a. If A is a countable subset of B then
∨

q[A] = q[
⋃

A].

b. Every set of pairwse disjoint elements of M is countable.

c. The Boolean algebra M is complete. Hint: If A ⊆ M let B be a maximal
pairwise disjoint subset of {b : (∃a ∈ A)(b 6 a)}; then

∨
B =

∨
A.

d. Every ultrafilter on M has elements of arbitrarily small measure.

e. For every countable set A of ultrafilters on M there is a nonzero element a of
M such that a /∈ u for all u ∈ A.

f. The Stone space S(M) of M is extremally disconnected, is not separable and
has no uncountable disjoint family of open sets.

2. The algebra P(N)

The Stone space of P(N) is usually denoted βN.
The atoms of P(N) are the singleton sets {n}. These give us countably

many isolated points in βN; we generally identify n with the isolated point
of βN determined by the atom {n}. Thus we treat N as a subset of βN.

The other points are not easy to describe; ultrafilters on N are in a certain
sense indescribable: if u ∈ βN \ N then {rx : x ∈ u} is a nonmeasurable
subset of R, where rx =

∑
n∈x 2−n. This means that we cannot hope to

describe βN like we did S(Bad) or S(Bif). Nevertheless, as we shall see there
is a rich variety of points in βN \N; we shall merely have to work a lot harder
to describe them. For now we content ourselves with deducing some global
properties of βN and βN \N that require little beyond the knowledge that we
acquired thus far.

I1. The set N is dense in βN. Hint: a ∩ N = a.
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I2. If a ⊆ N then cl a = a. Hint: cl a ⊆ a, a ∩ a′ = ∅ and cl a ∪ cl a′ = cl N = βN.

I3. The space βN is extremally disconnected, i.e., if U is open then cl U is open or,
equivalently, if U and V are open and disjoint then cl U ∩ cl V = ∅.
Hint: cl U = cl(U ∩ N) = U ∩ N.

We denote the subspace βN \ N by N∗ and generally we put a∗ = a \ N.
By Exercise 5 every clopen subset of N∗ is of the form a∗ and N∗ is the Stone
space of the algebra P(N)/fin, where fin denotes the ideal of finite subsets
of N.

I4. Let a, b ∈ P(N).
a. a∗ and b∗ are disjoint iff a and b are almost disjoint.
b. a∗ ⊆ b∗ iff a \ b is finite.

I5. The dual of the embedding of Bad into P(N) is a continuous map f of βN
onto S(Bad).

a. If s ∈ <N2 then f(s) = s.
b. If u ∈ B∗

x then f(u) = x.
c. If u ∈ N∗ \

⋃
x B∗

x then f(u) = ∞.

d. The family {B∗
x : x ∈ N2} is a pairwise disjoint family of open sets in N∗.

e. The space N∗ is not extremally disconnected. Hint: Refer to Exercise 1.g and
let U =

⋃
x∈P B∗

x and V =
⋃

x∈Q B∗
x; then cl U ∩ cl V 6= ∅.

I6. a. There is a continuous map from βN onto P(N)2. Hint: Consider the embedding
of Bif into P(N).

b. Investigate the natural continuous map from βN onto S(B′if).

I7. For n ∈ N define sn ∈ P(N)2 by sn(x) = 0 if n /∈ x and sn(x) = 1 if n ∈ x. Then

cl{sn : n ∈ N} is homeomorphic to βN. Deduce that βN and P(N)2 have the same
number of points.

To indicate that a relation holds except for finitely many exceptions we
adorn it with a star. Thus, a ⊆∗ b means that a ⊆ b with possibly finitely
many points of a not belonging to b, in other words that a \ b is finite; we
have seen that this is equivalent to a∗ ⊆ b∗ (hence the star). Extending this,
a ⊂∗ b means a ⊆∗ b but b \ a is infinite, and a ∩ b =∗ ∅ means that a and b
are almost disjoint.

I8. Let 〈an〉n be a sequence in P(N) such that an ⊂∗ an+1 for all n. There is a set
a ∈ P(N) such that an ⊂∗ a for all n and a ⊂∗ N. Hint: Note that an \

⋃
m<n am is

always infinite; pick kn in this difference and let a = N \ {kn : n ∈ N}.
I9. Let 〈an〉n and 〈bn〉n be two sequences in P(N) such that an ⊂∗ an+1 ⊂∗ bn+1 ⊂∗

bn for all n. There is a set c ∈ P(N) such that an ⊂∗ c ⊂∗ bn for all n.
Hint: Consider c =

⋃
n∈N(an ∩

⋂
m6n bm).

I10. a. If G is a nonempty Gδ-subset of N∗ then int G 6= ∅.
b. If U is an open Fσ-subset of N∗ then cl U is not open (unless U = N∗).
c. If U and V are disjoint open Fσ-subsets of N∗ then cl U ∩ cl V = ∅.



Chapter 6

Completeness and completions

We have already encountered complete Boolean algebras. Here we prop-
erly define completeness and study the notion in more detail.

1. Completeness

A Boolean algebra is complete if every subset of it has a supremum. If B is
a Boolean algebra and A ⊆ B then we write

∨
A for the supremum of A and∧

A for its infimum.

I1. The following Boolean algebras are complete.
a. P(N), the power set of N;

b. M, the measure algebra;

c. RO(X), the regular-open algebra of a topological space X.

I2. The quotient-algebra P(N)/fin is not complete.

The dual of completeness is extremal disconnectedness. A topological
space is extremally disconnected if the closure of every open set is open.

I3. A space is extremally disconnected iff disjoint open sets have disjoint closures.

I4. If B is a complete Boolean algebra then S(B) is extremally disconnected. Hint:

If U is open then cl U = a, where a =
∧
{b : b ⊆ U}.

I5. If X is an extremally disconnected Hausdorff space then CO(X) is complete.
Hint: Show that CO(X) = RO(X).

2. Completion

Let B be any Boolean algebra and put B̄ = RO(S(B)). We have seen that
B̄ is complete; it is also clear that B is a subalgebra of B̄.

I1. The algebra B is dense in B̄, i.e., if a ∈ B̄ and a > 0 then there is b ∈ B such
that a > b > 0.

We call B̄ the completion of B, because of the following result.

I2. If C is a complete Boolean algebra that contains B as a dense subalgebra then
there is an isomorphism ϕ : C → B̄ such that ϕ(a) = a for a ∈ B.

13
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3. The absolute

The dual notion of completion is that of the absolute of a space. The absolute
can be defined for arbitrary compact Hausdorff spaces.

Let X be compact Hausdorff and denote E(X) = S(RO(X)). Define
πX : E(X) → X by {

πX(u)
}

=
⋂
{cl U : U ∈ u}.

The space E(X) — or better the pair
(
E(X), πX

)
— is called the absolute or

Gleason space of X.

I1. a. The map πX is well-defined.

b. The map πX is continuous and onto.

c. The map πX is irreducible, i.e., if F ⊆ X is closed and πX [F ] = X then
F = E(X).

The absolute has a certain universality property: it is the largest irre-
ducible preimage of the space.

I2. Let X and Y be compact Hausdorff spaces and let f : Y → X be continuous,
irreducible and onto. There is a map g : E(X) → Y such that f ◦ g = πX . Hint:
The map U 7→ f←[U ] is an isomorphism between RO(X) and RO(Y ); define g by{
g(u)

}
=

⋂{
cl f←[U ] : U ∈ u

}
.

The same result can be proved for maps that are not necessarily irre-
ducible.

I3. Let X and Y be compact Hausdorff spaces and let f : Y → X be continuous
and onto. There is a map g : E(X) → Y such that f ◦ g = πX . Hint: Apply Zorn’s
Lemma to find a closed subset Z of Y such that f � Z is irreducible.

I4. Let f : X → Y be a continuous, irreducible and onto map between compact
Hausdorff spaces, where Y is extremally disconnected. Then f is a homeomorphism.
Hint: Y = E(Y ), apply Exercise 2.

I5. If f : X → X is a homeomorphism of the compact Hausdorff space X then
E(f)(u) = {f [U ] : U ∈ u} defines a homeomorphism of E(X) such that f ◦ πX =
πX ◦ E(f).

We now describe a strange subspace of E(ω2). Fix u0 ∈ E(ω2) such that
πω2(u0) is the point with all coordinates zero. Note that we can use addition
modulo 2 to make for every x ∈ ω2 the point ux = {U + x : U ∈ u0}. We let
A = {ux : x ∈ ω2}.

I6. a. The space A is dense in E(ω2).

b. The space A is separable.

c. The space A is homogeneous.
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d. If u0 has the property that u0 /∈ cl D, whenever D is nowhere dense and u0 /∈ D,
then every nowhere dense set is closed in A. (Later we shall construct such a
point in E(ω2).

4. Extremally disconnected spaces

We derive some more properties of extremally disconnected spaces.

I1. a. Every dense subspace of an extremally disconnected space is extremally dis-
connected.

b. Every open subspace an extremally disconnected space is extremally discon-
nected.

c. Closed subspaces of extremally disconnected spaces need not be extremally
disconnected.

d. Closures of open subspaces of extremally disconnected spaces are extremally
disconnected.

I2. Let X be an extremally disconnected compact Hausdorff space. If D is open
or dense in X then every continuous function f : D → [0, 1] can be extended to a

continuous function f̃ : X → [0, 1]. Hint: If D is dense define f̃(x) = inf
{
r : x ∈

cl f←[0, r]
}
. If D is open then D is dense in cl D, which is extremally disconnected;

then apply the Tietze-Urysohn theorem.



Chapter 7

Uniqueness results

In this chapter we show how two spaces are characterized by a short
list of topological properties. These spaces are the Cantor set and the space
N∗ = βN \ N.

1. The Cantor set

It is well-known that Cantor’s middle-third set is homeomorphic to the prod-
uct space ω2.

I1. Prove that each of the following formulas defines a metric on ω2 that generates
its product topology.

a. d1(x, y) =
∑∞

i=0 2−i|xi − yi|;
b. d2(x, y) = 2−∆(x,y) if x 6= y and d2(x, x) = 0. Here ∆(x, y) = min{i :

xi 6= yi}. This metric satisfies the strong triangle inequality : d2(x, z) 6
max

{
d2(x, y), d2(y, z)

}
.

I2. Define f : ω2 → [0, 1] by f(x) = 2
∑∞

i=0
xi

3i+1 .
a. Verify that f(x) ∈ [0, 1] for all x.

b. Prove that f [ω2] is Cantor’s middle-third set.

c. The map f is one-to-one and continuous.

d. The map f is a homeomorphism.

In 1910 L. E. J. Brouwer gave the following characterization of the Cantor
set.

1.1. Theorem. If X is a compact and metrizable zero-dimensional space with-
out isolated points then X is homeomorphic to the Cantor set.

We shall prove this theorem via the Boolean algebra of clopen sets of X.
We still have to translate metrizability into Boolean algebraic terms.

I3. A compact zero-dimensional space is metrizable iff its Boolean algebra of clopen
sets is countable.

a. If CO(X) is countable then X is metrizable. Hint: Enumerate CO(X) as
{Cn : n ∈ ω} and define f : X → ω2 by f(x)i = 1 iff x ∈ Ci. Then f is an
embedding.

b. If X is metrizable then CO(X) is countable. Hint: X has a countable base and
every C ∈ CO(X) is a finite union of basic open sets.

Now we can formulate the dual of Theorem 1.1.

16
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1.2. Theorem. Any two countable Boolean algebras without atoms are iso-
morphic.

I4. Let A be a finite Boolean algebra.
a. Below every non-zero element of A there is an atom. Hint: If a > 0 take an

ultrafilter u with a ∈ u; consider
∧

u.

b. If a > 0 then a =
∨
{b : b 6 a and b is an atom}.

We denote the set of atoms of a Boolean algebra B by At(B).

I5. Prove Theorem 1.2. Let A and B be two countable Boolean algebras without
atoms and enumerate them as {an : n ∈ ω} and {bn : n ∈ ω} respectively. Recur-
sively define isomorphisms ϕn : An → Bn, where An and Bn are finite subalgebras
of A and B respectively and such that {ai : i < n} ⊆ An and {bi : i < n} ⊆ Bn as
well as ϕn ⊆ ϕn+1 for all n.

a. Put A0 = {0,1} = B0 and define ϕ(0) = 0 and ϕ(1) = 1.

b. At stage n divide At(An) into three sets L = {a : a 6 an}, D = {a : a∧an = 0}
and S = At(A) \ (L ∪ D). The value b = ϕn+1(an) should satisfy: (a ∈ L) →(
ϕn(a) 6 b), (a ∈ D) →

(
ϕn(a) ∧ b = 0) and (a ∈ S) →

(
(ϕn(an) ∧ b > 0) ∧

(ϕn(an) ∧ b′ > 0)
)
.

c. For every a ∈ S there is ba ∈ B such that 0 < ba < ϕn(a).

d. Let A+
n be the Boolean algebra generated by An and an. Define ϕ+

n : A′
n → B

by putting ϕ+
n (a) = ϕn(a) for a ∈ L ∪ D as well as ϕ+

n (a ∧ an) = ba and
ϕ+

n (a∧a′n) = b∧b′a for a ∈ M . This determines a one-to-one homomorphism ϕ+
n

on the whole of A+
n that extends ϕn.

e. In a similar fashion add bn to ϕ+
n [A+

n ] to obtain Bn+1; find a ∈ A so that
ϕn+1 : a 7→ bn will induce an isomorphism between the algebra An+1, generated
by A+

n and a, and the algebra Bn+1.

f. The map
⋃

n ϕn : A → B is an isomorphism.

I6. Every countable Boolean algebra is embeddable into CO(ω2). Hint: Use ‘half’
of the previous proof.

2. The space N∗

The space N∗ admits a similar characterization, provided one assumes the
Continuum Hypothesis (abbreviated CH). This characterization was proved
by Parovichenko in 1963.

2.1. Theorem (CH). Let X be a compact zero-dimensional space of weight c,
without isolated points, in which nonempty Gδ-sets have nonempty interior
and in which disjoint open Fσ-sets have disjoint closures. Then X is homeo-
morphic to N∗.

I1. The space N∗ has all the properties mentioned in Theorem 2.1.
a. Every nonempty Gδ subset in N∗ has infinite interior. Hint: Use Exercise 8.
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b. Let U be an open Fσ-set in N∗; there is a countable family of clopen sets whose
union is U .

c. If U and V are disjoint open Fσ-sets in N∗ then there is a clopen set C such
that U ⊆ C and C ∩ V = ∅. Hint: Use Exercise 9.

d. The space N∗ has weight c. Hint: The natural base has cardinality c. By
Exercise 5.d every base must have cardinality c.

I2. Let X be compact zero-dimensional and without isolated points.
a. Every nonempty Gδ-set in X has nonempty interior iff CO(X) satisfies the

condition in Exercise 8, i.e., whenever 〈an〉n is an increasing sequence in CO(X)
and a > an for all n then there is a b such that a > b > an for all n.

b.Disjoint open Fσ-sets in X have disjoint closures iff CO(X) satisfies the condi-
tion in Exercise 9, i.e., whenever 〈an〉n and 〈bn〉n are sequences in CO(X) such
that am ∧ bn = 0 for all m and n there is c such that am 6 c and bn 6 c′ for
all m and n.

We first prove half of Parovichenko’s theorem.

I3. Let S be a countable subfamily of P(N)/fin. There is a family {as : s ∈ S} in
P(N)/fin such that 0 < as 6 s for all s and as ∧ at = 0 whenever s 6= t. Hint:
Enumerate S as {sn : n ∈ ω}; using the fact the P(N)/fin has no atoms construct
for every n a family {an,i : i 6 n} such that an,i ∧ an,j = 0 whenever i 6= j and
sn > an,n > an,n+1 > · · · for all n. Then apply Exercise 8.

I4. Let A be a countable subalgebra of P(N)/fin. Let L and D be ideals in A such
that a ∧ b = 0 whenever a ∈ L and b ∈ D and put S = A \ (L ∪ D). Then
there is a c ∈ P(N)/fin such that (∀a ∈ L)(a 6 c), (∀b ∈ D)(b ∧ c = 0) and
(∀s ∈ S)

(
(s ∧ c > 0) ∧ (s ∧ c′ > 0)

)
.

a. There are increasing and cofinal sequences 〈an〉n and 〈bn〉n in L and D respec-
tively.

b. Let S′ =
{
s ∈ S : (∀n)(s 
 an∨bn)

}
; there is a disjoint refinement {ds : s ∈ S′}

of S′ such that ds ∧ (an ∨ bn) = 0 for all s and n.

c. For s ∈ S′ choose as so that 0 < as < ds. There is c ∈ P(N)/fin such that
an 6 c, as = c ∧ ds and bn ∧ c = 0 for all s and n. This c is as required.

I5. Let A be a subalgebra of B and x ∈ B; the subalgebra generated by A and x
consists of all elements of the form

(a1 ∧ x) ∨ (a2 ∧ x′) ∧ a3,

where a1, a2 and a3 are from A and pairwise disjoint.

I6. Let B be a Boolean algebra of cardinality ℵ1. Then B can be embedded into
P(N)/fin. Enumerate B as {bα : α < ω1} and let Bα be the subalgebra of B
generated by {bβ : β < α}. Define embeddings ϕα : Bα → P(N)/fin such that ϕα

extends ϕβ whenever α > β.
a. Define ϕ0(0) = 0 and ϕ0(1) = 1.

b. If α is a limit ordinal then define ϕα =
⋃

β<α ϕβ .
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c.When ϕα : Bα → P(N)/fin is given and bα /∈ Bα then apply Exercise 4 to
find c ∈ P(N)/fin such that for all b ∈ Bα we have ϕα(b) 6 c iff b 6 bα and
ϕα(b) 6 c′ iff b 6 b′α.

d.Defining bα 7→ c determines an extension ϕα+1 of ϕα. Hint: Refer to Exercise 5
and define ϕα+1

(
(a1∧bα)∨(a2∧b′α)∨a3

)
= (ϕα(a1)∧c)∨(ϕα(a2)∧c′)∨ϕα(a3).

We now state and prove the dual form of Parovichenko’s theorem.

2.2. Theorem (CH). Let A and B be two Boolean algebras of cardinality c,
without atoms and with the properties from Exercises 8 and 9. The A and B
are isomorphic.

I7. Prove Theorem 2.2. Hint: Adapt Exercise 6.

3. Some examples

We describe a host of examples of spaces that satisfy the conditions of Paro-
vičenko’s Theorem. Under CH these spaces are homeomorphic to N∗. These
examples all make use of the Čech-Stone compactification.

The Čech-Stone compactification

For convenience we define the Čech-Stone compactification for normal spaces
only.

Let X be a normal space and let C(X) denote its family of closed subsets.
Just as on page 4 one defines filters and ultrafilters on C(X) — Exercise 1.b
remains valid (except where it refers to complements). We define βX as the
set of ultrafilters on C(X) and for A ∈ C(X) define

A = {u ∈ βX : A ∈ u}.

The family
{
A : A ∈ C(X)

}
serves as a base for the closed sets of βX.

I1. For every x ∈ X the family ux = {A : x ∈ A} is an ultrafilter. The map x 7→ ux

is an embedding of X into βX.

I2. a. Let A, B ∈ C(X); then A ∩B = A ∩B and A ∪B = A ∪B.

b. For A ∈ C(X) we have cl A = A.

c. The space X is dense in βX.

I3. The space βX is compact and Hausdorff.
a. If {Ai : i ∈ I} has the finite intersection property then {Ai : i ∈ I} is contained

in some ultrafilter.

b. Let u and v be different ultrafilters; find A ∈ u and B ∈ v such that A /∈ v,
B /∈ u and A ∪B = X. Then βX \A and βX \B are disjoint neighbourhoods
of u and v.
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Thus, βX is a compact Hausdorff space that contains X as a dense subset
and with the additional property that whenever A and B are closed subsets
of X one has cl(A ∩B) = clA ∩ cl B.

I4. For an open set U in X define Ex U = βX \X \ U . Then {Ex U : U is open } is
a base for the topology of βX.

σ-compact spaces

We now show that whenever X is σ-compact and locally compact the space
X∗ = βX \ X has the two topological properties in Parovičenko’s theorem.
Whenever A is closed in X we write A∗ = clA ∩X∗.

I5. A space X is σ-compact and locally compact iff one can write X =
⋃

n∈ω Xn,
where each Xn is compact and Xn ⊆ int Xn+1 for all n.

I6. Let X be σ-compact and locally compact (but not compact) then every nonempty
Gδ-subset of X∗ nas nonempty interior — in X∗. Let G be a Gδ-subset of X∗ and
u ∈ G.

a. There is an increasing sequence 〈Fn〉n of closed sets in X such that X∗ \ G ⊆⋃
n F ∗

n and Fn /∈ u for all n.

b. For every n there is a kn such that Xkn * Fn.

c. The set F =
⋃

n cl(Fn \Xkn) is closed.

d. For every n we have cl(Fn \ F ) ⊆ Xn and hence F ∗
n ∩ F ∗.

e. Choose xn ∈ Xkn \ Fn; the set B = {xn : n ∈ ω} is closed and disjoint from F .

f. In X∗ we have ∅ 6= B∗ ⊆ X∗ \ F ∗ ⊆ int G.

I7. Let X be σ-compact and locally compact (but not compact) then any two disjoint
open Fσ-subsets of X∗ have disjoint closures — in X∗. Let F and G be disjoint
open Fσ-subsets of X∗ and consider the subspace Y = X ∪ F ∪G of βX.

a. The space Y is σ-compact, hence Lindelöf, hence normal.

b. The sets F and G are disjoint and closed in Y . Hint: X is locally compact and
therefore open in βX.

c. There are open sets U and V in Y with disjoint closures and with U ⊇ F and
V ⊇ G.

d. A = cl(U ∩ X) and B = cl(V ∩ X) are closed and disjoint in βX and F ⊆ A
and G ⊆ B.

Let us call Parovičenko space a space that satisfies Parovičenko’s con-
ditions, i.e., one that is compact, zero-dimensional, of weight c, in which
nonempty Gδ-sets have nonempty interiors and in which disjoint open Fσ-
sets have disjoint closures.

I8. The following are all Parovičenko spaces.
a. D∗, where D = ω × (ω + 1);

b. (ω × N2)∗;

c. (ω × ω12)∗;
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d. (ω × c2)∗.

I9. Let X = ω × c2; if x ∈ X∗ then every local base at x has cardinality at least c.
Let U be a family of fewer than c neighbourhoods of x in X∗.

a. If U is clopen in X∗ then there is a clopen set CU in X such that U = C∗
U .

b. If C is clopen in X then C is determined by countably many coordinates in c,
i.e., there is a countable subset I of c such that C = π←I

[
πI [C]

]
, where πI is

the projection of ω × c2 onto ω × I2.

c. Choose, for every U ∈ U, a clopen set CU in X such that x ∈ C∗
U ⊆ U and a

countable subset IU such that CU is determined by the coordinates in IU .

d. There is α ∈ c \
⋃

U IU .

e. Let C =
{
(n, x) ∈ X : xα = 0

}
. Then for all U ∈ U we have C∗

U * C∗ and
C∗

U ∩ C∗ 6= ∅.

f. The family U is not a local base at x.

I10. Apply Exercise 8 to construct a strictly decreasing sequence 〈Cα : α < ω1〉 of
clopen sets in N∗.

a. The family C =
{
C ∈ CO(N∗) : (∃α)

(
(Fα ⊆ C) ∨ (Fα ∩C = ∅)

)}
is a Boolean

algebra.

b. The Boolean algebra C satisfies the properties of Exercises 8 and 9.

c. The Stone space S(C) of C is a Parovičenko space.

d. The space S(C) is obtained from N∗ by identifying the set
⋂

α Fα to one point.

e. The space S(C) has a point with a local base of cardinality ℵ1.

I11. The spaces (ω× c2)∗ and S(C) are Parovičenko spaces that are homeomorphic
if and only if CH holds.



Chapter 8

Homogeneity

We consider the difference between topological and algebraic homogeneity.

1. Algebraic homogeneity

1.1. Definition. A Boolean algebra B is homogeneous if for every nonzero
b ∈ B the Boolean algebra {a : a 6 b} is isomorphic to B.

I1. If X is compact and zero-dimensional then CO(X) is homogeneous iff X is home-
omorphic to each of its nonempty clopen subsets.

I2. A Boolean algebra with two (or more) atoms is not homogeneous.

I3. The following Boolean algebras are homogeneous.
a. The algebra of clopen subsets of the Cantor set.
b. The algebra P(N)/fin.

I4. The measure algebra M is homogeneous.
a. If B is a Borel set of positive measure then there is an r ∈ [0, 1] such that

m
(
[0, r] ∩ B

)
= 1

2
m(B). Hint: Consider the function f : [0, 1] → [0, 1] defined

by f(r) = m
(
[0, r] ∩B

)
.

Fix a Borel set B and put D = {k2−n : k, n ∈ ω, k 6 2n}.
b. There is a set {rd : d ∈ D} in [0, 1] such that, whenever d < e in D we have

m
(
[d, e] ∩B) = m(B) · (e− d).

Define f : B → [0, 1] by f(x) = sup{d ∈ D : rd 6 x}.
c. For every Borel set A the preimage f←[A] is Borel and m

(
f←[A]

)
= m(B) ·

m(A). Hint: The family
{
A : f←[A] is Borel and m

(
f←[A]

)
= m(B) · m(A)

}
is a σ-algebra and contains all intervals [d, e] with d, e ∈ D.

d. The map A 7→ f←[A] induces an isomorphism between M and {q(A) : A ⊆ B}.
I5. The completion of a homogeneous Boolean algebra is also homogeneous.

2. Topological homogeneity

2.1. Definition. A topological space X is homogeneous if for any two points x
and y of X there is a homeomorphism h : X → X such that h(x) = y.

I1. a. The real line R is homogeneous.
b. The unit interval [0, 1] is not homogeneous.
c. The Cantor set ω2 is homogeneous. Hint: Given x and y let I = {n : xn 6= yn};

define h by flipping the coordinates in I.

22
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3. Interrelations

Although it seems that homogeneous spaces should have homogeneous alge-
bras and vice versa it turns out that neither kind of homogeneity implies the
other.

Homogeneous spaces

Most of the homogeneous spaces that one can think of have homogeneous
clopen algebras. However there is a homogeneous compact zero-dimensional
space X whose clopen algebra CO(X) is not homogeneous. In [12] E. K.
van Douwen constructed such an example: it has a measure µ defined on its
Borel sets such that if A and B are homeomorphic Borel sets then µ(A) =
µ(B) and, conversely, whenever clopen sets have the same measure then they
are homeomorphic.

Homogeneous algebras

There are many homogeneous algebras whose Stone spaces are not homo-
geneous. We shall give one specific example and prove a general theorem
that provides a potentially large class of such algebras. There is one general
positive result however.

I1. Let B be a homogeneous Boolean algebra such that S(B) is first-countable.
Then S(B) is homogeneous. Let u, v ∈ S(B) and choose countable local bases
{Cn : n ∈ N} and {Dn : n ∈ N} at u and v respectively, both consisting of clopen
sets. Recursively choose autohomeomorphisms hk of S(B), as follows. Put h0 = Id.
If hk(u) = v or hk(v) = u then stop; otherwise choose nk > k such that hk[Cnk ]
is disjoint from Dnk and hk[Dnk ] is disjoint from Cnk ; let fk : hk[Cnk ] → Dnk

be a homeomorphism. Define gk : X → X by gk(x) = x if x /∈ hk[Cnk ] ∪ Dnk ,
gk(x) = fk(x) if x ∈ hk[Cnk ] and gk(x) = f−1

k (x) if Dnk . Let hk+1 = gk ◦ hk.
a. The map gk is well-defined and an autohomeomorphism of X.

b. hk+1[Cnk ] = Dnk for every k.

c. If x /∈ Cnk and l > k then hl(x) = hk(x).

d. For every x the limit h(x) = limk hk(x) exists.

e. The map h : X → X is a homeomorphism and h(u) = v.

N∗ is not homogeneous

We shall see that N∗ is not homogeneous, even though the Boolean algebra
P(N)/fin is. The first result is due to W. Rudin.

I2. The Continuum Hypothesis implies that N∗ is not homogeneous.
a. Apply Exercise 10 and Theorem 2.1 to deduce that N∗ has a P -point u, i.e.,

u ∈ int
⋂

U, whenever U is a countable family of neighbourhoods of u.

b. Let C be any countably infinite subset of N∗ and let v be an accumulation point
of C, then v is not a P -point.
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c. There is no autohomeomorphism of N∗ that maps u to v.

The next result is due to Froĺık. It shows that CH is not necessary to
prove that N∗ is not homogeneous.

I3. Let X be a regular space and D = {dn : n ∈ N} a relatively discrete subset of X;
then there is a disjoint family {Un : n ∈ N} of open sets with dn ∈ Un for all n.
Hint: Choose the Un recursively and with the property that cl Un ∩D = {dn} and
cl Un ∩ cl Um = ∅ whenever m < n.

I4. Let f : N → N be a map and A = {n : f(n) 6= n}. One can partition A into
three sets A0, A1 and A2 such that f [Ai] is always disjoint from Ai. For n ∈ A let
An = {fk(n) : k ∈ N} ∩A and define a relation m ! n on A by An ∩Am 6= ∅.

a. The relation ! is an equivalence relation on A.

Let E be an equivalence class.
b. Case 1: there is an n ∈ E such that f(n) /∈ A then n is unique (in E) and for

every m ∈ E there is a km such that fkm(m) = n; E0 = {m ∈ E : km is even}
and E1 = {m : km is odd} both satisfy f [Ei] ∩ Ei = ∅.

c. Case 2: there are an n ∈ E and a (minimal) non-zero k such that fk(n) = n.
For every m ∈ E there is a fk(m) = n, let km be the minimal such k; E0 =
{m ∈ E : km is even} and E1 = {m : km is odd} both satisfy f [Ei] ∩ Ei = ∅,
except when k is odd, then we delete n from E0 and put E2 = {n}.

d. Case 3 (the remaining case): for every m, n ∈ E there are minimal km,n and
lm,n such that fkm,n(m) = f lm,n(n). Fix n ∈ E and define E0 = {m ∈ E :
km,n+lm,n is odd} and E1 = {m ∈ E : km,n+lm,n is even}; then f [Ei]∩Ei = ∅
for i = 0 and 1.

I5. Let u ∈ N∗ and let D = {dn : n ∈ N} be a relatively discrete subset of N∗. There
is no homeomorphism h : N∗ → N∗ such that h(du) = u. Assume there is such a
homeomorphism and write en = h(dn).

a. E = {en : n ∈ N} is relatively discrete and u = eu.

b. There are disjoint subsets Bn of N such that Bn ∈ en for all n and N =
⋃

n Bn.

c. For a subset A of N we have A ∈ u iff
⋃

n∈A Bn ∈ u. Hint: A ∈ u iff u ∈ cl{en :
n ∈ A}.

d.Define f : N → N by f(i) = n iff i ∈ Bn. Then f(u) = u.

e. The set {n : f(n) 6= n} does not belong to u. Hint: Apply Exercise 4.

f. Consider A = {n : f(n) = n}. For every n ∈ A we have A ∩ Bn = {n}; this
gives rise to a contradiction, to wit that en = n for all n ∈ A.

The following theorem provides us with a large supply of nonhomogeneous
spaces.

3.1. Theorem (Froĺık). No infinite compact F -space is homogeneous. �

An F -space is one in which disjoint open Fσ-sets have disjoint closures.

I6. Let X be a compact F -space and let A and B be separated countable subsets
of X, i.e., A∩cl B = ∅ = cl A∩B. Then cl A and cl B are disjoint. Hint: Enumerate
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A and B as {an : n ∈ N} and {bn : n ∈ N} respectively. Recursively choose open
Fσ-sets Un around an and Vn around bn such that cl Un ∩ (cl B ∪

⋃
m<n cl Vm) = ∅

and cl Vn ∩ (cl A ∪
⋃

m6n cl Um) = ∅. Consider
⋃

n Un and
⋃

n Vn.

I7. Let D = {dn : n ∈ N} be a countable and relatively discrete subset of a compact
F -space X. The map f : n 7→ dn induces a homeomorphism from βN onto D.

a. If A and B are disjoint subsets of N then cl f [A] and cl f [B] are disjoint.

b. If u ∈ βN then
⋂

A∈u cl f [A] consists of one point du.

c. The map g : u 7→ du is one-to-one and continuous. Hint: If V is an open set
in X and A = {n : dn ∈ V } then cl f [A] = cl V .

I8. Let X be an infinite compact F -space and take a countable and discrete subset
of it, which we identify with N.

a. The closure of N is homeomorphic with βN.

b. There are neighbourhoods Un of n such that cl Um∩cl Un = ∅ whenever m 6= n
and cl Un ∩ cl N = {n} for all n.

Let u and v be points in N∗ and assume h : X → X is a homeomorphism such
that h(u) = v. For n ∈ N write dn = h(n) and Vn = h[Un]. Put A = {n : dn ∈⋃

m cl Um}, B = {n : dn ∈ N∗} and C = N \ (A ∪B).
c. If U ⊆ N then U ∈ u iff u ∈ cl

⋃
m∈U Um.

d. If U ⊆ N then U ∈ u iff v ∈ cl{dn : n ∈ U}.
e. cl N ∩ cl{n : n ∈ C} = ∅, hence C /∈ u. Hint: N ∩ cl{dn : n ∈ C} = ∅ =

cl N ∩ {dn : n ∈ C}.
f. If A ∈ u then define f : A → N by f(n) = m iff dn ∈ cl Um. Then f(u) = v.

Hint: If U ∈ u then v ∈ cl{dn : n ∈ U} and cl{dn : n ∈ U} ⊆ cl
⋃

m∈f [U ] Um.

g. If B ∈ u then define f : N → B by f(n) = m iff n ∈ cl Vm. Then f(v) = u.
Hint: If V ∈ v then v ∈ clm∈f [V ] cl Vm.

We see that in order to show that no infinite compact F -space is homo-
geneous we must produce two ultrafilters u and v on N such that there is no
mapping f : N → N with f(u) = v or f(v) = u.

For the construction of such ultrafilters we shall need the independent
family

{
Ix : x ∈ P(N)

}
, constructed in Exercise 2. We introduce two pieces

of notation: for x ∈ P(N) we write Ix,1 = Ix and Ix,0 = N \ Ix. Also,
for any set S we let Fn(S, 2) denote the set of functions p whose domain is
a finite subset of S and whose range is contained in 2. Observe that the
independence of

{
Ix : x ∈ P(N)

}
can be expressed as follows: for every

p ∈ Fn(P(N), 2) the set
⋂

x∈dom p Ix,p(x) is infinite. Finally, if S ⊆ P(N) and
if F is a filter then we say that {Ix : x ∈ S} is independent with respect to F

if F ∩
⋂

x ∈ dom pIx,p(x) 6= ∅ whenever F ∈ F and p ∈ Fn(S, 2).

I9. Assume {Ix : x ∈ S} is independent with respect to F and that A ∈ P(N).
Then either {Ix : x ∈ S} is independent with respect to the filter generated by F

and A or there is a finite subset s of S such that {Ix : x ∈ S \ s} independent with
respect to the filter generated by F and Ac. Hint: Write out what the negation of



26 Homogeneity [ Ch. 8, § 3

“{Ix : x ∈ S} is independent with respect to the filter generated by F and A” entails
— and consider the possibility that F and A do not generate a filter.

I10. Assume {Ix : x ∈ S} is independent with respect to the filters F and G, let
f : N → N be any map and let x ∈ S. One can choose i ∈ {0, 1} and a finite
subset s of S such that 1) G and f←[Ix,i] generate a filter G′; 2) {Ix : x ∈ S \ s}
is independent with respect to G′; and 3) x ∈ s. Hint: Apply the previous exercise
and observe that enlarging s will not spoil independence.

I11 (Kunen [5]). There are ultrafilters u and v on N such that there is no map
f : N → N with f(u) = v or f(v) = u. Let

{
Ix : x ∈ P(N)

}
be an independent

family; let {Aα : α < c} enumerate P(N) and let {fα : α < c} enumerate NN.
Recursively build filters Fα and Gα and subsets Sα of P(N) such that for every α
the family {Ix : x ∈ Sα} is independent with respect to Fα and Gα. Start with
F0 = G0 = {A : Ac is finite} and S0 = P(N). Let α < c.

a. There are a finite subset s of Sα and a filter F′α that extends Fα such that Aα

or Ac
α belongs to F′α and {Ix : x ∈ Sα \ s} is independent with respect to F′α.

b. There are a finite subset s′ of Sα \ s and a filter G′α that extends Gα such that
Aα or Ac

α belongs to G′α and {Ix : x ∈ Sα \ (s∪ s′)} is independent with respect
to G′α.

c. There are a finite subset s′′ of Sα \ (s ∪ s′) an xα ∈ s′′ and an iα ∈ {0, 1} such
that G′α and f←α [Ixα,iα ] generate a filter G′′α and {Ix : x ∈ Sα \ (s ∪ s′ ∪ s′′)} is
independent with respect to G′′α.

d. F′α and Ixα,1−iα generate a filter F′′α.

e. There are a finite subset s′′′ of Sα \(s∪s′∪s′′) a yα ∈ s′′′ and a jα ∈ {0, 1} such
that F′′α and f←[Iyα,jα ] generate a filter F′′′α and {Ix : x ∈ Sα \(s∪s′∪s′′∪s′′′)}
is independent with respect to F′′′α .

f. G′′α and Iyα,1−jα generate a filter G′′′α .

g. Setting Fα+1 = F′′′α , Gα+1 = G′′′α and Sα+1 = Sα \ (s ∪ s′ ∪ s′′ ∪ s′′′) keeps the
conditions satisfied and has Sα \ Sα+1 finite.

If α is a limit ordinal set Fα =
⋃

β<α Fβ , Gα =
⋃

β<α Gβ and Sα =
⋂

β<α Sβ .

h. For every α the cardinality of P(N) \Sα is less than c; in particular Sα is never
empty.

Let u =
⋃

α<c Fα and v =
⋃

α<c Gα.
i. u and v are ultrafilters.

j. fα(u) 6= v and f(v) 6= u for every α. Hint: Ixα,1−iα ∈ u and f←[Ixα,iα ] ∈ v.

This theorem and its proof caused a lot of research. The point is that,
although it provides two points such that no homeomorphism maps one to
the other, one cannot see by just looking at the points that there is no such
homeomorphism. One of the first results is Kunen’s theorem from [6] that
in N∗ there is a point u with the following property: if C ⊆ N∗ is countable
and u /∈ C then u /∈ cl C. Since there are also points that do not have this
property this provides points with clearly different properties.



Appendix A

The Axioms of Set Theory

In the parlance of Mathematical Logic, Set Theory is a first-order theory
with equality and one binary predicate, denoted ∈, with the following axioms.

The Axiom of Extensionality. Sets with the same elements are equal:
(∀x)(x ∈ a ↔ x ∈ b) → (a = b).

The Axiom of Pairing. For any two sets a and b there is a third set having
only a and b as its elements: (∀a)(∀b)(∃c)(∀x)

(
x ∈ c ↔ (x = a ∨ x = b)

)
.

The Axiom of Union. For any set a there is a set consisting of all the
elements of the elements of a: (∀a)(∃b)(∀x)

(
x ∈ b ↔ (∃y)(y ∈ a ∧ x ∈ y)

)
.

The Axiom of Power Set. For any set a there is a set consisting of all the
subsets of a: (∀a)(∃b)(∀x)

(
x ∈ b ↔ (∀y)(y ∈ x → y ∈ a)

)
.

The Axiom of Separation. If ϕ is a property, possibly with a parameter
p, then for every a and p there is a set that consists of those elements of a
that satisfy ϕ: (∀a)(∀p)(∃b)(∀x)(x ∈ b ↔ (x ∈ a ∧ ϕ(x, p))).

The Axiom of Replacement. If F is a function then for every set a its
image F [a] under F is a set: (∀a)(∃b)(∀y)(y ∈ b ↔ (∃x)(x ∈ a ∧ F (x) = y)).

The Axiom of Infinity. There is an infinite set: (∃a)(∅ ∈ a ∧ (∀x)(x ∈
a → x ∪ {x} ∈ a).

The Axiom of Foundation. Every nonempty set has a ∈-minimal element:
(∀a)

(
a 6= ∅ → (∃b)(b ∈ a ∧ (∀c)(c ∈ b → c /∈ a))

)
.

The Axiom of Choice. Every set of nonempty sets has a choice function:
(∀a)(∃b)

(
(∀x ∈ a)(∃y ∈ x)(〈x, y〉 ∈ b) ∧ (∀x)(∀y)(∀z)((〈x, y〉 ∈ b ∧ 〈x, z〉 ∈

b) → y = z)
)
.

These axioms form the starting point for Set Theory, just like Euclid’s
axioms were the starting point for Euclidean geometry.

The Axiom of Extensionality connects = and ∈; it mirrors the way in
which we normally show that sets are equal. The Axiom of Pairing, combined
with the Axiom of Extensionality, lets us define a new ‘function’: {a, b} is
the unique c such that (∀x)(x ∈ c ↔ (x = a ∨ x = b)). We can then form
{a} = {a, a}, the singleton set, and

{
{a}, {a, b}

}
, the ordered pair, usually

denoted 〈a, b〉.

27
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I12. Verify that 〈a, b〉 = 〈c, d〉 iff a = c and b = d.

The Axioms of Union and Power Set give additional operations:
⋃

a ={
y : (∃x ∈ a)(y ∈ x)

}
and P(a) =

{
x : (∀y ∈ x)(y ∈ a)

}
. By combining

Union and Pairing we can form a ∪ b =
⋃
{a, b}.

The Axioms of Separation and Replacement deserve special consideration;
both in fact represent an infinite list of axioms, one for each property or func-
tion. As such they should properly called axiom schemas. As an application
let ϕ(x, p) be x ∈ p; then for any sets a and p the set {x ∈ a : x ∈ p} exists
— it is of course nothing but a∩p. Similarly, if ϕ(x, p) is (∀y ∈ p)(x ∈ p) and
a ∈ p then {x ∈ a : ϕ(x, p)} defines

⋂
p.

In the Replacement schema proper one considers formulas that define
functions: if ϕ(x, y, p) satisfies (∀x)(∀y)(∀z)(ϕ(x, y, p) ∧ ϕ(x, z, p) → y = z)
then (∀a)(∃b)(∀y)

(
y ∈ b ↔ (∃x ∈ a)ϕ(x, y, p)

)
.

The Axiom of Infinity may look strange at first but we must realize that
none of the axioms so far can express the notions of ‘finite’ and ‘infinite’ in
any way. As can be seen in Appendix B the present formulation leads to a
satisfactory set that does all we may expect of the natural numbers. A set
as in the Axiom of Infinity is called inductive and an inductive set deserves
to be called infinite because it contains the chain ∅ ∈ {∅} ∈

{
∅, {∅}

}
∈ · · ·

that goes on forever. The Axiom of Foundation is also called the Axiom of
Regularity because it proscribes infinite chains · · · ∈ x2 ∈ x1 ∈ x0 and thus
ensures that the universe of sets can be built up by iterating the power set
operation, thus: V0 = ∅, Vα+1 = P(Vα) and Vα =

⋃
β<α Vβ if α is a limit

ordinal.

I13. Every set belongs to Vα for some α. Hint: Given a let b =
{
x ∈ trcl a : (∃α)(x ∈

Vα)
}
. If b 6= trcl a let x be ∈-minimal in trcl a \ b; by the Axiom of Replacement

x ⊆ Vα for some α and so x ∈ Vα+1 and hence x ∈ b.

The Axiom of Choice accounts for the C in ZFC. Because of its noncon-
structive nature — the existence of the choice function is simply asserted, no
description is given — it is treated with suspicion by some. We will use it
freely in this book and at some places point out some of its stranger conse-
quences.



Appendix B

Basics of Set Theory

In this chapter we collect some notions from Set Theory that are used
throughout the book. We take the opportunity to illustrate how familiar set-
theoretic operations can be justified on the basis of the axioms presented in
Chapter A.

1. The Natural numbers

To see how N can be conceived as a set we apply the Axiom of Infinity to get
an inductive set I. This means that ∅ ∈ I and that x ∪ {x} ∈ I whenever
x ∈ I.

I1. There is a smallest inductive set.
a. Apply the Power Set and Separation Axioms to construct N =

⋂
{X : X ⊆ I

and X is inductive}.
b. The set N is inductive and a subset of any other inductive set.

Thus, the official Set-Theoretic definition of N is that it is the smallest
inductive set. We make some abbreviations: 0 = ∅, 1 = {0}, 2 = {0, 1}, and
so on.

I2. The set N, together with the operation n 7→ n ∪ {n}, satisfies Peano’s Axioms
for the natural numbers.

This exercise allows us to define addition and multiplication as usual and
m < n by (∃k)(k 6= 0 ∧ n = m + k).

I3. The order < is identical to ∈.

2. Products and relations

Relations abound in mathematics; they have a reasonably simple mathemat-
ical foundation.

Products

Given two sets X and Y we define X ×Y to be the set of ordered pairs 〈x, y〉
with x ∈ X and y ∈ Y .

29
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I1. The existence of X × Y can be deduced from the Axioms of Pairing, Union,
Power Set and Separation.

a. If x ∈ X and y ∈ Y then 〈x, y〉 ∈ P
(
P(X ∪ Y )

)
.

b. X × Y =
{
z ∈ P

(
P(X ∪ Y )

)
: (∃x ∈ X)(∃y ∈ Y )(z = 〈x, y〉)

}
.

There will be situations where the Power Set Axiom is not available; we
can avoid it in building X × Y .

I2. The existence of X × Y can be deduced from the Axioms of Pairing, Union, and
Replacement.

a.Given x ∈ X use the map y 7→ 〈x, y〉 to deduce that {x} × Y is a set.

b.Use the map x 7→ {x} × Y to deduce that X =
{
{x} × Y : x ∈ X

}
is a set.

c. X × Y =
⋃

X is a set.

Relations

A relation is a set of ordered pairs. Its domain is the set of its first coordinates
and its range the set of its second coordinates.

I3. a. z is an ordered pair iff (∃u ∈ z)(∃v ∈ z)(∃x ∈ u)(∃y ∈ v)
(
z = 〈x, y〉

)
.

b. x is the first coordinate of z iff (∃v ∈ z)(∃y ∈ v)
(
z = 〈x, y〉

)
.

c. y is the second coordinate of z iff (∃u ∈ z)(∃x ∈ u)
(
z = 〈x, y〉

)
.
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