
Chapter 3

Arkhangel′skĭı’s theorem

A special case of the theorem of the title says that first-countable compact
Hausdorff spaces have cardinality at most c. In the literature one can find
three approaches to this result; we shall present each of these, in an attempt
to show how better tools do make for lighter work. For expository purposes
we confine ourselves to the basic case of first-countable compact Hausdorff
spaces; at the end of this section we indicate possible generalizations.

1. First proof

This is essentially Arkhangel′skĭı’s original proof. We shall require a few
preliminary topological results.

I1. Let X be first-countable Hausdorff space with a dense set of cardinality c (or
less); then |X| 6 c. Hint: Every point in the space is the limit of a sequence from
the dense set.

I2. Let X be a first-countable compact Hausdorff space and A a closed subset of
cardinality c (or less); then X \ A can be written as the union of no more than c

closed sets. Hint: Choose a countable local base Bx at each point x of A and
consider the family of all finite covers of A whose members belong to

S
x∈A Bx.

1.1. Theorem. Let X be a first-countable compact Hausdorff space; then
|X| 6 c.

I3. Prove Theorem 1.1. Let T denote the tree <ω1c of countable sequences of elements
of c.

a. |T | = c.

Choose closed sets Ft, for all t ∈ T , and points xt, for t ∈ T of successor height,
as follows. First, F∅ = X and x∅ is any point of X. Second, if ht t is a limit
ordinal we let Ft =

T
s<t Fs. Third, we define Ft,α and xt,α for every α < c: Let

At = cl{xs : s 6 t} and write X \ At =
S

α<c Gt,α, where each Gt,α is closed. Now
put Ft,α = Ft ∩ Gt,α and let xt,α be any point of Ft,α unless this set is empty, in
which case we let xt,α = x∅.

b. Ft ⊆ At ∪
S

α<c Ft,α.

c. For every α we have X =
S
{At : ht t = α} ∪

S
{Ft : ht t = α}.

Let T ′ = {t : |Ft| 6 c}.
d.

S
t∈T At ∪

S
t∈T ′ Ft has cardinality c (or less).

Assume X 6=
S

t∈T At ∪
S

t∈T ′ Ft and choose x ∈ X outside the union.
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e. There is a path P through T such that x ∈ Ft for all t ∈ P .

f. cl{xs : s < t} ∩ cl{xs : t 6 s, s ∈ P} = ∅, whenever t ∈ P .

g. If y ∈ cl{xs : s ∈ P} then y ∈ cl{xs : s < t} for some t ∈ P ; thereforeT
t∈P cl{xs : t 6 s, s ∈ P} = ∅.

h. X is compact, hence
T

t∈P cl{xs : t 6 s, s ∈ P} 6= ∅.

2. Second proof

The first proof is tree-like; the second proof proceeds in a linear recursion.

I1. Prove Theorem 1.1. Fix for every x ∈ X a countable local base Bx. Recursively
define closed sets Fα, for α ∈ ω1, as follows. F0 = {x0} for some x0. If α is a limit
ordinal let Fα = cl

S
β<α Fβ . If Fα is given let Bα =

S
x∈Fα

Bx and choose for every

finite subfamily U of Bα that covers Fα but not X one point xU ∈ X \
S

U and let
Fα+1 be the closure of the union of Fα and the set of all points xU.

a. For every α we have |Fα| 6 c and |Bα| 6 c.

b. The set F =
S

α Fα is closed, hence compact.

Let U be a finite subfamily of
S

x∈F Bx that covers F .
c. U ⊆ Bα for some α.

d. U covers X. Hint: U covers Fα+1.

e. Deduce that X = F , hence |X| 6 c.

3. Third proof

The third proof is the second proof in disguise.

I1. Prove Theorem 1.1. Fix for every x ∈ X a countable local base Bx. Let θ be large
enough so that X and the assignment x 7→ Bx belong to H(θ). Take an elementary
substructure M of H(θ), of cardinality c, and such that X and x 7→ Bx belong to M
and ωM ⊆ M .

a. F = X ∩ M is closed in X. Hint: If x ∈ cl(X ∩ M) then some sequence in
X ∩M converges to x; the sequence belongs to M .

b. Every finite subfamily U of
S

x∈F Bx belongs to M ; if it covers F then it also
covers X. Hint: M � (∀x ∈ X)(∃U ∈ U)(x ∈ U).

4. Extensions and generalizations

One can relax the assumptions of Theorem 1.1 considerably.

I1. Theorem 1.1 also holds for Lindelöf spaces. Hint: All the proofs go through with
finite collections replaced by countable ones.

We can replace the assumption of first-countability by the conjunction of
two weaker properties: countable pseudocharacter, i.e., points are Gδ-sets, and
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countable tightness, which means that whenever x ∈ cl A there is a countable
subset B of A such that x ∈ cl B.

First we rework Exercise 1.1.

I2. Let X be a Lindelöf space with countable pseudocharacter and countable tight-
ness. If A is a subset of X of cardinality c or less then also |cl A| 6 c.

a. It suffices to show that |cl A| 6 c whenever A is countable.

Hint: cl A =
S
{cl B : B ∈ [A]6ℵ0}.

Assume X itself is separable and let D be a countable dense subset.
b. For every x we have {x} =

T
{O : x ∈ O and O is regular open}.

c. X has at most c regular open sets. Hint: If O is regular open then O =
int cl(O ∩D).

For every countable family U of regular open sets put NU = X \
S

U and let N be
the family of these NU’s.

d. If O is open and x ∈ O then there is a U such that x ∈ NU ⊆ O. Hint: X \ O
is Lindelöf.

e. For every point x there is a countable subfamily Ny of N such that {x} =
T

Ny.

f. The map x 7→ Ny from X into [N]6ℵ0 is one-to-one.

Exercise 1.2 needs less extra work.

I3. Let X be a Lindelöf space of countable pseudocharacter and A a closed subset of
cardinality c (or less); then X\A can be written as the union of no more than c closed
sets. Hint: Choose a countable family Bx of open sets at each point x of A withT

Bx = {x} and consider the family of all countable covers of A whose members
belong to

S
x∈A Bx.

I4. Use any of the three proofs to show that a Lindelöf Hausdorff space of countable
pseudocharacter and countable tightness has cardinality at most c.

Sunday 02-09-2001 at 15:40:07 — arkhangelskii.tex


