Chapter 3

Arkhangel’skii’s theorem

A special case of the theorem of the title says that first-countable compact
Hausdorff spaces have cardinality at most ¢. In the literature one can find
three approaches to this result; we shall present each of these, in an attempt
to show how better tools do make for lighter work. For expository purposes
we confine ourselves to the basic case of first-countable compact Hausdorff
spaces; at the end of this section we indicate possible generalizations.

1. First proof

This is essentially Arkhangel’skii’s original proof. We shall require a few
preliminary topological results.

» 1. Let X be first-countable Hausdorff space with a dense set of cardinality ¢ (or
less); then | X| < ¢. Hint: Every point in the space is the limit of a sequence from
the dense set.

» 2. Let X be a first-countable compact Hausdorff space and A a closed subset of
cardinality ¢ (or less); then X \ A can be written as the union of no more than ¢
closed sets. Hint: Choose a countable local base B, at each point x of A and

consider the family of all finite covers of A whose members belong to |J, 4 Ba-

1.1. THEOREM. Let X be a first-countable compact Hausdorff space; then
|X| <.

» 3. Prove Theorem 1.1. Let T denote the tree <“¢ of countable sequences of elements

of c.

a. |T| =rc.
Choose closed sets Fy, for all ¢ € T, and points z+, for t € T of successor height,
as follows. First, Fy = X and zg is any point of X. Second, if htt is a limit
ordinal we let F; = ﬂs<t F,. Third, we define F} o and z; for every a < ¢: Let
A = cl{zs : s < t} and write X \ A; = Ua<c G't,a, where each Gy o is closed. Now
put Fro = F; N Gt,o and let ;o be any point of F; . unless this set is empty, in
which case we let 24,0 = z5.

b.Fy C A UU,c. Fro

c. For every a we have X = |J{A: : htt = o} UJ{F: : htt = a}.
Let T = {t: |Fy| < c}.

d. Uper At UU,cps Fr has cardinality ¢ (or less).
Assume X # UtET AU UtET/ F; and choose z € X outside the union.
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e. There is a path P through T such that x € F; for all t € P.

fcl{zs :s <t}nNcl{ws:t < s,s € P} =&, whenever ¢t € P.

glf y € cl{zs : s € P} then y € cl{zs : s < ¢} for some t € P; therefore
Niepcl{zs 1t < 5,5 € P} =a.

h. X is compact, hence (,cp cl{zs : t < 5,5 € P} # @.

2. Second proof

The first proof is tree-like; the second proof proceeds in a linear recursion.

» 1. Prove Theorem 1.1. Fix for every x € X a countable local base B,. Recursively
define closed sets Fy, for o € wa, as follows. Fy = {zo} for some zo. If v is a limit
ordinal let F,, = CIUB<(¥ Fs. If F,, is given let B, = UmeFa B, and choose for every
finite subfamily U of B, that covers F, but not X one point zy € X \ JU and let
Fo+1 be the closure of the union of F,, and the set of all points .

a.For every o we have |F,| < ¢ and |Bo| < ¢
b. The set F' = Ua F, is closed, hence compact.
Let U be a finite subfamily of |J B, that covers F'.
c.U C B, for some a.
d.U covers X. Hint: U covers Fyp1.
e. Deduce that X = F, hence | X| < c.

zeF

3. Third proof

The third proof is the second proof in disguise.

» 1. Prove Theorem 1.1. Fix for every x € X a countable local base B,. Let 0 be large
enough so that X and the assignment x — B, belong to H(#). Take an elementary
substructure M of H(0), of cardinality ¢, and such that X and z +— B, belong to M
and “M C M.

a.F = XN M is closed in X. Hint: If z € cI(X N M) then some sequence in
X N M converges to x; the sequence belongs to M.

b. Every finite subfamily U of |J, . B+ belongs to M; if it covers F' then it also
covers X. Hint: M E (Vx € X)(3U € W)(z € U).

4. Extensions and generalizations

One can relax the assumptions of Theorem 1.1 considerably.

» 1. Theorem 1.1 also holds for Lindel6f spaces. Hint: All the proofs go through with
finite collections replaced by countable ones.

We can replace the assumption of first-countability by the conjunction of
two weaker properties: countable pseudocharacter, i.e., points are Gs-sets, and
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countable tightness, which means that whenever z € cl A there is a countable
subset B of A such that x € cl B.
First we rework Exercise 1.1.

» 2. Let X be a Lindel6f space with countable pseudocharacter and countable tight-
ness. If A is a subset of X of cardinality ¢ or less then also |cl A| < c.
a.It suffices to show that |clA| < ¢ whenever A is countable.
Hint: 1A= J{cIB: B € [A]S"}.
Assume X itself is separable and let D be a countable dense subset.
b. For every z we have {z} = [{O : z € O and O is regular open}.
c. X has at most ¢ regular open sets. Hint: If O is regular open then O =
int c1(O N D).
For every countable family U of regular open sets put Ny = X \ [JU and let N be
the family of these Ny'’s.
d.If O is open and z € O then there is a U such that = € Ny C O. Hint: X \ O
is Lindelof.
e. For every point x there is a countable subfamily N, of N such that {z} = N,
f. The map  — N, from X into [N]S™° is one-to-one.

Exercise 1.2 needs less extra work.

» 3. Let X be a Lindel6f space of countable pseudocharacter and A a closed subset of
cardinality ¢ (or less); then X\ A can be written as the union of no more than ¢ closed
sets. Hint: Choose a countable family B, of open sets at each point = of A with
(B = {z} and consider the family of all countable covers of A whose members
belong to |J,c 4 Ba-

» 4. Use any of the three proofs to show that a Lindel6f Hausdorff space of countable
pseudocharacter and countable tightness has cardinality at most c.
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