Chapter 3

Arkhangel'skiï's theorem

A special case of the theorem of the title says that first-countable compact Hausdorff spaces have cardinality at most c. In the literature one can find three approaches to this result; we shall present each of these, in an attempt to show how better tools do make for lighter work. For expository purposes we confine ourselves to the basic case of first-countable compact Hausdorff spaces; at the end of this section we indicate possible generalizations.

1. First proof

This is essentially Arkhangel'skiï's original proof. We shall require a few preliminary topological results.

- \blacktriangleright 1. Let X be first-countable Hausdorff space with a dense set of cardinality c (or less); then $|X| \leq c$. Hint: Every point in the space is the limit of a sequence from the dense set.
- \triangleright 2. Let X be a first-countable compact Hausdorff space and A a closed subset of cardinality c (or less); then $X \setminus A$ can be written as the union of no more than c closed sets. Hint: Choose a countable local base \mathcal{B}_x at each point x of A and consider the family of all finite covers of A whose members belong to $\bigcup_{x \in A} \mathcal{B}_x$.

1.1. THEOREM. Let X be a first-countable compact Hausdorff space; then $|X| \leqslant c$.

▶ 3. Prove Theorem 1.1. Let T denote the tree \leq^{ω_1} c of countable sequences of elements of c.

a. $|T| = \mathfrak{c}$.

Choose closed sets F_t , for all $t \in T$, and points x_t , for $t \in T$ of successor height, as follows. First, $F_{\emptyset} = X$ and x_{\emptyset} is any point of X. Second, if ht t is a limit ordinal we let $F_t = \bigcap_{s \leq t} F_s$. Third, we define $F_{t,\alpha}$ and $x_{t,\alpha}$ for every $\alpha < \mathfrak{c}$: Let $A_t = \text{cl}\{x_s : s \leq t\}$ and write $X \setminus A_t = \bigcup_{\alpha < \mathfrak{c}} G_{t,\alpha}$, where each $G_{t,\alpha}$ is closed. Now put $F_{t,\alpha} = F_t \cap G_{t,\alpha}$ and let $x_{t,\alpha}$ be any point of $F_{t,\alpha}$ unless this set is empty, in which case we let $x_{t,\alpha} = x_{\varnothing}$.

b. $F_t \subseteq A_t \cup \bigcup_{\alpha < \mathfrak{c}} F_{t,\alpha}.$

c. For every α we have $X = \bigcup \{A_t : \text{ht } t = \alpha\} \cup \bigcup \{F_t : \text{ht } t = \alpha\}.$ Let $T' = \{t : |F_t| \leqslant \mathfrak{c}\}.$

d. $\bigcup_{t \in T} A_t \cup \bigcup_{t \in T'} F_t$ has cardinality \mathfrak{c} (or less).

Assume $X \neq \bigcup_{t \in T} A_t \cup \bigcup_{t \in T'} F_t$ and choose $x \in X$ outside the union.

Sunday 02-09-2001 at 15:40:07 — arkhangelskii.tex

$\text{Ch. } 3, \S 4$ Second proof 23

e. There is a path P through T such that $x \in F_t$ for all $t \in P$. f. cl $\{x_s : s < t\} \cap$ cl $\{x_s : t \le s, s \in P\} = \emptyset$, whenever $t \in P$. g. If $y \in \text{cl}\{x_s : s \in P\}$ then $y \in \text{cl}\{x_s : s < t\}$ for some $t \in P$; therefore $\bigcap_{t\in P}$ cl $\{x_s : t \leqslant s, s \in P\} = \varnothing$.

h. X is compact, hence $\bigcap_{t \in P} cl\{x_s : t \leqslant s, s \in P\} \neq \emptyset$.

2. Second proof

The first proof is tree-like; the second proof proceeds in a linear recursion.

► 1. Prove Theorem 1.1. Fix for every $x \in X$ a countable local base \mathcal{B}_x . Recursively define closed sets F_{α} , for $\alpha \in \omega_1$, as follows. $F_0 = \{x_0\}$ for some x_0 . If α is a limit ordinal let $F_{\alpha} = \text{cl}\bigcup_{\beta<\alpha} F_{\beta}$. If F_{α} is given let $\mathcal{B}_{\alpha} = \bigcup_{x\in F_{\alpha}} \mathcal{B}_x$ and choose for every finite subfamily U of \mathcal{B}_{α} that covers F_{α} but not X one point $x_{\mathcal{U}} \in X \setminus \bigcup \mathcal{U}$ and let $F_{\alpha+1}$ be the closure of the union of F_{α} and the set of all points $x_{\mathcal{U}}$.

a. For every α we have $|F_{\alpha}| \leq \mathfrak{c}$ and $|\mathcal{B}_{\alpha}| \leq \mathfrak{c}$.

b. The set $F = \bigcup_{\alpha} F_{\alpha}$ is closed, hence compact.

- Let U be a finite subfamily of $\bigcup_{x \in F} \mathcal{B}_x$ that covers F.
	- c. $\mathfrak{U} \subseteq \mathcal{B}_{\alpha}$ for some α .
	- d. U covers X. Hint: U covers $F_{\alpha+1}$.
	- e. Deduce that $X = F$, hence $|X| \leq \mathfrak{c}$.

3. Third proof

The third proof is the second proof in disguise.

- ► 1. Prove Theorem 1.1. Fix for every $x \in X$ a countable local base \mathcal{B}_x . Let θ be large enough so that X and the assignment $x \mapsto \mathcal{B}_x$ belong to $H(\theta)$. Take an elementary substructure M of $H(\theta)$, of cardinality c, and such that X and $x \mapsto \mathcal{B}_x$ belong to M and $^{\omega}M \subseteq M$.
	- a. $F = X \cap M$ is closed in X. Hint: If $x \in cl(X \cap M)$ then some sequence in $X \cap M$ converges to x; the sequence belongs to M.
	- b. Every finite subfamily U of $\bigcup_{x \in F} \mathcal{B}_x$ belongs to M; if it covers F then it also covers X. Hint: $M \models (\forall x \in X)(\exists U \in \mathcal{U})(x \in U).$

4. Extensions and generalizations

One can relax the assumptions of Theorem 1.1 considerably.

 \blacktriangleright 1. Theorem 1.1 also holds for Lindelöf spaces. Hint: All the proofs go through with finite collections replaced by countable ones.

We can replace the assumption of first-countability by the conjunction of two weaker properties: *countable pseudocharacter*, i.e., points are G_{δ} -sets, and

24 ARKHANGEL'SKII'S THEOREM [Ch. 3, $\S 4$

countable tightness, which means that whenever $x \in cl A$ there is a countable subset B of A such that $x \in \text{cl } B$.

First we rework Exercise 1.1.

- \triangleright 2. Let X be a Lindelöf space with countable pseudocharacter and countable tightness. If A is a subset of X of cardinality c or less then also $|c| A| \leq c$.
	- a. It suffices to show that $|c|A| \leq c$ whenever A is countable. *Hint*: $cl A = \bigcup \{ cl B : B \in [A]^{\leq \aleph_0} \}.$
	- Assume X itself is separable and let D be a countable dense subset.
	- b. For every x we have $\{x\} = \bigcap \{O : x \in O \text{ and } O \text{ is regular open}\}.$
	- c. X has at most c regular open sets. Hint: If O is regular open then $O =$ int cl($O \cap D$).

For every countable family U of regular open sets put $N_{\mathcal{U}} = X \setminus \bigcup \mathcal{U}$ and let N be the family of these $N_{\mathfrak{U}}$'s.

- d. If O is open and $x \in O$ then there is a U such that $x \in N_u \subseteq O$. Hint: $X \setminus O$ is Lindelöf.
- e. For every point x there is a countable subfamily \mathcal{N}_y of N such that $\{x\} = \bigcap \mathcal{N}_y$.
- f. The map $x \mapsto N_y$ from X into $[N]^{\leq \aleph_0}$ is one-to-one.

Exercise 1.2 needs less extra work.

- \triangleright 3. Let X be a Lindelöf space of countable pseudocharacter and A a closed subset of cardinality c (or less); then $X \setminus A$ can be written as the union of no more than c closed sets. Hint: Choose a countable family B_x of open sets at each point x of A with $\bigcap B_x = \{x\}$ and consider the family of all countable covers of A whose members belong to $\bigcup_{x \in A} \mathcal{B}_x$.
- \blacktriangleright 4. Use any of the three proofs to show that a Lindelöf Hausdorff space of countable pseudocharacter and countable tightness has cardinality at most c.