
Chapter 5

Balogh’s Dowker space

Balogh’s example is constructed using pairs of elementary substructures
of the universe. To see how it works we look at an easier example first.

1. An example of Rudin’s

We discuss an example of a normal space that is not collectionwise Hausdorff,
it is an adaptation of an example due to Rudin.

The space will have c ∪ [c]2 as its underlying set, where [c]2 denotes{
{α, β} : α < β < c

}
. Each of the points {α, β} will be isolated. For each α

we will find a filter Fα of subsets of c and define the neighbourhoods of α to
be the sets of the form U(α, F ) = {α} ∪

{
{α, β} : β ∈ F

}
, with F ∈ Fα.

I1. a. U(α, F ) ∩ U(β, G) ⊆
˘
{α, β}

¯
.

b. U(α, F ) ∩ U(α, G) 6= ∅ iff α ∈ G and β ∈ F .

We shall choose for every α ∈ c and every subset A of c a subset F (α, A)
and let Fα be the filter generated by {F (α, A) : A ⊆ c}. Note that Fα may
be an improper filter.

Normality will be achieve by ensuring that β /∈ F (α, A) or α /∈ F (β, A)
whenever α /∈ A and β ∈ A.

To this end we define I(α, A) = A if α ∈ A and I(α, A) = c \A if α /∈ A.
We shall also define sets J(α, A) for all α and A and put

F (α, A) = I(α, A) ∪ {β > α : β ∈ J(α, A)} ∪ {β < α : α /∈ J(β, A)}.
This already gives us normality.

I2. If A ⊆ c, α ∈ A and β /∈ A then α /∈ F (β, A) or β /∈ F (α, A).

Notice that every element of Fα is determined by a finite family of subsets
of c, so, to get our space to be not collectionwise Hausdorff, we must consider
all possible assignments f : α 7→ Aα of finite families of subsets of c and,
somehow, ensure that there are disctinct α and β with α ∈

⋂
A∈Aβ

F (β, A)
and β ∈

⋂
A∈Aα

F (α, A).
Our strategy for dealing with 2c such assignments in only c steps is based

on the following idea. Take a countable elementary substructure M of the
universe that has the assignment f in it and look at the restriction of f to M ,
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30 Balogh’s Dowker space [ Ch. 5, § 2

i.e., the map fM : c ∩ M →
[
P(M ∩ c)

]<ω defined by fM (β) = {A ∩ M :
A ∈ Aα}. There are only c many such restrictions and they give us enough
information to deal with all possible assignments using just c many points.

So let
{
(Aβ , fβ) : β ∈ P

}
enumerate the family of all pairs of the

form (M ∩ c, fM ), where M is an elementary substructure of H(θ) and where
we assume that P ⊆ c and the enumeration is such that always Aβ ⊆ β.

Given (Aβ , fβ) define a function gβ : N → Aβ , as follows. Assume gβ � nk

is known and put Bk =
⋃

i<nk
fβ

(
gβ(i)

)
, so Bk is a finite family of subsets

of Aβ . For every function χ : Bk → {0, 1} choose, if possible, a point αχ not
in {gβ(i) : i < nk} such that for all B ∈ Bk we have αχ ∈ B iff χ(B) = 1.
Extend gβ to some nk+1 > nk so that {gβ(i) : nk 6 i < nk+1} counts the set
of αχ’s.

I3. The map gβ is one-to-one and defined on all of N.

Define f ′β : N →
[
P(A)

]<ω by f ′β(i) = fβ

(
gβ(i)

)
\Bk for nk 6 i < nk+1.

Now we can define the sets J(α, A):

J(α, A) =
{
β > α : (∃i)

(
α = gβ(i) ∧ A ∩Aβ ∈ f ′β(i)

)}
.

With this the definition of the F (α, A) is complete.
Let f : c →

[
P(c)

]<ω be given and fix a countable elementary substruc-
ture M of the universe with f ∈ M . Fix β with c ∩M = Aβ and fM = fβ .

I4. There is a k such that A ∈ f(β) and A ∩M ∈ f ′β(i) imply i < nk.

Define χ : Bk → {0, 1} by: if i < nk and B ∈ fβ

(
gβ(i)

)
and then

χ(B ∩M) = 1 iff β ∈ B.

I5. a. χ is well-defined, i.e., there are no B, C ∈ Bk with B ∩ M = C ∩ M and
β ∈ B \ C. Hint: elementarity.

b. αχ is defined. Hint: elementarity.

I6. β ∈ F (αχ, A), whenever A ∈ f(αχ). Fix j ∈ [nk, nk+1) with αχ = gβ(j).
a. If A ∩M ∈ f ′β(i) for some i < nk then β ∈ A iff αχ ∈ A, hence β ∈ I(αχ, A).

b. If A ∩M ∈ f ′β(j) then β ∈ J(β, A).

I7. αχ ∈ F (β, A), whenever A ∈ f(β).
a. If A ∩M ∈ f ′β(i) for some i < nk then β ∈ A iff αχ ∈ A, hence αχ ∈ I(β, A).

b. If A ∩ M /∈ f ′β(i) for any i < nk then A ∩ M /∈ f ′β(j) and so β /∈ J(αχ, A),
whence αχ ∈ F (β, A).

2. Balogh’s example

Balogh’s example is, to some extent, similar in spirit to Rudin’s example but
much more complicated.
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Ch. 5, § 2 ] Balogh’s example 31

The underlying set of our space X will be c×ω. As above we will construct,
for each α, a filter Fα and use these filters to define the topology: U is open iff
whenever (α, n + 1) ∈ U there is an F ∈ Fα such that

{
(β, n) : β ∈ F

}
⊆ U .

I1. a. For every n the set Un = c× [0, n] is open.

b. For every n the set Ln = c× {n} is relatively discrete.

The hard part will be to ensure that the space is normal and not countably
paracompact. Normality is handled much like in Rudin’s example: there will
be F (α, A) in Fα such that F (α, A) ∩ F (β, c \ A) = ∅ whenever α ∈ A and
β /∈ A. Countable paracompactness follows because, for every n, a closed set
contained in c× n must be ‘small’, in fact so small that whenever we choose
closed sets Fn ⊆ c× n for every n, their union will not even cover c× {0}.

The following combinatorial lemma lies at the basis of the construction.

2.1. Lemma. There is a map c 7→ dc from c2 to itself such that whenever
f : c → ω, g : c → [c2]<ω and h : c → [c]<ω are given we can find α < β in c
with f(α) = f(β), if c ∈ g(α) then c(α) = dc(β), and β /∈ h(α).

The construction

Given the lemma, the construction proceeds as follows. For α ∈ c, s ∈ [c2]<ω

and a ∈ [c]<ω put

F (α, s, a) =
{
β ∈ c : (∀c ∈ s)

(
dc(β) = c(α)

)}
\ a.

Furthermore, for each α, let Fα be the family of all sets of the form F (α, s, a).

I2. F (α, s1, a1) ∩ F (α, s2, a2) = F (α, s1 ∪ s2, a1 ∪ a2).

It is very well possible that F (α, s, a) = ∅ for some α, s and a; for example
when c(α) = 1 and dc is constantly 0: in that case F (α, {c}, ∅) = ∅. We will
see however that this does not happen too often.

Normality

The space is even hereditarily normal.
Let H and K be separated subsets of X, i.e., H ∩ cl K = clH ∩K = ∅.

We have to find disjoint open sets around H and K.

I3. It suffices to find, for each n, open sets Vn and Wn with H ∩ Ln ⊆ Vn and
cl Vn ∩ K = ∅, as well as K ∩ Ln ⊆ Wn and cl Wn ∩ H = ∅.
Hint: Let V =

S
n(Vm \

S
m6n cl Wn) and W =

S
n(Wm \

S
m6n cl Vn) .

I4. Let A ⊆ c and n ∈ ω. Then A × {n} and (c \ A) × {n} have disjoint open
neighbourhoods.

a. The statement holds for n = 0. Hint: See Exercise 2.1.

b. If the statement holds for n then it holds for n + 1. Hint: Let c be the charac-
teristic function of A and show that F (α, {c}, ∅) and F (β, {c}, ∅) are disjoint
whenever α ∈ A and β /∈ A. Look at A′ × {n}, where A′ =

S
α∈A F (α, {c}, ∅).
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32 Balogh’s Dowker space [ Ch. 5, § 2

I5. If m < n then K ∩ Lm and H ∩ Ln have disjoint open neighbourhoods.
a. There are disjoint open sets OK and OH in Um such that Ln ∩ cl K ⊆ OK and

Ln \ cl K ⊆ OH .

b. The set O∗
H = OH ∪ (Un \ (Um ∪ cl K)) is open and contains H ∩ Ln.

c. O∗
H and OK are as required.

I6. There are disjoint open sets Vn and O around H ∩ Ln and K respectively.
a. There are disjoint open sets Vn and O′ around H ∩Ln and K ∩Un respectively.

Hint: Apply the previous two exercises.

b. The set O = O′ ∪ (X \ (Un ∪ cl H)) is open and as required.

Countable paracompactness

We call a subset A of c separated if we can find for each α ∈ A a set Fα ∈ Fα

such that α /∈ Fβ and β /∈ Fα whenever α 6= β in A. A set is σ-separated if it
is the union of countably many separated sets.

I7. c is not σ-separated. Hint: Apply Lemma 2.1.

I8. Let n ∈ ω and A ⊆ c. Then A\ϕ(A) is separated, where ϕ(A) =
˘
α : (α, n+1) ∈

cl
`
A× {n}

´¯
.

I9. If n ∈ ω and Fn is closed and a subset of Un then An = {α : (α, 0) ∈ Fn} is the
union of n + 1 many separated sets. Hint: ϕn+1(An) = ∅.

I10. X is not countably paracompact.

Proof of Lemma 2.1

The proof of Lemma 2.1 is much like that in Section 1: we try to deal with
2c many possibilities by looking at their restrictions to countable elementary
substructures of H(θ), where θ is sufficiently big, larger than 22c

will work.
However, we need an extra twist to the construction. Assume we have f ,

g and h as in the lemma. We take two countable elementary substructures M
and N of H(θ), with f, g, h ∈ M and M ∈ N . We define A = c ∩ N and
B = {c � A : c ∈ c2 ∩M}.

I11. If α ∈ N and β /∈ A then β /∈ h(α).

I12.a. For every n the preimage f←(n) belongs to M .

b. If β /∈ A and f(β) = n then f←(n) is uncountable.

These two exercises show that it is quite easy to find α < β with f(α) =
f(β) and β /∈ h(α): simply take β outside A and α ∈ A with f(α) = f(β).

To get, given β, an α such that dc(β) = c(α) for all c ∈ g(α) we have to
do more work.

I13. If c ∈ c2 ∩ N \ M then c � A /∈ B. Hint: If c′ ∈ c2 ∩ M then c′ 6= c, use
elementarity.

Monday 19-11-2001 at 13:17:09 — balogh.tex



Ch. 5, § 2 ] Balogh’s example 33

For α ∈ c define eα : g(α) → 2 by eα(c) = c(α).

I14. The function eα depends only on the restriction of g to N , defined by gN (α) =
{c � N : c ∈ g(α)}.

I15. Let E = g(β) ∩M and n = f(β), and put e = eβ � E.
a. The set H = {γ : f(γ) = n, E ⊆ g(γ) and e = eγ � E} belongs to M and is

cofinal in c.

b. If F is a finite subset of M and α ∈ c ∩ M then there is a γ ∈ H ∩ M with
γ > α and F ∩ g(γ) \ E = ∅.

c. Choose, in M , a maximal subset K of H such that g(γ) ∩ g(δ) = E whenever
γ 6= δ in K. Then K is uncountable. Hint: If K is countable then K ⊆ M ;
consider K ∪ {β}.

d. If α ∈ K and c ∈ E then c(α) = c(β).

This gives us a clue as to how to define the value dc(β) for certain c: if
there is an α ∈ K with c ∈ g(α) then dc(β) = c(β) = c(α) if c ∈ E and
dc(β) = c(α) if c /∈ E. If there is no such α then dc(β) is not important, so
we set dc(β) = 0. However, this assumes that we know M and N , whereas
we need to define the dc knowing only c∩M , c∩N and the restrictions of f ,
g and h.

To give the true definition we let {(aβ , Aβ , Bβ , fβ , gβ , hβ) : β ∈ P} enu-
merate the set of structures of the form

(c ∩M, c ∩N, {c � (c ∩N) : c ∈ M}, f � N, gN , h � N),

where M,N ≺ H(θ), M ∈ N and f, g, h ∈ M . Also, gN is defined on A by
gN (α) = {c � (c ∩ N) : c ∈ g(α)}. We assume P and the enumeration are
chosen so that always Aβ ⊆ β.

Fix β ∈ P and consider the βth structure (aβ , Aβ , Bβ , fβ , gβ , hβ).
Inspired by Exercise 2.15 we consider triples (n, E, e), where n ∈ N, E ∈

[aβ ]<ℵ0 and e : E → {0, 1}. For each such triple put

H(n, E, e) = {γ ∈ Aβ : f(γ) = n, g(γ) ∩Bβ = E and e = eγ � E}.
Here we define eγ as above: eγ(c) = c(γ) for c ∈ gβ(γ).

Still using Exercise 2.15 as our guideline we consider the set Iβ of those
(n, E, e) for which H(n, E, e) has an infinite subset K(n, E, e) such that
gβ(γ) ∩ gβ(δ) = E whenever γ 6= δ in K(n, E, e).

I16. There are an infinite set Jβ in Aβ and a function uβ : Jβ → [Aβ 2]<ℵ0 with
disjoint values such that for every (n, E, e) ∈ Iβ there are infinitely many γ ∈
Jβ ∩K(n, E, e) with uβ(γ) = gβ(γ) \ E.

Now we define the dc:
1. if β ∈ P and c � Aβ ∈ Bβ then set dc(β) = c(β);
2. if β ∈ P and c � Aβ /∈ Bβ but c � Aβ ∈ uβ(α) for a (unique) α ∈ Jβ then

set then dc(β) = c(α);
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34 Balogh’s Dowker space [ Ch. 5, § 2

3. in all other cases set dc(β) = 0.
This definition works.

I17. Let f , g and h be given and take M and N with f, g, h ∈ M , M ∈ N and
M, N ≺ H(θ). Fix β with (aβ , Aβ , Bβ , fβ , gβ , hβ) = (c∩M, c∩N, {c�A : c ∈ M}, f �
N, gN , h � N). Let n = f(β), E = g(β ∩M) and e = eβ � E. If α ∈ Jβ ∩K(n, E, e)
then f(α) = f(β), β /∈ h(α) and dc(β) = c(α) for all c ∈ g(α).
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