
Chapter 4

Dowker spaces

Products of normal spaces need not be normal; the square of the Sor-
genfrey line is the best known example of this phenomenon. Lots of effort
has gone into investigating what normal spaces do have normal products.
The simplest case has turned out to be one of the most interesting: when is
X × [0, 1] normal? The spaces whose product with the unit interval I = [0, 1]
is normal were characterized by Dowker and normal spaces whose product
with I is not normal are called Dowker spaces.

1. Normality in products

We exhibit two non-normal products.
We first consider the square of the Sorgenfrey line. Remember that a

local base at a point a is given by
{
(b, a] : b < a

}
.

I1. The Sorgenfrey line is normal. Hint: Given F and G choose for every a ∈ S a
point xa < a such that (xa, a] ∩ F = ∅ if x /∈ F and (xa, a] ∩G = ∅ if x /∈ G; now
let U =

S
a∈F (xa, a] and V =

S
a∈G(xa, a].

I2. The Sorgenfrey plane S2 is not normal. Let P =
˘
(p,−p) : p ∈ P

¯
and Q =˘

(q,−q) : q ∈ Q
¯
, where P and Q are the sets of irrational and rational numbers

respectively.
a. P and Q are closed in S2.

Let U be an open set around P and for n ∈ N put Pn = {p ∈ P : (p − 2−n, p] ×
(−p− 2−n,−p] ⊆ U}.

b. There is an n such that int cl Pn 6= ∅ in the usual topology of the real line.

c. If q ∈ Q ∩ int cl Pn then (q,−q) ∈ cl U .

The next example is slightly better because, as we shall see, it shows
better how the ingredients in Dowker’s characterization appear.

I3. Consider the ordinal spaces ω1 and ω1 + 1.
a. ω1 and ω1 + 1 are normal.

b. ω1 × ω1 + 1 is not normal. Hint: Consider F =
˘
(α, α) : α ∈ ω1

¯
and G =˘

(α, ω1) : α < ω1

¯
; apply the Pressing-Down Lemma to show that G∩cl U 6= ∅

whenever U is an open set around F .
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2. Borsuk’s theorem

One of the reasons for wanting to know when X× I is normal is the following
theorem, due to Borsuk.

2.1. Theorem (Borsuk’s Homotopy Extension Theorem). Let X be a space
such that X×I is normal, let A be a closed subspace of X and let f, g : A → Sn

be continuous and homotopic. If f admits a continuous extension to X then
so does g and the extensions may be chosen homotopic, in fact by a homotopy
that extends the given homotopy between f and g.

Two maps f, g : X → Y are homotopic if there is a continuous map
H : X × I → Y such that H(x, 0) = f(x) and H(x, 1) = g(x) for all x.
We call H a homotopy between f and g. Thus Borsuk’s theorem asserts
that homotopies between maps can be extended provided one of the maps
can be extended. Note the codomain, this the n-sphere, i.e, the subspace
{x : ‖x‖ = 1} of Rn+1. For other codomains the proof is quite easy, e.g.,
for In the proof below finishes after the first step.

I1. Prove Borsuk’s Homotopy Extension Theorem. Let h : A × I → Sn be a
homotopy between f and g and let F : X → Sn be an extension of f . Let
B = (A × I) ∪ (X × {0}) and define k : B → Sn by k(x, t) = h(x, t) if t > 0
and k(x, 0) = F (x).

a. The map k can be extended to a neighbourhood U of B. Hint: Extend k to
K : X×I → D, where D is the massive ball, and let U =

˘
(x, t) : K(x, t) 6= 0

¯
;

compose K � U with the projection with 0 as its centre.

b. There is a neighbourhood V of A such that V × I ⊆ U .

c. There is a continuous function l : X → I such that l(x) = 1 for x ∈ A and
l(x) = 0 for x /∈ U .

d. The map H : (x, t) 7→ K(x, l(x) · t) is the desired homotopy.

3. Countable paracompactness

The property that characterizes normality of X × [0, 1] is countable paracom-
pactness. To define it we must first introduce the following notion.

3.1. Definition. A collection A of sets in a space X is locally finite if every
point of X has a neighbourhood that intersects only finitely many elements
of A.

I1. If A is locally finite then cl
S

A =
S
{cl A : A ∈ A}.

Given two covers A and B of a set we say that A is a refinement of B if
for every A ∈ A there is a B ∈ B such that A ⊆ B.
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3.2. Definition. A space is paracompact is every open cover has a locally
finite open refinement. It is countably paracompact is every countable open
cover has a locally finite open refinement.

To get a feeling for what locally finite open refinements can do we have
the following.

I2. a. A paracompact Hausdorff space is regular. Hint: Given a closed set F and
x ∈ X \ F choose, for every y ∈ F , an open set Uy with y ∈ Uy and x /∈ cl Uy.
Consider a locally finite open refinement of {X \ F} ∪ {Uy : y ∈ F}.

b. A paracompact regular space is normal.

I3. A space is countably paracompact iff every countable open cover has a countable
locally finite open refinement. Hint: If V is some locally finite open refinement of U,
choose UV ∈ U with V ⊆ UV for every V ∈ V. Put WU =

S
{V : UV = U}; then

{WU : U ∈ U} is locally finite and of cardinality not more than U.

I4. Let U be a locally finite open cover of the normal space X. There is an open
cover {VU : U ∈ U} of X such that cl VU ⊆ U for all U . Hint: Well-order U by ≺
and define VU by recursion on U : first put FU = X \

`S
W≺U VW ∪

S
W�U W

´
and

then choose VU with FU ⊆ VU and cl VU ⊆ U .

The following theorem gives more characterizations of countable para-
compactness.

3.3. Theorem. The following are equivalent for a space X.

1. X is countably paracompact;
2. if {Un : n ∈ ω} is an increasing open cover of X then there is a sequence
{Fn : n ∈ ω} of closed sets with Fn ⊆ Un for all n and X =

⋃
n intFn;

and
3. if {Fn : n ∈ ω} is a decreasing sequence of closed sets in X with empty

intersection then there is a sequence {Un : n ∈ ω} of open sets with
Fn ⊆ Un for all n and

⋂
n cl Un = ∅.

I5. Prove Theorem 3.3.
a. Prove 1 implies 2. Hint: Apply Exercise 3.3 to get {Vn : n ∈ ω} and put

Fn = X \
S

m>n Vm.

b. Prove 2 implies 1. Hint: Given {Un : n ∈ ω} apply 2 to {
S

m6n Un : n ∈ ω}
and put Vn = Un \

S
m<n Fm.

c. Prove 2 and 3 are equivalent.

The following is the characterization of countable paracompactness that
is used most often.

I6. A normal space X is countably paracompact iff whenever {Fn : n ∈ ω} is a
decreasing sequence of closed sets in X with empty intersection there is a sequence
{Un : n ∈ ω} of open sets with Fn ⊆ Un for all n and

T
n Un = ∅.

The following theorem is the promised characterization of normality of
X × [0, 1].
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3.4. Theorem. The product X×[0, 1] is normal iff X is normal and countably
paracompact.

The proof is in the following two exercises.

I7. Assume X × [0, 1] is normal.
a. X is normal.

b. X is countably paracompact. Hint: Let {Fn : n ∈ ω} be a decreasing sequence
of closed sets with empty intersection. Let F =

S
n

`
Fn × [2−n, 1]

´
and G =

X × {0}.

I8. Assume X is normal and countably paracompact. Let F and G be closed and
disjoint in X × [0, 1]. Let B be a countable base for the topology of [0, 1], closed
under finite unions. For x ∈ X let Fx = {t ∈ [0, 1] : (x, t) ∈ F} and define Gx

similarly.
a. Fx and Gx are closed and disjoint.

b. For every x there is a B ∈ B with Fx ⊆ B and cl B ∩Gx = ∅.

c. If B ∈ B then UB = {x : Fx ⊆ B and cl B ∩Gx = ∅} is open in X.

Take a locally finite open cover {VB : B ∈ B} of X with cl VB ⊆ UB for all B and
let V =

S
B∈B(VB ×B).

d. F ⊆ V and cl V ∩G = ∅. Hint: {VB ×B : B ∈ B} is locally finite.
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