
Chapter 2

Elementarity

This chapter introduces and studies elementary substructures ‘of the uni-
verse’.

1. Definability

Our first task is to define what definable subsets of a set are. Intuitively these
are sets determined by some formula, and this is how we shall work with them,
but the formal definition is more algebraic in nature. The problem is that we
cannot quite formalize a quantifier like “there exists a formula”.

1.1. Definition. For n ∈ ω and i, j < n set

1. Proj(A,R, n) = {s ∈ An : (∃t ∈ R)(t � n = s)};
2. Diag=(A,n, i, j) = {s ∈ An : s(i) = s(j)}; and
3. Diag∈(A,n, i, j) = {s ∈ An : s(i) ∈ s(j)}.

Using these operations we define the definable relations on A, as follows.
First by recursion on k ∈ ω and all n simultaneously define Df ′(k,A, n) by

Df ′(0, A, n) = {Diag=(A,n, i, j) : i, j < n} ∪ {Diag∈(A,n, i, j) : i, j < n}
Df ′(k + 1, A, n) = Df ′(k,A, n) ∪ {An \R : R ∈ Df ′(k,A, n)}

∪ {R ∩ S : R,S ∈ Df ′(k,A, n)}
∪ {Proj(A,R, n) : R ∈ Df ′(k,A, n+ 1)}

Once this is done we set Df(A,n) =
⋃

k∈ω Df ′(k,A, n). These are the definable
n-ary relations on A.

The family of definable relations is closed under taking complements,
intersections and projections.

1.2. Lemma. If R,S ∈ Df(A,n) then An \ R,R ∩ S ∈ Df(A,n) and if R ∈
Df(A,n+ 1) then Proj(A,R, n) ∈ Df(A,n).

Taking complements, intersections and projections, correspond to apply-
ing ¬, ∧ and ∃vi to formulas. The following lemma makes this connection
more explicit.
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Ch. 2, § 1 ] Definability 15

1.3. Lemma. Let ϕ(x0, . . . , xn−1) be a formula whose free variables are among
x0, . . . , xn−1. Then for every set A{

s ∈ An : ϕA
(
s(0), . . . , s(n− 1)

)}
∈ Df(A,n).

In order to make sense of this lemma we must delve into the notion of a
formula, explain what free variables are, and define ϕA

(
s(0), . . . , s(n− 1)

)
.

Formulas

We all have a good idea what a formula is and we usually know how to
recognise one when we see it. However, when we want to treat formulas
mathematically we have to formalise our ‘good idea’. We begin by listing the
basic symbols in the language of set theory. These are: ∧, ¬, ∃, (, ), ∈, = and
infinitely many variables: vi (one for each natural number i). Our formulas
will be finite sequences of basic symbols.

1.4. Definition. The formulas of set theory are built up as follows:
1. for all natural numbers i and j the expressions vi ∈ vj and vi = vj are

formulas; and
2. if ϕ and ψ are formulas then so are (ϕ) ∧ (ψ), ¬(ϕ) and ∃vi(ϕ) for any i.

Note the parentheses, these help to keep everything tidy. In practice we
would consider v0 ∈ v2 ∧ ¬(v3 = v4) to be a good formula (and we shall often
do so) but when we want to prove something about formulas we shall replace
it with its correct form (v0 ∈ v2) ∧

(
¬(v3 = v4)

)
. From elementary logic we

know that the formulas allowed by Definition 1.4 express everything we want
to express.

I1. The following are abbreviations for certain more complicated formulas: ∀vi(ϕ),
(ϕ) ∨ (ψ), (ϕ) → (ψ), (ϕ) ↔ (ψ), vi /∈ vj and vi 6= vj . Write down these
complicated forms.

We shall explain most of the notions related to formulas by way of the
following one

(1)
(
∃v0(v0 ∈ v1)

)
∧

(
∃v1(v2 ∈ v1)

)
.

I2. A subformula of a formula ϕ is a consecutive sequence of symbols from ϕ that is
itself a formula. Identify the subformulas of formula 1.

The scope of the occurrence of a quantifier ∃vi in a formula is the (unique)
subformula beginning with that ∃vi.

I3. a. Identify the scopes of ∃v0 and ∃v1 in formula 1.

b. Prove that the scope of an occurrence is well-defined.

An occurrence of a variable vi in a formula is bound if it lies in the scope
of an occurrence of ∃vi in that formula, otherwise it is free.
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16 Elementarity [ Ch. 2, § 1

I4. Identify which occurrence of v1 in formula 1 is free and which is bound.

The truth or falsity of a formula depends on its free-occurring variables,
not on the bound variables. Therefore we would write formula 1 as ϕ(v1, v2),
to indicate that it is about the free variables v1 and v2. However, common
usage is a bit more flexible: if necessary we will write our formula as, for
example, ϕ(v0, v1, v2, v3) to indicate that its free variables are among v0, v1,
v2 and v3.

Now, if a, b, c and d are constants or other variables then ϕ(a, b, c, d) is
the result of replacing every free occurence of v0, v1, v2 and v3 by a, b, c and
d respectively. Thus, ϕ(4, 3, 2, 1) is(

∃v0(v0 ∈ 3)
)

∧
(
∃v1(2 ∈ v1)

)
,

and ϕ(4, v0, v5, 1) is (
∃v0(v0 ∈ v0)

)
∧

(
∃v1(v5 ∈ v1)

)
.

The second substitution is unfortunate because it has changed the meaning
of the first part of ϕ from “v1 has an element” to “something is an element
of itself”. Such substitutions will not be allowed; we only consider free sub-
stitutions: a substitution ϕ(y1, y2, y3, y4) is free if no free occurence of an
original vi is in the scope of a quantifier ∃yi (this only matters if yi is a
variable of course).

In Lemma 1.3 we substitute elements of A for the free occurences of the
variables in ϕA; in that case there is no problem with bad substitutions: the
elements of A are not variables.

Finally we define what ϕA (the relativation of ϕ to A) means:
1. (vi = vj)A is vi = vj and (vi ∈ vj)A is vi ∈ vj ;
2. (ϕ ∧ ψ)A is ϕA ∧ ψA and (¬ϕ)A is ¬(ϕA); and
3. (∃vi(ϕ)

)A is ∃vi

(
(vi ∈ A) ∧ (ϕ)A

)
.

Thus, informally, ϕA is ϕ with every ∃vi replaced by ∃vi ∈ A.

I5. Give ϕA, where ϕ is formula 1.

Now we are ready to prove Lemma 1.3; we know what a formula is, we
know what ϕA is and we know how substitutions work. We abbreviate the
set

{
s ∈ An : ϕA

(
s(0), . . . , s(n − 1)

)}
as G(ϕ,A) and prove the lemma by

induction on the length of ϕ.

I6. a. If ϕ is xi ∈ xj then G(ϕ,A) = Diag∈(A,n, i, j).

b. If ϕ is xi = xj then G(ϕ,A) = Diag=(A,n, i, j).

c.G(ϕ ∧ ψ,A) = G(ϕ,A) ∩G(ϕ,A).

d.G(¬ϕ,A) = An \G(ϕ,A).

If ϕ = ∃y(ψ) then there are two cases: y is not one of the variables x0, . . . , xn−1

or y = xj for some j < n.
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Ch. 2, § 2 ] Elementary substructures 17

e. If y is not one of x0, . . . , xn−1 then G(ϕ,A) = Proj(A,G(ψ,A), n), where we
write ψ as ψ(x0, . . . , xn−1, y).

In case, for example, y = x0 take a variable z not occuring in ϕ, write the formula
ψ(z, x1, . . . , xn−1) as ψ′(x0, . . . , xn−1, z) and let ϕ′ be ∃z(ψ′).

f. The substitution x0 → z is free.

g.ψ and ψ′ are logically equivalent, hence so are ϕ and ϕ′.

G(ϕ,A) = G(ϕ′, A) = Proj(A,G(ψ′, A), n).

2. Elementary substructures

In order to define what elementary substructures are we must count the defi-
nable relations.

2.1. Definition. By recursion on m, we define En(m,A, n), for all n simul-
taneously, as follows
1. If m = 2i · 3j and i, j < n then En(m,A, n) = Diag∈(A,n, i, j).
2. If m = 2i · 3j · 5 and i, j < n then En(m,A, n) = Diag=(A,n, i, j).
3. If m = 2i · 3j · 52 then En(m,A, n) = An \ En(i, A, n).
4. If m = 2i · 3j · 53 then En(m,A, n) = En(i, A, n) ∩ En(j, A, n).
5. If m = 2i · 3j · 54 then En(m,A, n) = Proj(A,En(i, A, n+ 1), n).
6. In all other cases En(m,A, n) = ∅.

I1. For any A and n we have Df(A,n) = {En(m,A, n) : m ∈ ω}.
a.∀n

`
En(m,A, n) ∈ Df(A,n)

´
for all m. Hint: by induction on m.

b.∀n
`
Df ′(k,A, n) ⊆ {En(m,A, n) : m ∈ ω}

´
for all k. Hint: by induction on k.

c. The set Df(A,n) is countable.

The proof of Lemma 1.3 yields the following improvement.

2.2. Lemma. Let ϕ(x0, . . . , xn−1) be a formula whose free variables are among
x0, . . . , xn−1. Then there is an m such that for every set A{

s ∈ An : ϕA
(
s(0), . . . , s(n− 1)

)}
= En(m,A, n).

Using the enumeration we define the relation M ≺ N between sets.

2.3. Definition. We say that M is an elementary substructure of N — no-
tation M ≺ N — if M ⊆ N and

∀n,m
(
En(m,M,n) = En(m,N, n) ∩Mn

)
.

The following Lemma connects this notion to formulas; Lemma 2.2 faci-
litates the proof.

2.4. Lemma. Let ϕ(x0, . . . , xn−1) be a formula whose free variables are among
x0, . . . , xn−1. Then M ≺ N implies{
s ∈Mn : ϕM

(
s(0), . . . , s(n−1)

)}
=

{
s ∈ Nn : ϕN

(
s(0), . . . , s(n−1)

)}
∩Mn.
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18 Elementarity [ Ch. 2, § 2

To get a feeling for what the definition and this lemma say we look at an
important special case.

I2. If a ∈M ≺ N and a ∩N 6= ∅ then a ∩M 6= ∅.
a. Prove this from the definition. Hint: Note that the assumption says a ∈

Proj(N,Diag∈(N, 2, 1, 0), 1) ∩M .

b. Prove this using Lemma 2.4. Hint: Let ϕ(v0) be ∃v1(v1 ∈ v0) and note that
the assumption says a ∈ {s ∈ N : ϕN (s)} ∩M .

A lot of arguments involving elementarity boil down to a clever application
of this exercise: to see that something of the right kind is in M show that the
set of things of the right kind belongs to M and that its intersection with N
is nonempty.

Another special case is when n = 0. This is because A0 = {∅} (only
the empty function has domain 0). Therefore En(m,A, 0) is either 0 or 1.
In Lemma 2.2 the case n = 0 corresponds to formulas without free variables,
so-called sentences, for which ϕA is either false (if En(m,A, 0) = 0) or true
(if En(m,A, 0) = 1). This leads to the following notion from Model Theory:
A and B are elementarily equivalent if En(m,A, 0) = En(m,B, 0) for all m;
we write this as A ≡ B.

I3. If A ≺ B then A ≡ B.

I4. If m is of the form 2i · 3j · 54 then En(m,A, 0) = 1 iff En(i, A, 1) 6= ∅. Therefore
an elementary substructure of a nonempty set is nonempty.

I5. ω is the only elementary substructure of itself. Let M ≺ ω.
a. ∅ ∈M . Hint: use the sentence ∃x

`
∀y(y /∈ x)

´
.

b. If n ∈ M then n + 1 ∈ M . Hint: use the formula ∃y
`
(x ∈ y) ∧ ∀z((x ∈ z) →

((z = y) ∨ (y ∈ z)))
´

The following fundamental result shows that a given structure has many
elementary substructures. It is a special case of the Löwenheim-Skolem the-
orem from Model Theory.

2.5. Theorem. Given N andX ⊆ N there is anM such thatX ⊆M , M ≺ N
and |M | 6 max(ℵ0, |X|).

I6. Prove Theorem 2.5. Hint: Let C be a well-ordering of N . For m,n ∈ ω define
Hmn : Nn → N as follows. If m is of the form 2i · 3j · 54 and s ∈ En(m,N, n) =
Proj(N,En(i,N, n+1), n) then Hmn(s) is the C-first element of N such that sax ∈
En(i,N, n+ 1); in all other cases let Hmn(s) be the C-minimum of N . Let X0 = X
and, recursively, let Xk+1 = Xk ∪

S
m,n∈ω Hmn[Xn

k ]. In the end let M =
S

k∈ω Xk.

a. For all k we have |Xk| 6 max(ℵ0, |X|) and also |M | 6 max(ℵ0, |X|).
b. For all m and n we have En(m,M,n) = En(m,N, n) ∩Mn. Hint: Induction

on m, for all n simultaneously.
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Ch. 2, § 3 ] Elementary substructures of the Universe 19

3. Elementary substructures of the Universe

In applications we work — intuitively — with elementary substructures of the
set-theoretic universe but, because of things like ‘the set of all sets’, this can
only be done on an intuitive level.

However, nothing prevents us from sharpening our intuition a bit before
we put our method on a firm foundation. So, for the moment we treat V ,
the universe of all sets, as a set and fix an elementary substructure, M , of it.
Observe that, because all sets are in V , for any formula ϕ the relativization ϕV

is just ϕ itself.

What must be in M?

Certain things must be in M , simply because they are definable individuals.
For instance, ∅ ∈ M because it is the unique set without elements. To see
this note that the empty set is the only x that satisfies ∀z(z ∈ x → z 6= z).
Therefore if we write this formula as ϕ(x) then the sentence ∃xϕ(x) is true
in V , i.e., after applying Lemma 2.2 to get a number i for ϕ and setting
m = 2i · 30 · 54 we see that En(m,V, 0) = 1 and hence En(m,M, 0) = 1. Now
apply Exercise 2.4 to see that both En(i, V, 1) and En(i,M, 1) are nonempty.
But because M ≺ V we know that En(i,M, 1) = En(i, V, 1) ∩M . Now use
uniqueness of ∅ to see that En(i, V, 1) = {∅}; therefore the only possibility
is that En(i,M, 1) = {∅} as well, and so ∅ ∈M .

I1. a.ω ⊆M . Hint: Apply Exercise 2.5 or do it now.

b.ω ∈M . Hint: ω is the (unique) minimal inductive set.

c.ω1 ∈M . Hint: Find a formula that defines ω1.

We can apply uniqueness to show that M is closed under various set-
theoretic operations, the following exercise contains small sample.

I2. a. If a ∈M then
S
a ∈M .

b. If a, b ∈M then {a, b} ∈M and so a ∪ b ∈M .

c. If a ∈M then P(a) ∈M .

The last part of this exercise gives rise to Skolem’s paradox. In case
M is countable the uncountable set P(ω) belongs to M . Now, as M is an
elementary substructure of the universe, all axioms of set theory are true
in M , so M must somehow contain information that P(ω) is uncountable.
But P(ω) ∩M is countable, so how can this be? The answer is that if f is
a map from ω to P(ω) that belongs to M then it is still subject to Cantor’s
diagonal argument, which yields a subset A of ω that is not in the range of f .
So f belongs to {g : ∃x(x ∈ P(ω) ∧ x /∈ ran g)} ∩M , by elementarity f must
therefore also belong to {g : ∃x(x ∈M ∧ x ∈ P(ω) ∧ x /∈ ran g)}. This shows
that no surjective map from ω onto P(ω) ∩M can be a member of M .

elementarity.tex — Tuesday 23-08-2005 at 12:07:42



20 Elementarity [ Ch. 2, § 4

I3. If F is a finite subset of M then F ∈ M . Hint: Fix n ∈ ω and a bijection
f : n → F . Apply Exercise 3.2 to show by induction that {f(j) : j < i} ∈ M for
every i.

I4. If a ∈ M is countable then a ⊆ M . Hint: a belongs to
˘
x : ∃f

`
(dom f = ω) ∧

(ran f = x)
´¯

∩M , so there is an f ∈ M with dom f = ω and ran f = x. Use
uniqueness to show that f(i) ∈M for all i ∈ ω.

I5. If M is countable then M ∩ ω1 is a countable ordinal.

Closed and unbounded sets and stationary sets

CountableM enable us to give fast proofs of facts about closed and unbounded
sets and about stationary sets. As in the previous chapter we let C be the
family of closed and unbounded subsets of ω1. Also, for countable M we put
δM = M ∩ ω1.

I6. a. C ∈M . Hint: Write down a formula that defines C.

b. If M is countable and C ∈ C∩M then δM ∈ C. Hint: Every α < δM belongs to
M and to {β : ∃γ(γ ∈ C ∧ γ > β)} ∩M , deduce that C ∩ δM is cofinal in δM .

c. If {Cn : n ∈ ω} ⊆ C then
T

n Cn ∈ C. Hint: Let α ∈ ω1 be arbitrary. Let M be
countable with {Cn : n ∈ ω} ∪ α ⊆M . Consider δM .

d. If M is countable and 〈Cα : α < ω1〉 is a sequence in C that belongs to M then
δM ∈ 4α Cα. Hint: If α ∈M then Cα ∈M .

I7. Assume M is countable. If S ∈ M ∩ P(ω1) and δM ∈ S then S is stationary.
Hint: S ∈

˘
A ∈M : ∀C

`
(C ∈M ∧ C ∈ C) → C ∩A 6= ∅

´¯
.

4. Proofs using elementarity

We reprove some of the results from Chapter 1 using elementarity.
First the pressing-down lemma.

I1. Let f : ω1 → ω1 be regressive and let M be countable with f ∈M .
a.α = f(δM ) ∈M .

b.S = {β : f(β) = α} belongs to M and it is stationary.

Next the ∆-system lemma.

I2. Let F = 〈Fα : α < ω1〉 be a sequence of finite subsets of ω1. Let M be countable
with F ∈M .

a. Let R = FδM ∩ δM , then R ∈M .

b. The set S = {α : R = Fα ∩ α} belongs to M .

c. The set C = {α : (∀β < α)(maxFβ < α)} is closed and belongs to M ; also
δM ∈ C, so C is unbounded as well.

d. The set T = C ∩ S is stationary and if α < β in T then Fα ∩ Fβ = R.

And finally:
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I3. Let f : ω1 → R be continuous and let M be countable with f ∈M .
a. Let ε > 0 and take α < δM such that

˛̨
f(β)−f(δM )

˛̨
< ε whenever α < β 6 δM .

Then
˛̨
f(β)− f(γ)

˛̨
< 2ε whenever β, γ > α.

b. f is constant on [δM , ω1).

5. Justification

Taking elementary substructures of the universe of all sets is not something
that can be formalized in Set Theory. One can formalize the applications in
Set Theory, however. To see this we must realize that the arguments use a
limited supply of sets and simply take a large enough set that contains these
sets and rework the argument inside that big set. The most popular of these
large sets are called H(θ). We shall describe these and show how to work
with them.

To define theH(θ) we must first define the transitive closure of sets. First,
a set x is said to be transitive if it satisfies (∀y ∈ x)(y ⊆ x). Around every
set we can find a smallest transitive set, as follows. Given x put x0 = x and,
recursively, xn+1 = xn ∪

⋃
xn; in the end set trclx =

⋃
n xn.

I1. a. trclx is transitive.
b. If y is transitive and x ⊆ y then trclx ⊆ y.

Now we can define H(θ), for cardinal numbers θ:

H(θ) = {x : |trclx| < θ}.
Thus, e.g., H(ℵ1) is the set of all hereditarily countable sets.

I2. a.ω ∈ H(ℵ1), ω1 ∈ H(ℵ2) and, generally, κ ∈ H(κ+) for all κ.
b.ω ⊆ H(ℵ0), ω1 ⊆ H(ℵ1), and, generally, κ ⊆ H(κ) for all κ.

c. P(ω) ∈ H(c+), P(ω1) ∈ H
`
(2ℵ1)+

´
, and, generally, P(κ) ∈ H

`
(2κ)+

´
for all κ.

d. P(ω) ⊆ H(ℵ1), P(ω1) ⊆ H(ℵ2), and, generally, P(κ) ⊆ H(κ+) for all κ.

We check that the proofs from Section 4 can be done within relativelt
small H(θ).

I3. a. Exercise 3.6 can be done for M ≺ H(ℵ2). Hint: C ⊆ H(ℵ2).
b. Exercise 3.7 can be done for M ≺ H(ℵ2). Hint: Replace C ∈ C by a formula

that expresses ‘C is cub’.
c. The proofs of the pressing-down lemma and ∆-system lemma can be done with
M ≺ H(ℵ2).

d. Exercise 4.3 requires M ≺ H(c+).

Theorem 2.5 admits refinements. The following will be needed in the
proof of Arkhangel′skĭı’s theorem.

I4. Let X ⊆ H(θ) be of cardinality c (or less). There is an M such that X ⊆ M ,
M ≺ H(θ), |M | 6 c and ωM ⊆ M . Hint: In the original proof redefine the Xk so
that ωXk ⊆ Xk+1.
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