Chapter 7

A Dowker space of size $\aleph_{\omega+1}$

In this chapter we show that Rudin's Dowker space has a closed subspace of cardinality $\aleph_{\omega+1}$ that is also a Dowker space.

1. A special sequence in $\prod_{n=1}^{\infty} \omega_n$

We shall not be working with the full product $\prod_{n=1}^{\infty} \omega_n$ but with a subproduct over a subset B of N. For $B \subseteq N$ we write $P_B^{-n-1} \prod_{n \in B} (\omega_n + 1)$ and $Q_B = \prod_{n \in B} \omega_n$. As before, for $x, y \in P_B$ we write $\prod_{n\in B}\omega_n$. As before, for $x, y \in P_B$ we write

- $x < y$ if $(\forall n \in B)(x_n < y_n);$
- $x \leq y$ if $(\forall n \in B)(x_n \leq y_n);$
- $x <^* y$ if $\{n : x_n \geq y_n\}$ is finite;
- $x \leqslant^* y$ if $\{n : x_n > y_n\}$ is finite; and
- $x = *y$ if $\{n : x_n \neq y_n\}$ is finite.

For us the following result, which we quote without proof, will give us our Dowker subspace.

1.1. THEOREM. There are a subset B of N and a sequence $\langle x_\alpha : \alpha < \aleph_{\omega+1} \rangle$ in Q_B such that

- 1. the sequence is increasing with respect to $\langle \cdot, i.e., x_{\alpha} \rangle \langle x_{\beta}, x_{\beta} \rangle$ whenever $\alpha < \beta$; and
- 2. the sequence is cofinal, i.e., if $x \in Q_B$ then there is an α with $x \leq x_\alpha$.

We call a sequence as in this theorem an $\aleph_{\omega+1}$ -scale. We can improve the scale a bit.

► 1. We can assume that for every δ of uncountable cofinality if $\{x_\alpha : \alpha < \delta\}$ has a least upper bound with respect to \leq ^{*} then x_δ is such a least upper bound.

Hint: Start with some $\aleph_{\omega+1}$ -scale $\langle y_\alpha : \alpha < \aleph_{\omega+1} \rangle$. Given $\langle x_\alpha : \alpha < \delta \rangle$ let x_δ be a least upper bound in case cf $\delta > \omega_0$ and a least upper bound exists, otherwise let $x_{\delta} = y_{\beta}$, where β is minimal with $x_{\alpha} <^* y_{\beta}$ for all α .

We shall need many least upper bounds. We write $B_k = B \cap (k, \omega)$ when $k \in \mathbb{N}$.

1.2. LEMMA. Let $k \geq m$ and let $\langle \alpha_{\eta} : \eta \langle \aleph_m \rangle$ be strictly increasing with $\delta = \sup_{\eta} \alpha_{\eta} < \aleph_{\omega+1}$. Let $\langle y_{\eta} : \eta < \aleph_m \rangle$ be a sequence in Q_{B_k} that is

kojman-shelah.tex — Sunday 21-08-2005 at 15:34:23

40 A DOWKER SPACE OF SIZE $\aleph_{\omega+1}$ [Ch. 7, § 2

increasing with respect to \lt and such that $y_{\eta} =^* x_{\alpha_{\eta}}$ for all η , and let y be the pointwise least upper bound of the y_{η} .

- 1. $y \in Q_{B_k}$ and it is a least upper bound of $\langle x_{\alpha_{\eta}} : \eta < \aleph_m \rangle$;
- 2. cf $y(n) = \aleph_m$ for all $n > k$; and
- 3. $y =^* x_\delta$.

 \blacktriangleright 2. Prove Lemma 1.2.

a. cf $y(n) = \aleph_m$ for $n > k$. Hint: The sequence is \lt -increasing. b. $y \in Q_{B_k}$. Hint: Use cf $y(n) = \aleph_m$.

Let y' be any upper bound of the $x_{\alpha_{\eta}}$ and $C = \{n \in B : n > k \text{ and } y'(n) < y(n)\}.$ c. For $n \in C$ there is η_n with $y_{\eta_n}(n) > y'(n)$. d. $\sup\{\eta_n : n \in C\} = \eta < \aleph_m$. e. $y_{\eta}(n) \geq y_{\eta_n}(n) > y'(n)$ for $n \in C$. f. C is finite. Hint: $y_{\eta} =^* x_{\alpha_{\eta}} \leq^* y'$. $g. y =^* x_\delta.$

2. The space

We use a subproduct of Rudin's space X, to wit the space X_B , where $X_B =$ $\{x \mid B : x \in X\}.$

 \blacktriangleright 1. The space X_B is also a Dowker space.

The desired subspace Z of X_B is now easily defined:

$$
Z = \{ x \in X_B : (\exists \alpha < \aleph_{\omega+1})(x =^* x_\alpha) \}.
$$

Some simple but useful observations about Z.

- **► 2.** The space Z has cardinality $\aleph_{\omega+1}$. Hint: If $\alpha < \aleph_{\omega+1}$ then $\{x \in X_B : x =^* x_\alpha\}$ has cardinality $\aleph_{\omega+1}$.
- **► 3.** If $x \in \mathbb{Z}$ then there is a unique α with $x =^* x_\alpha$.
- ► 4. If $x, y \in Z$ then $x <^* y$ or $y <^* x$ or $x =^* y$.

Z is collectionwise normal

To show that Z is (collectionwise) normal it suffices to show that Z is closed in X_B .

► 5. Assume $m \leq k$ and let $\langle y_n : \eta \leq \aleph_m \rangle$ be a sequence in Z such that $\langle y_n | B_k : \eta \leq \eta \rangle$ \aleph_m is \langle -increasing and let y be its pointwise supremum. Then $y \in Z$. Hint: Apply Lemma 1.2; for every η there is one α_{η} with $y_{\eta} =^* x_{\alpha_{\eta}}$.

Now we show that Z is closed in X_B . Fix a point $t \in X_B$ that is in the closure of Z. For every $z \in Z$ put $E(z, t) = \{n \in B : z_n = t_n\}$. Of course we seek a z so that $E(z, t)$ is cofinite.

Sunday 21-08-2005 at 15:34:23 — kojman-shelah.tex

 $\text{Ch. 7, } \S 2$] The space 41

- ► 6. If $z \in Z$ and $z \leq t$ then $E(z, t)$ is finite or cofinite. Define y by $y_n = 0$ if $n \in E(z, t)$ and $y_n = z_n$ if $n \notin E(z, t)$.
	- a. $y < t$ and there is $x \in Z \cap (y, t]$.
	- b. If $z <^* x$ then $E(z, t)$ is finite. Hint: $\{n : z_n < x_n\} \cap E(z, t) = \emptyset$.
	- c. If $x =^* z$ or $x <^* z$ then $E(z, t)$ is cofinite. Hint: $\{n : x_n < z_n\} \subseteq E(z, t)$.

For $w \subseteq B$ let $Z_w = \{z \in Z : z \leq t \text{ and } E(z, t) = w\}$. Note that Z_w is only nonempty if w is finite or cofinite.

► 7. There are w such that $t \in \text{cl } Z_w$. Hint: X_B is a P-space, show that $\text{cl}\{z \in Z: Z \in Z_w\}$ $z \leqslant t$ = \bigcup_{w} cl Z_w .

Fix some w such that $t \in \text{cl } Z_w$; if this w is infinite we are done, so assume it is finite. Also put $M_m = \{n \in B : \text{cf } t_n = \aleph_m \}$ and $M_{\leq m} = \bigcup_{i \leq m} M_i$.

 \triangleright 8. There is an m such that M_m is infinite.

Let m be minimal such that M_m is infinite. Let $k = \max(M_{\leq m} \cup w)$. For each $n \in M_n$ fix an increasing and cofinal sequence $\langle \gamma_n^n : \eta \langle \aleph_m \rangle$ in t_n .

- **► 9.** There is a sequence $\langle y_{\eta} : \eta \langle \mathcal{R}_m \rangle$ in Z_w such that
	- 1. $y_n \leq t$ for all η ;
	- 2. if $\eta < \zeta$ then $y_{\eta} < y_{\zeta} < t$ on B_k ; and
	- 3. $y_{\eta}(n) \geqslant \gamma_{\eta}^{n}$ for $n \in B_{k} \cap M_{m}$.
- **► 10.** Let y be the pointwise supremum of the sequence $\langle y_{\eta} : \eta \langle \mathcal{R}_m \rangle$. a. $y \in Z$. b. $E(y, t)$ is cofinite. Hint: $M_n \subseteq E(y, t)$.

c. $t \in Z$.

Z is not countably paracompact

This is relatively easy. Let $F_n = \{z \in X_B : (\forall i \in B)(i \leq n \rightarrow z_i = \omega_i)\}\)$ for every n.

- ▶ 11. If U is open in Z and $U \supseteq F_n \cap Z$ then there is $z \in Z$ with $(z, t] \cap Z \subseteq U$. a. The set $V = U \cup (X_B \setminus Z)$ is open in X_B and $F_n \subseteq V$.
	- b. There is $x \in X_B$ with $(x, t] \cap X_B \subseteq V$.
	- c. There is $z \in Z$ with $z > x$.
- ► 12. If U_n is open and $U_n \supseteq F_n$ for all n then $\bigcap_n U_n \neq \emptyset$.

kojman-shelah.tex — Sunday 21-08-2005 at 15:34:23