
Chapter 1

Preliminaries

1. Well-orderings

A well-ordering of a set is a linear order ≺ of it such that every nonempty
subset has a ≺-minimum. The natural ordering of N is a well-ordering; it is
the shortest of all well-orderings of N. To get an example of a longer well-
ordering define n ≺ m iff 1) n is even and m is odd or 2) n and m are
both even or both odd and n < m: we put all odd numbers after the even
numbers but keep all even and all odd numbers in their natural order. This
example illustrates one important difference between the natural order on N
and most other well-orderings on N: there will be elements, other than the
minimum, without immediate predecessor. Indeed, 1 is not the ≺-minimum
of N, because 1024 ≺ 1, but if n ≺ 1 then also n + 2 ≺ 1 and n ≺ n + 2.
An element like 1 in the above example will be called a limit ; elements with
a direct predecessor will be called successors. Observe, however, that every
element (other than the maximum) of a well-ordered set does have a direct
successor. We shall denote the direct successor of an element x by x + 1.

I1. Every compact subset of the Sorgenfrey line is well-ordered by the natural order
of R. Hint: Let X be such a compact set and A ⊆ X. Note that X is also compact
as a subset of R and hence bounded. Let a = inf A and consider a finite subcover
of the open cover

˘
(−∞, a]

¯
∪

˘
(b,∞) : b > a

¯
of X; deduce that a ∈ A.

An initial segment of a well-ordered set (X,≺) is a subset I with the
property that x ∈ I and y ≺ x imply y ∈ I. Note that either I = X or
I = {x : x ≺ p}, where p = minX \ I. It follows that initial segments are
comparable with respect to ⊂. We let IX denote the family of all proper initial
segments of X and I+

X denotes IX ∪ {X}, the family of all initial segments
of X. We shall often use p̂ as a convenient shorthand for {x : x ≺ p}.

Induction and recursion

Well-orderings enable us to do proofs by induction and perform constructions
by recursion.

1.1. Theorem (Principle of Induction). Let (X,≺) be a well-ordered set and
let A be a subset of X such that {y : y ≺ x} ⊆ A implies x ∈ A for all x ∈ X.
Then A = X.

1
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2 Preliminaries [ Ch. 1, § 1

This is essentially a reformulation of the definition of well-ordering. The
straightforward proof is by contraposition: if A 6= X then x = minX \ A
satisfies x̂ ⊆ A yet x /∈ A.

There is an alternative formulation that bears closer resemblance to the
familiar principle of mathematical induction.

I2. Let (X,≺) be a well-ordered set and let A be a subset of X that satisfies
1) min X ∈ A, 2) if x ∈ A then x + 1 ∈ A, and 3) if x is a limit element and
x̂ ⊆ A then x ∈ A. Then A = X.

The main use of this principle is in showing that all elements of a well-
ordered set have a certain property. By way of example we consider iso-
morphisms of well-ordered sets.

I3. Isomorphisms between well-ordered sets are unique: if f and g are order-preserv-
ing bijections between (X,≺) and (Y, @) then f = g. Hint: Let I =

˘
x : f(x) =

g(x)
¯

and apply the principle of induction.

I4. The well-ordered sets (X,≺) and (IX ,⊂) are isomorphic.

1.2. Theorem (Principle of Recursion). Let (X,≺) be a well-ordered set, Y
any set and F the family of all maps f whose domain is an initial segment
of X and whose range is in Y . For every map F : F → Y there is a unique
map f : X → Y such that f(x) = F

(
f � x̂

)
for every x.

The proof of this principle offers a good exercise in working with well-
orders.

I5. Let G be the subfamily of F consisting of all approximations of f : these are
functions g that satisfy g(x) = F

`
g � {y : y ≺ x}

´
for all x in their domains.

a. If g, h ∈ G and dom g ⊆ dom h then g = h � dom g. Hint: Use the principle of
induction.

b. The union f =
S

G is a function that belongs to G.

c. The domain of f is equal to X.

d. If f and g are two functions that satisfy the conclusion of the principle of
recursion then f = g.

The Principle of Recursion formalises the idea that a function can be
constructed by specifying its initial segments. By way of example we show
how it can be used to show that any two well-ordered sets are comparable.

We compare well-ordered sets by ‘being an initial segment of’, more pre-
cisely we say that (X,≺) is shorter than (Y,@) if there is y ∈ Y such that
(X,≺) is isomorphic to the initial segment {z : z @ y} of Y .

I6. The well-ordered set (X,≺) is shorter than (I+
X ,⊂).

I7. Let (X,≺) and (Y, @) be well-ordered sets. Let F be the set of maps whose
domain is an initial segment of X and whose range is contained in Y . Define
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Ch. 1, § 2 ] Ordinals 3

F : F → Y ∪ {Y } by F (f) = min(Y \ ran f) if the right-hand side is nonempty
and F (f) = Y otherwise. Apply the principle of recursion to F to obtain a map
f : X → Y ∪ {Y }.

a. If x ≺ y in X and f(y) 6= Y then f(x) @ f(y).

b. If there is an x in X such that f(x) = Y then Y is shorter than X.

c. If Y /∈ ran f then X and Y are isomorphic if ran f = Y , and X is shorter than Y
if ran f ⊂ Y .

I8. Let (X,≺) and (Y, @) be well-ordered sets. Then either Y is shorter than or
isomorphic to X or I+

X is shorter than or isomorphic to Y .

In practice a construction by recursion proceeds less formally. One could,
for example, describe the construction of the map f from the Exercise 1.7 as
follows: “define f(minX) = minY and, assuming f(y) has been found for
all y ≺ x, put f(x) = min Y \

{
f(y) : y ≺ x

}
if this set is nonempty, and

f(x) = Y otherwise”. One would then go on to check that f had the required
properties.

I9. The natural well-order of N is shortest among all well-orders of N.
Hint: Apply the procedure from Exercise 1.7 to (N,∈) and (N,≺), where ≺ is any
other well-ordering of N.

I10. Construct well-orders of N with the following properties (Hint: try to find
compact subsets of S):

a. with two limit elements;

b. with infinitely many limit elements;

c. where the set of limit elements is isomorphic to the set from a.

2. Ordinals

Let (X,≺) be a well-ordered set; we have already encountered a copy of X
that is more set-like than X itself: (X,≺) is isomorphic to its family IX of
proper initial segments, which is well-ordered by ⊂. We say that (X,≺) is an
ordinal if (X,≺) = (IX ,⊂); by this we mean that X = IX and that x ≺ y iff
x̂ ⊂ ŷ.

I1. The set N, as described in Appendix B, is an ordinal.

I2. Let (X,≺) be an ordinal (with at least ten elements).
a. The minimum element of X is ∅.

b. The next element of X is {∅}.
c. The one after that is

˘
∅, {∅}

¯
.

d.Write down the next few elements of X.

I3. Let (X,≺) be an ordinal.
a. For every x ∈ X we have x = x̂.

b. If x ∈ X then its direct successor (if it exists) is x ∪ {x}.
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4 Preliminaries [ Ch. 1, § 2

c. Every element of X is an ordinal.

d. For x, y ∈ X the following are equivalent: x ≺ y, x ⊂ y and x ∈ y.

e. The set X is transitive, i.e., if y ∈ X and x ∈ y then x ∈ X.

f. The set X is well-ordered by ∈.

The conjunction of the last parts of Exercise 2.3 actually characterises
ordinals.

I4. Let X be a transitive set that is well-ordered by ∈; then (X,∈) is an ordinal.

This characterisation of ordinals can be simplified with the aid of the
Axiom of Foundation (see Appendix A).

I5. A set is an ordinal iff it is transitive and linearly ordered by ∈.

This last characterisation is now taken to be the definition of ordinals.
This elegant way of singling out prototypical well-ordered sets is due to
Von Neumann and has the advantage of using nothing but sets and the ∈-
relation. The Cantorian definition of an ordinal was ‘order type of well-ordered
set’, which essentially meant that every ordinal was a proper class of sets.

We shall use (lower case) Greek letters to denote ordinals and we reserve
the letter ω to denote the ordinal N. The class of ordinals is well-ordered by ∈.
We extend the meaning of the word ‘sequence’ to include maps whose domein
is some ordinal and we use similar notation. Thus 〈xα : α < β〉 abbreviates
the map f whose domain is β and whose value at α is xα. We will call this a
sequence of length β, or a β-sequence.

I6. Let α and β be ordinals.
a. α ∩ β is an ordinal, call it γ;

b. γ = α or γ = β;

c. α ∈ β or α = β or β ∈ α.

I7. a. If α is an ordinal then so is α ∪ {α}.
b. If x is a set of ordinals then

S
x is an ordinal.

I8. Let x be a set of ordinals.
a.

S
x = sup x;

b.
T

x = min x.

Every well-ordered set is isomorphic to exactly one ordinal, which we refer
to as its type. We write tpX = α to express that α is the type of X.

I9. Isomorphic ordinals are identical. Hint: Let f : X → Y be an isomorphism
between ordinals and A =

˘
x ∈ X : x = f(x)

¯
, show that A = X (see Exercise 2.2

for inspiration).

Thus every well-ordered set is isomorphic to at most one ordinal, to show
that every well-ordered set is isomorphic to some ordinal we shall need the
Axiom of Replacement.
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Ch. 1, § 2 ] Ordinals 5

I10. Every well-ordered set is isomorphic to an ordinal. Let (X,≺) be a well-ordered
set and A = {x ∈ X : x̂ is isomorphic to an ordinal}.

a.min X ∈ A because m̂in X = ∅.

b. If x ∈ A then x + 1 ∈ A: if tp x̂ = α then tp x̂ + 1 = α ∪ {α}.
c. If x is a limit and x̂ ⊆ A then x ∈ A because tp x̂ = {tp ŷ : y ≺ x}.
d. tp X = {tp x̂ : x ∈ X}.

The Axiom of Replacement was used twice: in the limit case and when
assigning a type to X itself. In both cases we had the assignment y 7→ tp ŷ
and a set S (x̂ and X respectively); the Axiom of Replacement guarantees
that the tp ŷ with y ∈ S can be collected in a set. It still remains to prove of
course that the set {tp ŷ : y ∈ S} is an ordinal that is isomorphic to S.

The countable ordinals

The well-orderings of the subsets of N all belong to P(N×N) and hence form
a set, which we denote by WO. By the Axiom of Replacement their types
form a set as well. Thus the countable ordinals can be seen to form a set, we
denote it by ω1.

I11. The set ω1 is an ordinal and hence uncountable. Hint: Apply Exercise 2.5 and
the Axiom of Foundation.

I12. Let {≺k: k ∈ N} be a family of well-orderings of N. Define 〈k, l〉 @ 〈m, n〉 iff
k < m or k = m and l ≺k n.

a. The relation @ is a well-ordering of N2.

b. For every k the well-ordering ≺k is shorter than @. Hint: The procedure in
Exercise 1.7 applied to (N,≺k) and (N2, @) yields a map of N into k × N.

c. If A is a countable subset of ω1 then there is β ∈ ω1 such that α < β for all
α ∈ A. Hint: Use the Axiom of Choice.

I13. If α ∈ ω1 is a limit then there is a strictly increasing sequence 〈αn〉n such that
α = supn αn. Hint: C = {β : β < α} is countable; let f : N → C be a bijection and
recursively find kn ∈ N such that f(kn+1) > f(n), f(kn); put αn = f(kn).

We have two uncountable objects associated with N: its power set P(N)
and the set of countable ordinals ω1. There is a natural map from P(N)
(or rather P(N × N)) onto ω1: map A ⊆ N2 to the type of (N, A) if A is a
well-ordering and to 0 otherwise. On the other hand, a choice of one well-
order (of the right type) for each ordinal in ω1 produces an injection of ω1

into P(N). This was a blatant application of the Axiom of Choice and there
is no easy description of such an injection from ω1 into P(N) as it can be used
to construct a nonmeasurable subset of R. This should give some indication
of the essential difference between the entities P(N) and ω1.

On an elementary level we have the following nonexistence results.
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6 Preliminaries [ Ch. 1, § 2

I14.a. There is no map f from ω1 into P(N) such that f(α) is a proper subset of f(β)
whenever α < β. Hint: If f were such a map consider the set of α for which
f(α + 1) \ f(α) is nonempty.

b. There is no map f : ω1 → R such that α < β implies f(α) < f(β).

However, we can get a sequence 〈xα : α < ω1〉 in P(N) that is strictly
increasing with respect to almost containment. When working with subsets
of N ‘almost’ means ‘with finitely many exceptions’. We attach an asterisk
to a relation to indicate that it holds almost. Thus, a ⊆∗ b means that a ⊆ b
with possibly finitely many points of a not belonging to b, in other words that
a\b is finite. Similarly, a ⊂∗ b means a ⊆∗ b but b\a is infinite, and a∩b =∗ ∅
is expressed by saying that that a and b are almost disjoint.

I15. Let 〈an〉n be a sequence in P(N) such that an ⊂∗ an+1 for all n. There is a set
a ∈ P(N) such that an ⊂∗ a for all n and a ⊂∗ N. Hint: Note that an \

S
m<n am is

always infinite; pick kn in this difference and let a = N \ {kn : n ∈ N}.

I16. There is a sequence 〈xα : α < ω1〉 in P(N) such that xα ⊂∗ xβ whenever α < β.
Hint: Construct the xα by recursion, applying Exercises 2.13 and 2.15 in the limit
case.

Every ordinal (indeed every linearly ordered set) carries a natural topo-
logy, the order topology, which has the sets of the form (←, x) and (x,→) as
a subbase. Unless explicitly specified otherwise we always assume, in topo-
logical situations, that ordinals carry their order topologies. The space ω1

features in many counterexamples.

I17. The space ω1 has the following properties.
a. It is first-countable:

˘
(β, α] : β < α

¯
is a countable local base at α.

b. It is sequentially compact, i.e., every sequence has a converging subsequence.
Hint: Given a sequence 〈αn〉n consider the minimal α for which {n : αn 6 α}
is infinite.

c. The space ω1 is not compact.

I18. If f : ω1 → R is continuous then there is an α in ω1 such that f is constant on
the final segment [α, ω1).

a. For every α the set Fα = f
ˆ
[α, ω1)

˜
is compact.

b. The set of α for which Fα+1 ⊂ Fα is countable. Hint: Choose an interval Iα

with rational endpoints that meets Fα\Fα+1; observe that α 7→ Iα is one-to-one.

c. Fix α such that Fβ = Fβ+1 for all β > α. Then Fβ = Fα for all β > α.

d. There is only one point in Fα. Hint: If x, y ∈ Fα then there is a sequence 〈αn〉n
such that α 6 α0 < α1 < α2 < · · · and f(αi) = x if i is even and f(αi) = y if
i is odd. Let β = supi αi and note that x = f(β) = y.

Cardinal numbers

We single out one important class of ordinals: the cardinal numbers or car-
dinals for short. Cardinal numbers will be used to measure the sizes of sets,
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Ch. 1, § 2 ] Ordinals 7

rather than their order types. Accordingly, a cardinal number is an ordinal
that is an initial ordinal, a ‘smallest among equals’: α is an initial ordinal
if whenever β is an ordinal and f : α → β a bijection one has β > α. The
contrapositive of this formulation reads: if β < α then there is no bijection
between α and β. We generally reserve the letters κ, λ and µ for cardinal
numbers.

I19.a. Every natural number is a cardinal number. Hint: Consider I = {n : there is
no injection from n + 1 into n}.

b. The ordinal ω is a cardinal number. Hint: A bijection between ω and n induces
an injection from n + 1 into n.

c. The ordinal ω1 is a cardinal number.
d. Every infinite cardinal is a limit ordinal.

The construction of ω1 can be generalised to show that there is no largest
cardinal number.

I20. Let X be a set and let WO(X) be the set of all well-orders of subsets of X.
a. The set of types of the elements of WO(X) is an ordinal, which we denote

by X+.
b. The ordinal X+ is a cardinal. Hint: Every α < X+ admits an injection into X,

but X+ itself does not.

An important property of infinite cardinal numbers is that they are equal
to their own squares. To see define a relation ≺ between pairs of ordinals as
follows: 〈α, β〉 ≺ 〈γ, δ〉 iff 1) max{α, β} < max{γ, δ}, or 2) β < δ, or 3) β = δ
and α < γ.

I21.a. If ξ is an ordinal then ≺ is well-ordering of ξ × ξ.
b. If κ is an infinite cardinal and α, β ∈ κ then the order type of

˘
〈γ, δ〉 : 〈γ, δ〉 ≺

〈α, β〉
¯

is smaller than κ. Hint: Determine the type of
˘
〈γ, δ〉 : max{γ, δ} = α

¯
and apply induction with respect to κ.

c. If κ is an infinite cardinal then the order type of κ× κ, with respect to ≺, is κ.

I22. If κ is a cardinal then κ+ is the smallest cardinal that is larger than κ. In
addition, if κ is infinite and f : κ → κ+ is any map then there is an α < κ+ such
that f(β) < α for all β < κ.

The cardinals are, as a subclass of the ordinals, well-ordered. The finite
cardinals correspond to the natural numbers; we index the infinite cardinals
by the ordinals. Thus ω0 = ω, ω1 = ω+

0 , ω2 = ω+
1 and generally ωα+1 = ω+

α

for every α. If α is a limit then sup{ωβ : β < α} is a cardinal, denoted ωα.
It is customary to distinguish between the two identities of the cardinal

numbers ωα: when we think of it as an ordinal we keep writing ωα, we write
ℵα when treating it as a cardinal. Every cardinal of the form ℵα+1 is called
a successor cardinal ; if α is a limit ordinal then we call ℵα a limit cardinal.
Finally then, the cardinality of a set X is the unique cardinal number κ such
that there is a bijection between X and κ.
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8 Preliminaries [ Ch. 1, § 3

Cofinality

We have seen that for every countable limit ordinal α there is a strictly in-
creasing sequence 〈αn〉n such that α = supn αn. The set A = {αn : n ∈ ω} is
cofinal in α in that for every β ∈ α there is a γ ∈ A such that β < γ. Since
every ordinal has a cofinal subset, to wit itself, we can define the cofinality
of α, denoted cf α, to be the minimal type of a cofinal subset of α.

I23.a. cf cf α = cf α;

b. cf α is a cardinal number.

There are two types of cardinal numbers, those that equal their cofinali-
ties, like ℵ0 and ℵ1, and those that do not, e.g., ℵω has cofinality ω0. We call
κ regular if the former applies, i.e., if κ = cf κ, and singular if cf κ < κ.

I24. Every infinite successor cardinal is regular.

As we shall see regular cardinals are very often easier to handle than
singular ones. As will become apparent, many recursive constructions use up
small portions of a set per step; if the cardinality, κ, of the set is regular and
each step uses up fewer than κ elements then the set will not be exhausted
until the end of the construction.

3. Some combinatorics

The Pressing-Down Lemma

Let κ be a cardinal; a function f : κ→ κ is said to be regressive if f(α) < α
for all α > 0. For example the function n 7→ max{0, n − 1}, is regressive
on ω; note that this function is one-to-one on ω\{0}. On regular uncountable
cardinals this is not possible.

3.1. Theorem. Let κ be regular and uncountable and f : κ→ κ a regressive
function. Then f is constant on an unbounded subset of κ.

I1. Assume that for all α the preimage f←(α) is bounded, say by βα.
a. If γ < κ then sup{βα : α 6 γ} < κ.

Define γ0 = 0 and, recursively, γn+1 = sup{βα : α 6 γn}.
b. γ0 < γ1 < · · · . Hint: γn+1 > βγn .

c. γ = supn γn < κ.

d. f(γ) > γ, so f is not regressive.

This can be used, for example, to redo Exercise 2.18.

I2. If κ is regular and uncountable and f : κ → R is continuous then f is constant
on [α, κ) for some α.

a. For every n there is an αn such that
˛̨
f(β)− f(αn)

˛̨
< 2−n whenever β > αn.

Hint: Define a regressive function fn such that
˛̨
f(β)− f(α)

˛̨
< 2−n whenever

fn(α) < β 6 α and apply the pressing-down lemma.
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Ch. 1, § 3 ] Some combinatorics 9

b.The ordinal α = supn αn is as required.

I3. Let α be an ordinal of countable cofinality; define a regressive f : α → α with all
preimages f←(β) bounded.

The ∆-system lemma

A family D of sets is a ∆-system if there is a single set R, the root, such
that D1 ∩D2 = R whenever D1, D2 ∈ D are distinct. So certainly a pairwise
disjoint family is a ∆-system. The ∆-system lemma says that a large enough
family of small enough sets can be thinned out to a large ∆-system.

I4. Let κ be a regular uncountable cardinal and {Fα : α < κ} a family of finite sets.
There is an unbounded subset A of κ such that {Fα : α ∈ A} is a ∆-system.

a.Without loss of generality Fα ⊆ κ for all α.

b. The function f : α 7→ max
`
{0} ∪ (Fα ∩ α)

´
is regressive.

c. There are β < κ and an unbounded set C in κ such that Fα ∩ α ⊆ β whenever
α ∈ C.

d. There are a finite subset R of β and an unbounded subset B of C such that
Fα ∩ α = R whenever α ∈ B.

e. There is an unbounded subset A of B such that max Fα < γ whenever α < γ
in A.

f. The set A is as required.

I5. a. The family {n : n ∈ ω} is a countable family of finite sets without a three-
element ∆-sytem in it.

b. Let κ be singular of cofinality λ and let 〈αη : η < λ〉 be increasing and cofinal
in κ. Let F =

˘
{αη, β} : αη < β < αη+1

¯
. Every ∆-system in F is of cardinality

less than κ.

Closed unbounded sets

We consider the order-topology on ordinals and in particular on regular car-
dinal numbers. Let κ be regular and uncountable. A closed and unbounded
set in κ is one that is closed in the order topology and cofinal in κ. We write
C = {C : C is closed and unbounded in κ}.

For the moment we concentrate on κ = ω1.

I6. C is closed under countable intersections.
a. If C0, C1 ∈ C, then C0∩C1 ∈ C. Hint: To show unboundedness let α be arbitrary

and choose 〈αn : n ∈ ω〉 strictly increasing with α0 > α and α2n+i ∈ Ci;
consider supn αn.

b. Let {Cn : n ∈ ω} ⊆ C, then
T

n Cn ∈ C. Hint: As above but now choose αn inT
i6n Ci.

We can improve this exercise by using another kind of intersection. Let
{Aα : α ∈ ω1} be a family of subsets of ω1. The diagonal intersection of this

preliminaries.tex — Monday 03-10-2005 at 13:15:35



10 Preliminaries [ Ch. 1, § 3

family is defined as

4
α

Aα =
{
δ : (∀γ < δ)(δ ∈ Aγ)

}
.

For families of closed unbounded sets this intersection is never empty.

I7. Let {Cα : α ∈ ω1} ⊆ C, then C = 4α Cα ∈ C.
a. C is unbounded. Hint: Given α choose αn recursively above α such that αn+1 ∈T

β6αn
Cβ and consider supn αn.

b. C is closed. Hint: If 〈αn : n ∈ ω〉 is strictly increasing in C then α = supn αn

belongs to
T

β<αn
Cβ for all n.

I8. Generalize the exercises above to larger κ.

Stationary sets

A subset of a regular cardinal κ is said to be stationary if it meets every
closed and unbounded subset of κ. Stationary sets play a large role in many
set-theoretic and topological arguments, a we shall see later. As an example
we show how the Pressing-Down Lemma can be strengthened.

I9. Let S be a stationary subset of a regular cardinal κ and f : S → κ a regressive
function. Then f is constant on a stationary set. Hint: Assume that for every α
there is a Cα ∈ C that is disjoint from f←(α); consider a point δ in 4α Cα.

Stationary subsets share a topological property with regular uncountable
cardinals.

I10. Let S be an unbounded subset of some regular uncountable cardinal κ. Then
S is stationary iff every continuous function f : S → R is constant on a tail.

a. For C ∈ C (with unbounded complement) define a continuous function f :
κ \ C → R that is not constant on any tail.

b. If S is stationary and f : S → R is continuous then there is an α such that f is
constant on S \ α. Hint: Apply the strong form of the Pressing-Down Lemma.

We can find large disjoint families of stationary sets on ω1.

I11. For each α < ω1 let fα : ω → α be a surjection. Define Aβ,n = {α : fα(n) = β}.
a. For all n: if β 6= γ then Aβ,n ∩Aγ,n = ∅.

b. For all β we have (β, ω1) ⊆
S

n Aβ,n.

c. For every β there is an nβ such that Aβ,nβ is stationary. Hint: If not we get
{Cn : n ∈ ω} ⊆ C with

T
n Cn ⊆ β + 1.

d.There is n ∈ ω for which S = {β : n = nβ} is stationary.

e. {Aβ,n : β ∈ S} is a disjoint family of stationary subsets.
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4. Trees

A tree is a partially ordered set in which every set of predecessors is well-
ordered. More formally, consider a partially ordered set (P,4) and, for x ∈ P
put x̂ = {y ∈ P : y ≺ x}. We say that (P,4) is a tree if every set x̂ is
well-ordered.

I1. Let Z(S) denote the set of compact subsets of the Sorgenfrey line. Order Z(S)
by ‘being an initial segment of’, i.e., C 4 D iff C = D ∩ (−∞, max C].

a. The relation 4 is a partial order.

b. D̂ = {C : C ≺ D} is well-ordered and isomorphic to D \ {max D}.

I2. Let α be an ordinal and X a set. Let <αX denote the set of functions with
domain some β less than α and range contained in X; in short <αX =

S
β<α

βX.

Then <αX is a tree when ordered by inclusion. For every s ∈ <αX the order type
of ŝ is its domain.

A special example is <ω2, the tree of finite sequences of zeros and ones,
ordered by extension.

A tree is divided into levels: if (T,4) is a tree and α is an ordinal then
Tα denotes the set of t ∈ T for which t̂ has type α. We write ht t = tp t̂; thus
Tα = {t : ht t = α}. The minimal ordinal α for which Tα = ∅ is called the
height of T . The height of T exists because of the Axiom of Replacement.

I3. The height of a tree T is equal to sup{ht t + 1 : t ∈ T}.

I4. The height of the tree Z(S) is ω1.

A branch of a tree (or a path) is a maximal linearly ordered subset.

I5. A subset B of a tree is a branch iff it is linearly ordered, contains t̂ whenever
t ∈ B, and there is no t such that B ⊆ t̂.

I6. The tree Z(S) has no branches of type ω1.

König’s Lemma

A very useful result about infinite trees is the following.

4.1. Theorem (König’s Lemma). Let T be an infinite tree in which for
every n ∈ ω the level Tn is finite. Then there is a sequence 〈tn〉n in T
such that tn ∈ Tn and tn < tn+1 for all n.

I7. Prove König’s Lemma. Hint: Construct 〈tn〉n by recursion: choose t0 ∈ T0 with
{s : t0 < s} infinite, then t1 ∈ T1 with t1 > t0 and {s : t1 < s} infinite, . . .

König’s Lemma has many applications.

I8. The topological product ω2 is compact. Let U be a family of open sets, no finite
subfamily of which covers ω2 and let T be the set of s for which [s] is not covered
by a finite subfamily of U, where for s ∈ <ω2 we put [s] = {x ∈ ω2 : s ⊂ x}.
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a.The family
˘
[s] : s ∈ <ω2

¯
is a base for the topology of ω2.

b. T is an infinite subtree of <ω2. Hint: If s ∈ T then sa0 ∈ T or sa1 ∈ T .

c. König’s Lemma implies that U does not cover ω2.

This exercise has a converse.

I9. König’s Lemma can be deduced from the compactness of ω2. Let T be an infinite
tree with finite levels and consider the topological product X =

Q
n∈ω Tn, where

each Tn is given the discrete topology. For n ∈ ω put Fn =
˘
x ∈ X : (∀i < n)

`
x(i) <

x(i + 1)
´¯

.
a. X is compact. Hint: X can be embedded into ω2 as a closed subset.

b. If x ∈
T

n∈ω Fn then 〈x(n) : n ∈ ω〉 satisfies the conclusion of König’s Lemma.

c. For each n the set Fn is clopen and nonempty; in addition Fn+1 ⊆ Fn.

d.
T

n∈ω Fn 6= ∅.

As a further example we prove the simplest version of Ramsey’s theorem.
For this we establish some notation: [ω]2 denotes the family of 2-element
subsets of ω. A map c : [ω]2 → 2 is said to be a colouring of [ω]2 and a
subset A of ω is said to be c-homogeneous or just homogeneous if c is constant
on [A]2. For ease of notation we identify [ω]2 with

{
〈i, j〉 : i < j < ω

}
.

4.2. Theorem (Ramsey’s theorem). For every colouring of [ω]2 there is an
infinite homogeneous set.

I10. Prove Ramsey’s theorem. Given a colouring c : [ω]2 → 2 define a subtree
T = {tn : n ∈ ω} of <ω2 as follows: t0 = ∅; if n > 0 and the ti for i ∈ n have
been found define tn � m by recursion: if tn � m = ti for some i ∈ n then put
tn(m) = c(i, n), if tn � m 6= ti for all i then stop: tn = tn � m.

a. The map n 7→ tn is one-to-one.

b. If s < tn then s = ti for some i ∈ n.

c. If ti < tm < tn then c(i, m) = c(i, n).

d. If {tn : n ∈ A} is a branch through T then A is prehomogeneous, i.e., if i ∈ j ∈ k
in A then c(i, j) = c(i, k).

e. An infinite prehomogeneous set contains an infinite homogeneous set.

I11. Every sequence in R (or any linearly ordered set) has a monotone subsequence.
Hint: Given such a sequence 〈xn〉n define f : [ω]2 → 2 by f(i, j) = 1 if xi < xj and
f(i, j) = 0 if xi > xj (where i ∈ j is tacitly assumed).

Aronszajn trees

The proof of König’s Lemma was a fairly easy recursion and it may seem
that a straightforward adaptation will show that every tree of height ω1 with
countable levels has a branch of type ω1.

I12. Investigate where such an adaptation of the proof of König’s Lemma is liable
to break down.
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An Aronszajn tree is a tree of height ω1 with all levels countable, but
without a branch of type ω1.

I13. There is an Aronszajn tree T contained in {t ∈ Z(S) : t ⊆ Q}. Construct
T by recursion, one level at a time and maintaining the following property †α: if
γ < β 6 α, s ∈ Tγ and q > max s, where q ∈ Q, then there is t ∈ Tβ such that s 4 t
and max t = q. Set T0 = {∅}.

a.Given Tα put Tα+1 = {t ∪ {q} : t ∈ Tα, q ∈ Q, q > max t}. If Tα is countable
then so is Tα+1. If †α holds then so does †α+1.

b. If α is a limit and Tβ has been found for β < α such that †β holds for all β < α
choose an increasing sequence 〈αn〉n with α = supn αn. For every pair 〈t, q〉,
where t ∈

S
β<α Tβ and q ∈ Q with q > max t, let n0 be minimal so that

t ∈
S

β<αn0
Tβ and choose a sequence 〈tn〉n>n0 with tn ∈ Tαn , t 4 tn 4 tn+1

and q − 2−n 6 max tn < q for all n. Put st,q =
S

n tn ∪ {q} and let Tα be the
set of all the st,q thus obtained. Then Tα is countable and †α holds.

c. If n ∈ ω and t ∈ Tn then tp t = n.

d. If α > ω and t ∈ Tα then tp t = α + 1.

e. The tree T =
S

α∈ω1
Tα is an Aronszajn tree.

I14. An alternative construction. There is a sequence 〈rα : α < ω1〉 such that rα is
an injective map from α into N and such that rα =∗ rβ � α whenever α < β. The
tree T = {rβ � α : α 6 β < ω1} is an Aronszajn tree. Hint: Refer to Exercise 2.16.
Choose the rα by recursion, making sure that rα[α] ⊆ xα.
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