Chapter 6

Rudin's Dowker space

Rudin's Dowker space is of a totally different nature than that of Balogh; it was based on an example of Misčenko's of a linearly Lindelöf space that is not Lindelöf.

1. Description of the space

We work in the product $P = \prod_{n=1}^{\infty} (\omega_n + 1)$ of the successors of the first \aleph_0 many uncountable ordinals. We give P the box topology, where each ordinal has its usual order topology. The box topology has the family of all open boxes as a base; an open box is simply a product $\prod_{n=1}^{\infty} O_n$, where O_n is open in $\omega_n + 1$.

We consider two subspaces of P:

$$X' = \{ x \in P : (\forall n) (\operatorname{cf} x_n > \omega_0) \}$$

and its subset

$$X = \{ x \in P : (\exists i)(\forall n)(\omega_i > \operatorname{cf} x_n > \omega_0) \}$$

The space X is Rudin's Dowker space. The rest of this chapter will be devoted to verifying this.

A nice base

We need an easy-to-handle base for the topology of X' and X. To this end we introduce the following notation. For $x, y \in P$ we say x < y if $x_n < y_n$ for all n and $x \leq y$ means $x_n \leq y_n$ for all n. For $x, y \in P$ with x < y we use (x, y] to denote the set $\{z \in X' : (\forall n)(x_n < z_n \leq y_n)\}$, i.e., $(x, y] = X' \cap \prod_{n=1}^{\infty} (x_n, y_n]$.

▶ 1. If $x \in X'$ then $\{(y, x] : y < x\}$ is a local base at x.

We shall be using the family $\mathcal{B} = \{(x, y] : x, y \in P, x < y\}$ as a base for the open sets of X'. The following consequence of the choice of points in X' will be very useful.

▶ 2. X' is a P-space, i.e., if \mathcal{U} is a countable family of open sets then $\bigcap \mathcal{U}$ is open.

rudin.tex — Wednesday 08-02-2006 at 16:25:08

RUDIN'S DOWKER SPACE

 $[Ch. 6, \S 2]$

2. X is normal

To prove X is normal we prove two things:

- 1. every open cover of X' has a disjoint open refinement, and
- 2. if A and B are closed and disjoint in X then their closures in X' are disjoint too.
- ▶ 1. The two statements above imply that X is indeed normal.

The property that every open cover has a disjoint open refinement is called *ultraparacompactness*; it is (much) stronger than ordinary paracompactness.

X' is ultraparacompact

Let \mathcal{O} be an open cover of X'. We build a sequence $\langle \mathcal{U}_{\alpha} : \alpha < \omega_1 \rangle$ of open covers of X' such that

- 1. each \mathcal{U}_{α} is a disjoint open cover and a subfamily of \mathcal{B} ,
- 2. if $\alpha < \beta$ then \mathcal{U}_{β} is a refinement of \mathcal{U}_{α} ,
- 3. if $U \in \mathcal{U}_{\alpha}$ and $U \subseteq O$ for some $O \in \mathcal{O}$ then $U \in \mathcal{U}_{\alpha+1}$, and
- 4. if $U \in \mathcal{U}_{\alpha}$, say U = (x, y], and $U \subseteq O$ for no $O \in \mathcal{O}$ then for every $V \in \mathcal{U}_{\alpha+1}$ with $V \subseteq U$ and V = (u, v] there is some n such that $v_n < y_n$ or $V \subseteq O$ for some $O \in \mathcal{O}$.
- ▶ 2. Let $y \in X'$ and denote for $\alpha < \omega_1$ the unique element of \mathcal{U}_α that contains y by $(u_\alpha, v_\alpha]$.

a. For every *n* there is an α_n such that $v_{\alpha}(n) = v_{\alpha_n}(n)$ whenever $\alpha \ge \alpha_n$. Let $\alpha_y = \sup_n \alpha_n$ and $\beta = \alpha_y + 1$.

b. There is an $O \in \mathcal{O}$ with $(u_{\beta}, v_{\beta}] \subseteq O$.

c. If $\gamma \ge \beta$ then $(u_{\gamma}, v_{\gamma}] = (u_{\beta}, v_{\beta}].$

▶ 3. The family $\{(u_{\alpha_y}, v_{\alpha_y}] : y \in X'\}$ is a disjoint open refinement of \mathcal{O} .

To construct the sequence we start with $\mathcal{U}_0 = \{X'\}$. Note that X' = (0, t], where $t_i = \omega_i$ for all i.

To make $\mathcal{U}_{\alpha+1}$ from \mathcal{U}_{α} let $U \in \mathcal{U}_{\alpha}$, say U = (x, y]. If there is an $O \in \mathcal{O}$ with $U \subseteq O$ put $\mathcal{I}_U = \{U\}$. If not then consider two cases.

 $y \in X'$ Take z < y so that x < z and $(z,y] \subseteq O$ for some $O \in \mathbb{O}.$ For every subset A of \mathbb{N} put

$$V_A = \{ u \in (x, y] : (\forall i \in A) (u_i \leq z_i) \land (\forall i \notin A) (u_i > z_i) \}.$$

Set $\mathfrak{I}_U = \{V_A : A \subseteq \mathbb{N}\}.$

 $y \notin X'$ Fix *n* with cf $y_n = \omega_0$ and fix an increasing cofinal sequence $\langle \alpha_i \rangle_i$ of ordinals in y_n with $\alpha_0 = x_n$. For $i \in \omega$ put $V_i = \{u \in (x, y] : \alpha_i < u_n \leq \alpha_{i+1}\}$ and let $\mathcal{I}_U = \{V_i : i \in \omega\}$.

Wednesday 08-02-2006 at 16:25:08 — rudin.tex

36

Ch. 6, $\S3$] X is not countably paracompact

Disjoint closed sets in X have disjoint closures in X'

Let A and B be closed and disjoint in X. Define $A_n = \{x \in A : (\forall i) (\text{cf } x_i \leq \aleph_n)\}$ and define B_n similarly.

▶ 4. It suffices to show that for every *n* the sets A_n and B_n have disjoint closures in X'. Hint: $A = \bigcup_n A_n$ and X' is a P-space.

Fix *n* and take $x \in X' \setminus X$. Let θ be large enough and take a countable elementary substructure M_0 of $H(\theta)$ with $A, B, x, X', X, P \in M_0$. Use M_0 as the starting point of a sequence $\langle M_\alpha < \alpha < \omega_n \rangle$ of elementary substructures of $H(\theta)$ such that $M_\alpha \cup \{M_\alpha\} \subseteq M_{\alpha+1}$ (and $|M_{\alpha+1}| \leq \max\{|M_\alpha|, \aleph_0\}$) for all α and $M_\alpha = \bigcup_{\beta < \alpha} M_\beta$ whenever α is a limit. In the end let $M = \bigcup_{\alpha < \omega_n} M_\alpha$.

► 5. a. For every limit ordinal β the set M_{β} is an elementary substructure of $H(\theta)$.

b. For every α we have $\alpha \subseteq M_{\alpha}$.

c. For every α we have $|M_{\alpha}| = \max\{|\alpha|, \aleph_0\}$.

Define \hat{x} by $\hat{x}_i = \sup M \cap x_i$ and for every $\alpha < \omega_n$ define u_α by $u_\alpha(i) = \sup M_\alpha \cap x_i$.

▶ 6. a. If cf $x_i \leq \aleph_n$ then $\hat{x}_i = x_i$. Hint: There is $C \in M_0$ with $|C| \leq \aleph_n$ that is cofinal in x(i). Show that $C \subseteq M$.

b. If cf $x(i) > \aleph_n$ then $\hat{x}_n(i) < x(i)$ and cf $\hat{x}_n(i) = \aleph_n$. c. $\hat{x}_n \in X$ for all n.

- ▶ 7. a. There is an α such that $(u_{\alpha}, \hat{x}] \cap A = \emptyset$ or $(u_{\alpha}, \hat{x}] \cap B = \emptyset$. b. For this α we have $(u_{\alpha}, x] \cap A_n = \emptyset$ or $(u_{\alpha}, x] \cap B_n = \emptyset$.
- ▶ 8. X is collectionwise normal, i.e., if \mathcal{F} is a discrete collection of closed sets then there is a disjoint family $\{U_F : F \in \mathcal{F}\}$ of open sets with $F \subseteq U_F$ for all F. Hint: $\{cl_{X'} F : F \in \mathcal{F}\}$ is discrete.

3. X is not countably paracompact

We apply Exercise 3.6. For $n \ge 1$ let $F_n = \{x \in X : (\forall i \le n)(x_i = \omega_i)\}$; we show that $\bigcap_{n=1}^{\infty} U_n \ne \emptyset$ whenever $\langle U_n \rangle_n$ is a sequence of open sets with $U_n \supseteq F_n$ for all n.

▶ 1. The sets F_n are indeed closed and $\bigcap_{n=1}^{\infty} F_n = \emptyset$.

The key to the proof is the following lemma. We let t denote the top of P, i.e., $t_i = \omega_i$ for all i.

3.1. LEMMA. If U is an open set around F_n then there is an x < t such that $X \cap (x,t] \subseteq U$.

Given this lemma, the rest of the proof is easy.

▶ 2. $\bigcap_{n=1}^{\infty} U_n \neq \emptyset$. Hint: Apply Lemma 3.1 infinitely often to get an x < t with $(x,t] \cap X \subseteq \bigcap_n U_n$.

RUDIN'S DOWKER SPACE

 $[Ch. 6, \S 3]$

Proof of Lemma 3.1

Let n and U be given. Choose θ large enough, so that $P, X, U \in H(\theta)$.

▶ 3. There is $M \prec H(\theta)$ with $\omega_n \cup \{P, X, U\} \subseteq M$, $|M| = \aleph_n$ and such that $M \cap \prod_{i>n} \omega_i$ is cofinal in $\prod_{i>n} (M \cap \omega_n)$. Hint: Obtain M as the union of a sequence $\langle M_\alpha : \alpha < \omega_n \rangle$, where $M_\alpha \in M_{\alpha+1}$ for all α .

Define $x \in P$ by $x_i = \omega_i$ for $i \leq n$ and $x_i = \sup M \cap \omega_i$ for i > n.

▶ 4. $x \in F_n$.

Choose x' < x so that $(x', x] \cap X \subseteq U$.

- ▶ 5. a. There is $z \in M \cap P$ with $x' \leq z < x$.
 - b. For every $u \in M \cap (z, t] \cap X$ we have $t \in U$. c. $(z, t] \cap X \subseteq U$.

This completes the proof. In the next chapter we shall see that X has a (much smaller) subspace that is also a Dowker space.

Wednesday 08-02-2006 at 16:25:08 — rudin.tex

38