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Chapter 1

Preliminaries

1. Well-orderings

A well-ordering of a set is a linear order ≺ of it such that every nonempty
subset has a ≺-minimum. The natural ordering of N is a well-ordering; it is
the shortest of all well-orderings of N. To get an example of a longer well-
ordering define n ≺ m iff 1) n is even and m is odd or 2) n and m are
both even or both odd and n < m: we put all odd numbers after the even
numbers but keep all even and all odd numbers in their natural order. This
example illustrates one important difference between the natural order on N
and most other well-orderings on N: there will be elements, other than the
minimum, without immediate predecessor. Indeed, 1 is not the ≺-minimum
of N, because 1024 ≺ 1, but if n ≺ 1 then also n + 2 ≺ 1 and n ≺ n + 2.
An element like 1 in the above example will be called a limit ; elements with
a direct predecessor will be called successors. Observe, however, that every
element (other than the maximum) of a well-ordered set does have a direct
successor. We shall denote the direct successor of an element x by x+ 1.

I1. Every compact subset of the Sorgenfrey line is well-ordered by the natural order
of R. Hint: Let X be such a compact set and A ⊆ X. Note that X is also compact
as a subset of R and hence bounded. Let a = inf A and consider a finite subcover
of the open cover

˘
(−∞, a]

¯
∪

˘
(b,∞) : b > a

¯
of X; deduce that a ∈ A.

An initial segment of a well-ordered set (X,≺) is a subset I with the
property that x ∈ I and y ≺ x imply y ∈ I. Note that either I = X or
I = {x : x ≺ p}, where p = minX \ I. It follows that initial segments are
comparable with respect to ⊂. We let IX denote the family of all proper initial
segments of X and I+

X denotes IX ∪ {X}, the family of all initial segments
of X. We shall often use p̂ as a convenient shorthand for {x : x ≺ p}.

Induction and recursion

Well-orderings enable us to do proofs by induction and perform constructions
by recursion.

1.1. Theorem (Principle of Induction). Let (X,≺) be a well-ordered set and
let A be a subset of X such that {y : y ≺ x} ⊆ A implies x ∈ A for all x ∈ X.
Then A = X.

1
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2 Preliminaries [ Ch. 1, § 1

This is essentially a reformulation of the definition of well-ordering. The
straightforward proof is by contraposition: if A 6= X then x = minX \ A
satisfies x̂ ⊆ A yet x /∈ A.

There is an alternative formulation that bears closer resemblance to the
familiar principle of mathematical induction.

I2. Let (X,≺) be a well-ordered set and let A be a subset of X that satisfies
1) minX ∈ A, 2) if x ∈ A then x + 1 ∈ A, and 3) if x is a limit element and
x̂ ⊆ A then x ∈ A. Then A = X.

The main use of this principle is in showing that all elements of a well-
ordered set have a certain property. By way of example we consider iso-
morphisms of well-ordered sets.

I3. Isomorphisms between well-ordered sets are unique: if f and g are order-preserv-
ing bijections between (X,≺) and (Y,@) then f = g. Hint: Let I =

˘
x : f(x) =

g(x)
¯

and apply the principle of induction.

I4. The well-ordered sets (X,≺) and (IX ,⊂) are isomorphic.

1.2. Theorem (Principle of Recursion). Let (X,≺) be a well-ordered set, Y
any set and F the family of all maps f whose domain is an initial segment
of X and whose range is in Y . For every map F : F → Y there is a unique
map f : X → Y such that f(x) = F

(
f � x̂

)
for every x.

The proof of this principle offers a good exercise in working with well-
orders.

I5. Let G be the subfamily of F consisting of all approximations of f : these are
functions g that satisfy g(x) = F

`
g � {y : y ≺ x}

´
for all x in their domains.

a. If g, h ∈ G and dom g ⊆ domh then g = h � dom g. Hint: Use the principle of
induction.

b. The union f =
S

G is a function that belongs to G.

c. The domain of f is equal to X.

d. If f and g are two functions that satisfy the conclusion of the principle of
recursion then f = g.

The Principle of Recursion formalises the idea that a function can be
constructed by specifying its initial segments. By way of example we show
how it can be used to show that any two well-ordered sets are comparable.

We compare well-ordered sets by ‘being an initial segment of’, more pre-
cisely we say that (X,≺) is shorter than (Y,@) if there is y ∈ Y such that
(X,≺) is isomorphic to the initial segment {z : z @ y} of Y .

I6. The well-ordered set (X,≺) is shorter than (I+
X ,⊂).

I7. Let (X,≺) and (Y,@) be well-ordered sets. Let F be the set of maps whose
domain is an initial segment of X and whose range is contained in Y . Define
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Ch. 1, § 2 ] Ordinals 3

F : F → Y ∪ {Y } by F (f) = min(Y \ ran f) if the right-hand side is nonempty
and F (f) = Y otherwise. Apply the principle of recursion to F to obtain a map
f : X → Y ∪ {Y }.

a. If x ≺ y in X and f(y) 6= Y then f(x) @ f(y).

b. If there is an x in X such that f(x) = Y then Y is shorter than X.

c. If Y /∈ ran f then X and Y are isomorphic if ran f = Y , and X is shorter than Y
if ran f ⊂ Y .

I8. Let (X,≺) and (Y,@) be well-ordered sets. Then either Y is shorter than or
isomorphic to X or I+

X is shorter than or isomorphic to Y .

In practice a construction by recursion proceeds less formally. One could,
for example, describe the construction of the map f from the Exercise 1.7 as
follows: “define f(minX) = minY and, assuming f(y) has been found for
all y ≺ x, put f(x) = minY \

{
f(y) : y ≺ x

}
if this set is nonempty, and

f(x) = Y otherwise”. One would then go on to check that f had the required
properties.

I9. The natural well-order of N is shortest among all well-orders of N.
Hint: Apply the procedure from Exercise 1.7 to (N,∈) and (N,≺), where ≺ is any
other well-ordering of N.

I10. Construct well-orders of N with the following properties (Hint: try to find
compact subsets of S):

a. with two limit elements;

b. with infinitely many limit elements;

c. where the set of limit elements is isomorphic to the set from a.

2. Ordinals

Let (X,≺) be a well-ordered set; we have already encountered a copy of X
that is more set-like than X itself: (X,≺) is isomorphic to its family IX of
proper initial segments, which is well-ordered by ⊂. We say that (X,≺) is an
ordinal if (X,≺) = (IX ,⊂); by this we mean that X = IX and that x ≺ y iff
x̂ ⊂ ŷ.

I1. The set N, as described in Appendix B, is an ordinal.

I2. Let (X,≺) be an ordinal (with at least ten elements).
a. The minimum element of X is ∅.

b. The next element of X is {∅}.
c. The one after that is

˘
∅, {∅}

¯
.

d.Write down the next few elements of X.

I3. Let (X,≺) be an ordinal.
a. For every x ∈ X we have x = x̂.

b. If x ∈ X then its direct successor (if it exists) is x ∪ {x}.
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4 Preliminaries [ Ch. 1, § 2

c. Every element of X is an ordinal.

d. For x, y ∈ X the following are equivalent: x ≺ y, x ⊂ y and x ∈ y.
e. The set X is transitive, i.e., if y ∈ X and x ∈ y then x ∈ X.

f. The set X is well-ordered by ∈.

The conjunction of the last parts of Exercise 2.3 actually characterises
ordinals.

I4. Let X be a transitive set that is well-ordered by ∈; then (X,∈) is an ordinal.

This characterisation of ordinals can be simplified with the aid of the
Axiom of Foundation (see Appendix A).

I5. A set is an ordinal iff it is transitive and linearly ordered by ∈.

This last characterisation is now taken to be the definition of ordinals.
This elegant way of singling out prototypical well-ordered sets is due to
Von Neumann and has the advantage of using nothing but sets and the ∈-
relation. The Cantorian definition of an ordinal was ‘order type of well-ordered
set’, which essentially meant that every ordinal was a proper class of sets.

We shall use (lower case) Greek letters to denote ordinals and we reserve
the letter ω to denote the ordinal N. The class of ordinals is well-ordered by ∈.
We extend the meaning of the word ‘sequence’ to include maps whose domein
is some ordinal and we use similar notation. Thus 〈xα : α < β〉 abbreviates
the map f whose domain is β and whose value at α is xα. We will call this a
sequence of length β, or a β-sequence.

I6. Let α and β be ordinals.
a.α ∩ β is an ordinal, call it γ;

b. γ = α or γ = β;

c.α ∈ β or α = β or β ∈ α.

I7. a. If α is an ordinal then so is α ∪ {α}.
b. If x is a set of ordinals then

S
x is an ordinal.

I8. Let x be a set of ordinals.
a.

S
x = supx;

b.
T
x = minx.

Every well-ordered set is isomorphic to exactly one ordinal, which we refer
to as its type. We write tpX = α to express that α is the type of X.

I9. Isomorphic ordinals are identical. Hint: Let f : X → Y be an isomorphism
between ordinals and A =

˘
x ∈ X : x = f(x)

¯
, show that A = X (see Exercise 2.2

for inspiration).

Thus every well-ordered set is isomorphic to at most one ordinal, to show
that every well-ordered set is isomorphic to some ordinal we shall need the
Axiom of Replacement.
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Ch. 1, § 2 ] Ordinals 5

I10. Every well-ordered set is isomorphic to an ordinal. Let (X,≺) be a well-ordered
set and A = {x ∈ X : x̂ is isomorphic to an ordinal}.

a.minX ∈ A because m̂inX = ∅.

b. If x ∈ A then x+ 1 ∈ A: if tp x̂ = α then tp x̂+ 1 = α ∪ {α}.
c. If x is a limit and x̂ ⊆ A then x ∈ A because tp x̂ = {tp ŷ : y ≺ x}.
d. tpX = {tp x̂ : x ∈ X}.

The Axiom of Replacement was used twice: in the limit case and when
assigning a type to X itself. In both cases we had the assignment y 7→ tp ŷ
and a set S (x̂ and X respectively); the Axiom of Replacement guarantees
that the tp ŷ with y ∈ S can be collected in a set. It still remains to prove of
course that the set {tp ŷ : y ∈ S} is an ordinal that is isomorphic to S.

The countable ordinals

The well-orderings of the subsets of N all belong to P(N×N) and hence form
a set, which we denote by WO. By the Axiom of Replacement their types
form a set as well. Thus the countable ordinals can be seen to form a set, we
denote it by ω1.

I11. The set ω1 is an ordinal and hence uncountable. Hint: Apply Exercise 2.5 and
the Axiom of Foundation.

I12. Let {≺k: k ∈ N} be a family of well-orderings of N. Define 〈k, l〉 @ 〈m,n〉 iff
k < m or k = m and l ≺k n.

a. The relation @ is a well-ordering of N2.

b. For every k the well-ordering ≺k is shorter than @. Hint: The procedure in
Exercise 1.7 applied to (N,≺k) and (N2,@) yields a map of N into k × N.

c. If A is a countable subset of ω1 then there is β ∈ ω1 such that α < β for all
α ∈ A. Hint: Use the Axiom of Choice.

I13. If α ∈ ω1 is a limit then there is a strictly increasing sequence 〈αn〉n such that
α = supn αn. Hint: C = {β : β < α} is countable; let f : N → C be a bijection and
recursively find kn ∈ N such that f(kn+1) > f(n), f(kn); put αn = f(kn).

We have two uncountable objects associated with N: its power set P(N)
and the set of countable ordinals ω1. There is a natural map from P(N)
(or rather P(N × N)) onto ω1: map A ⊆ N2 to the type of (N, A) if A is a
well-ordering and to 0 otherwise. On the other hand, a choice of one well-
order (of the right type) for each ordinal in ω1 produces an injection of ω1

into P(N). This was a blatant application of the Axiom of Choice and there
is no easy description of such an injection from ω1 into P(N) as it can be used
to construct a nonmeasurable subset of R. This should give some indication
of the essential difference between the entities P(N) and ω1.

On an elementary level we have the following nonexistence results.

preliminaries.tex — Monday 03-10-2005 at 13:15:35



6 Preliminaries [ Ch. 1, § 2

I14.a. There is no map f from ω1 into P(N) such that f(α) is a proper subset of f(β)
whenever α < β. Hint: If f were such a map consider the set of α for which
f(α+ 1) \ f(α) is nonempty.

b. There is no map f : ω1 → R such that α < β implies f(α) < f(β).

However, we can get a sequence 〈xα : α < ω1〉 in P(N) that is strictly
increasing with respect to almost containment. When working with subsets
of N ‘almost’ means ‘with finitely many exceptions’. We attach an asterisk
to a relation to indicate that it holds almost. Thus, a ⊆∗ b means that a ⊆ b
with possibly finitely many points of a not belonging to b, in other words that
a\b is finite. Similarly, a ⊂∗ b means a ⊆∗ b but b\a is infinite, and a∩b =∗ ∅
is expressed by saying that that a and b are almost disjoint.

I15. Let 〈an〉n be a sequence in P(N) such that an ⊂∗ an+1 for all n. There is a set
a ∈ P(N) such that an ⊂∗ a for all n and a ⊂∗ N. Hint: Note that an \

S
m<n am is

always infinite; pick kn in this difference and let a = N \ {kn : n ∈ N}.

I16. There is a sequence 〈xα : α < ω1〉 in P(N) such that xα ⊂∗ xβ whenever α < β.
Hint: Construct the xα by recursion, applying Exercises 2.13 and 2.15 in the limit
case.

Every ordinal (indeed every linearly ordered set) carries a natural topo-
logy, the order topology, which has the sets of the form (←, x) and (x,→) as
a subbase. Unless explicitly specified otherwise we always assume, in topo-
logical situations, that ordinals carry their order topologies. The space ω1

features in many counterexamples.

I17. The space ω1 has the following properties.
a. It is first-countable:

˘
(β, α] : β < α

¯
is a countable local base at α.

b. It is sequentially compact, i.e., every sequence has a converging subsequence.
Hint: Given a sequence 〈αn〉n consider the minimal α for which {n : αn 6 α}
is infinite.

c. The space ω1 is not compact.

I18. If f : ω1 → R is continuous then there is an α in ω1 such that f is constant on
the final segment [α, ω1).

a. For every α the set Fα = f
ˆ
[α, ω1)

˜
is compact.

b. The set of α for which Fα+1 ⊂ Fα is countable. Hint: Choose an interval Iα

with rational endpoints that meets Fα\Fα+1; observe that α 7→ Iα is one-to-one.

c. Fix α such that Fβ = Fβ+1 for all β > α. Then Fβ = Fα for all β > α.

d. There is only one point in Fα. Hint: If x, y ∈ Fα then there is a sequence 〈αn〉n
such that α 6 α0 < α1 < α2 < · · · and f(αi) = x if i is even and f(αi) = y if
i is odd. Let β = supi αi and note that x = f(β) = y.

Cardinal numbers

We single out one important class of ordinals: the cardinal numbers or car-
dinals for short. Cardinal numbers will be used to measure the sizes of sets,
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Ch. 1, § 2 ] Ordinals 7

rather than their order types. Accordingly, a cardinal number is an ordinal
that is an initial ordinal, a ‘smallest among equals’: α is an initial ordinal
if whenever β is an ordinal and f : α → β a bijection one has β > α. The
contrapositive of this formulation reads: if β < α then there is no bijection
between α and β. We generally reserve the letters κ, λ and µ for cardinal
numbers.

I19.a. Every natural number is a cardinal number. Hint: Consider I = {n : there is
no injection from n+ 1 into n}.

b. The ordinal ω is a cardinal number. Hint: A bijection between ω and n induces
an injection from n+ 1 into n.

c. The ordinal ω1 is a cardinal number.
d. Every infinite cardinal is a limit ordinal.

The construction of ω1 can be generalised to show that there is no largest
cardinal number.

I20. Let X be a set and let WO(X) be the set of all well-orders of subsets of X.
a. The set of types of the elements of WO(X) is an ordinal, which we denote

by X+.
b. The ordinal X+ is a cardinal. Hint: Every α < X+ admits an injection into X,

but X+ itself does not.

An important property of infinite cardinal numbers is that they are equal
to their own squares. To see define a relation ≺ between pairs of ordinals as
follows: 〈α, β〉 ≺ 〈γ, δ〉 iff 1) max{α, β} < max{γ, δ}, or 2) β < δ, or 3) β = δ
and α < γ.

I21.a. If ξ is an ordinal then ≺ is well-ordering of ξ × ξ.
b. If κ is an infinite cardinal and α, β ∈ κ then the order type of

˘
〈γ, δ〉 : 〈γ, δ〉 ≺

〈α, β〉
¯

is smaller than κ. Hint: Determine the type of
˘
〈γ, δ〉 : max{γ, δ} = α

¯
and apply induction with respect to κ.

c. If κ is an infinite cardinal then the order type of κ× κ, with respect to ≺, is κ.

I22. If κ is a cardinal then κ+ is the smallest cardinal that is larger than κ. In
addition, if κ is infinite and f : κ → κ+ is any map then there is an α < κ+ such
that f(β) < α for all β < κ.

The cardinals are, as a subclass of the ordinals, well-ordered. The finite
cardinals correspond to the natural numbers; we index the infinite cardinals
by the ordinals. Thus ω0 = ω, ω1 = ω+

0 , ω2 = ω+
1 and generally ωα+1 = ω+

α

for every α. If α is a limit then sup{ωβ : β < α} is a cardinal, denoted ωα.
It is customary to distinguish between the two identities of the cardinal

numbers ωα: when we think of it as an ordinal we keep writing ωα, we write
ℵα when treating it as a cardinal. Every cardinal of the form ℵα+1 is called
a successor cardinal ; if α is a limit ordinal then we call ℵα a limit cardinal.
Finally then, the cardinality of a set X is the unique cardinal number κ such
that there is a bijection between X and κ.
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8 Preliminaries [ Ch. 1, § 3

Cofinality

We have seen that for every countable limit ordinal α there is a strictly in-
creasing sequence 〈αn〉n such that α = supn αn. The set A = {αn : n ∈ ω} is
cofinal in α in that for every β ∈ α there is a γ ∈ A such that β < γ. Since
every ordinal has a cofinal subset, to wit itself, we can define the cofinality
of α, denoted cf α, to be the minimal type of a cofinal subset of α.

I23.a. cf cf α = cf α;

b. cf α is a cardinal number.

There are two types of cardinal numbers, those that equal their cofinali-
ties, like ℵ0 and ℵ1, and those that do not, e.g., ℵω has cofinality ω0. We call
κ regular if the former applies, i.e., if κ = cf κ, and singular if cf κ < κ.

I24. Every infinite successor cardinal is regular.

As we shall see regular cardinals are very often easier to handle than
singular ones. As will become apparent, many recursive constructions use up
small portions of a set per step; if the cardinality, κ, of the set is regular and
each step uses up fewer than κ elements then the set will not be exhausted
until the end of the construction.

3. Some combinatorics

The Pressing-Down Lemma

Let κ be a cardinal; a function f : κ→ κ is said to be regressive if f(α) < α
for all α > 0. For example the function n 7→ max{0, n − 1}, is regressive
on ω; note that this function is one-to-one on ω\{0}. On regular uncountable
cardinals this is not possible.

3.1. Theorem. Let κ be regular and uncountable and f : κ→ κ a regressive
function. Then f is constant on an unbounded subset of κ.

I1. Assume that for all α the preimage f←(α) is bounded, say by βα.
a. If γ < κ then sup{βα : α 6 γ} < κ.

Define γ0 = 0 and, recursively, γn+1 = sup{βα : α 6 γn}.
b. γ0 < γ1 < · · · . Hint: γn+1 > βγn .

c. γ = supn γn < κ.

d. f(γ) > γ, so f is not regressive.

This can be used, for example, to redo Exercise 2.18.

I2. If κ is regular and uncountable and f : κ → R is continuous then f is constant
on [α, κ) for some α.

a. For every n there is an αn such that
˛̨
f(β)− f(αn)

˛̨
< 2−n whenever β > αn.

Hint: Define a regressive function fn such that
˛̨
f(β)− f(α)

˛̨
< 2−n whenever

fn(α) < β 6 α and apply the pressing-down lemma.
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Ch. 1, § 3 ] Some combinatorics 9

b.The ordinal α = supn αn is as required.

I3. Let α be an ordinal of countable cofinality; define a regressive f : α→ α with all
preimages f←(β) bounded.

The ∆-system lemma

A family D of sets is a ∆-system if there is a single set R, the root, such
that D1 ∩D2 = R whenever D1, D2 ∈ D are distinct. So certainly a pairwise
disjoint family is a ∆-system. The ∆-system lemma says that a large enough
family of small enough sets can be thinned out to a large ∆-system.

I4. Let κ be a regular uncountable cardinal and {Fα : α < κ} a family of finite sets.
There is an unbounded subset A of κ such that {Fα : α ∈ A} is a ∆-system.

a.Without loss of generality Fα ⊆ κ for all α.

b. The function f : α 7→ max
`
{0} ∪ (Fα ∩ α)

´
is regressive.

c. There are β < κ and an unbounded set C in κ such that Fα ∩ α ⊆ β whenever
α ∈ C.

d. There are a finite subset R of β and an unbounded subset B of C such that
Fα ∩ α = R whenever α ∈ B.

e. There is an unbounded subset A of B such that maxFα < γ whenever α < γ
in A.

f. The set A is as required.

I5. a. The family {n : n ∈ ω} is a countable family of finite sets without a three-
element ∆-sytem in it.

b. Let κ be singular of cofinality λ and let 〈αη : η < λ〉 be increasing and cofinal
in κ. Let F =

˘
{αη, β} : αη < β < αη+1

¯
. Every ∆-system in F is of cardinality

less than κ.

Closed unbounded sets

We consider the order-topology on ordinals and in particular on regular car-
dinal numbers. Let κ be regular and uncountable. A closed and unbounded
set in κ is one that is closed in the order topology and cofinal in κ. We write
C = {C : C is closed and unbounded in κ}.

For the moment we concentrate on κ = ω1.

I6. C is closed under countable intersections.
a. If C0, C1 ∈ C, then C0∩C1 ∈ C. Hint: To show unboundedness let α be arbitrary

and choose 〈αn : n ∈ ω〉 strictly increasing with α0 > α and α2n+i ∈ Ci;
consider supn αn.

b. Let {Cn : n ∈ ω} ⊆ C, then
T

n Cn ∈ C. Hint: As above but now choose αn inT
i6n Ci.

We can improve this exercise by using another kind of intersection. Let
{Aα : α ∈ ω1} be a family of subsets of ω1. The diagonal intersection of this
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10 Preliminaries [ Ch. 1, § 3

family is defined as

4
α
Aα =

{
δ : (∀γ < δ)(δ ∈ Aγ)

}
.

For families of closed unbounded sets this intersection is never empty.

I7. Let {Cα : α ∈ ω1} ⊆ C, then C = 4α Cα ∈ C.
a.C is unbounded. Hint: Given α choose αn recursively above α such that αn+1 ∈T

β6αn
Cβ and consider supn αn.

b.C is closed. Hint: If 〈αn : n ∈ ω〉 is strictly increasing in C then α = supn αn

belongs to
T

β<αn
Cβ for all n.

I8. Generalize the exercises above to larger κ.

Stationary sets

A subset of a regular cardinal κ is said to be stationary if it meets every
closed and unbounded subset of κ. Stationary sets play a large role in many
set-theoretic and topological arguments, a we shall see later. As an example
we show how the Pressing-Down Lemma can be strengthened.

I9. Let S be a stationary subset of a regular cardinal κ and f : S → κ a regressive
function. Then f is constant on a stationary set. Hint: Assume that for every α
there is a Cα ∈ C that is disjoint from f←(α); consider a point δ in 4α Cα.

Stationary subsets share a topological property with regular uncountable
cardinals.

I10. Let S be an unbounded subset of some regular uncountable cardinal κ. Then
S is stationary iff every continuous function f : S → R is constant on a tail.

a. For C ∈ C (with unbounded complement) define a continuous function f :
κ \ C → R that is not constant on any tail.

b. If S is stationary and f : S → R is continuous then there is an α such that f is
constant on S \ α. Hint: Apply the strong form of the Pressing-Down Lemma.

We can find large disjoint families of stationary sets on ω1.

I11. For each α < ω1 let fα : ω → α be a surjection. Define Aβ,n = {α : fα(n) = β}.
a. For all n: if β 6= γ then Aβ,n ∩Aγ,n = ∅.

b. For all β we have (β, ω1) ⊆
S

n Aβ,n.

c. For every β there is an nβ such that Aβ,nβ is stationary. Hint: If not we get
{Cn : n ∈ ω} ⊆ C with

T
n Cn ⊆ β + 1.

d.There is n ∈ ω for which S = {β : n = nβ} is stationary.

e. {Aβ,n : β ∈ S} is a disjoint family of stationary subsets.
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4. Trees

A tree is a partially ordered set in which every set of predecessors is well-
ordered. More formally, consider a partially ordered set (P,4) and, for x ∈ P
put x̂ = {y ∈ P : y ≺ x}. We say that (P,4) is a tree if every set x̂ is
well-ordered.

I1. Let Z(S) denote the set of compact subsets of the Sorgenfrey line. Order Z(S)
by ‘being an initial segment of’, i.e., C 4 D iff C = D ∩ (−∞,maxC].

a. The relation 4 is a partial order.

b. D̂ = {C : C ≺ D} is well-ordered and isomorphic to D \ {maxD}.

I2. Let α be an ordinal and X a set. Let <αX denote the set of functions with
domain some β less than α and range contained in X; in short <αX =

S
β<α

βX.

Then <αX is a tree when ordered by inclusion. For every s ∈ <αX the order type
of ŝ is its domain.

A special example is <ω2, the tree of finite sequences of zeros and ones,
ordered by extension.

A tree is divided into levels: if (T,4) is a tree and α is an ordinal then
Tα denotes the set of t ∈ T for which t̂ has type α. We write ht t = tp t̂; thus
Tα = {t : ht t = α}. The minimal ordinal α for which Tα = ∅ is called the
height of T . The height of T exists because of the Axiom of Replacement.

I3. The height of a tree T is equal to sup{ht t+ 1 : t ∈ T}.

I4. The height of the tree Z(S) is ω1.

A branch of a tree (or a path) is a maximal linearly ordered subset.

I5. A subset B of a tree is a branch iff it is linearly ordered, contains t̂ whenever
t ∈ B, and there is no t such that B ⊆ t̂.

I6. The tree Z(S) has no branches of type ω1.

König’s Lemma

A very useful result about infinite trees is the following.

4.1. Theorem (König’s Lemma). Let T be an infinite tree in which for
every n ∈ ω the level Tn is finite. Then there is a sequence 〈tn〉n in T
such that tn ∈ Tn and tn < tn+1 for all n.

I7. Prove König’s Lemma. Hint: Construct 〈tn〉n by recursion: choose t0 ∈ T0 with
{s : t0 < s} infinite, then t1 ∈ T1 with t1 > t0 and {s : t1 < s} infinite, . . .

König’s Lemma has many applications.

I8. The topological product ω2 is compact. Let U be a family of open sets, no finite
subfamily of which covers ω2 and let T be the set of s for which [s] is not covered
by a finite subfamily of U, where for s ∈ <ω2 we put [s] = {x ∈ ω2 : s ⊂ x}.
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12 Preliminaries [ Ch. 1, § 4

a.The family
˘
[s] : s ∈ <ω2

¯
is a base for the topology of ω2.

b.T is an infinite subtree of <ω2. Hint: If s ∈ T then sa0 ∈ T or sa1 ∈ T .

c. König’s Lemma implies that U does not cover ω2.

This exercise has a converse.

I9. König’s Lemma can be deduced from the compactness of ω2. Let T be an infinite
tree with finite levels and consider the topological product X =

Q
n∈ω Tn, where

each Tn is given the discrete topology. For n ∈ ω put Fn =
˘
x ∈ X : (∀i < n)

`
x(i) <

x(i+ 1)
´¯

.
a.X is compact. Hint: X can be embedded into ω2 as a closed subset.

b. If x ∈
T

n∈ω Fn then 〈x(n) : n ∈ ω〉 satisfies the conclusion of König’s Lemma.

c. For each n the set Fn is clopen and nonempty; in addition Fn+1 ⊆ Fn.

d.
T

n∈ω Fn 6= ∅.

As a further example we prove the simplest version of Ramsey’s theorem.
For this we establish some notation: [ω]2 denotes the family of 2-element
subsets of ω. A map c : [ω]2 → 2 is said to be a colouring of [ω]2 and a
subset A of ω is said to be c-homogeneous or just homogeneous if c is constant
on [A]2. For ease of notation we identify [ω]2 with

{
〈i, j〉 : i < j < ω

}
.

4.2. Theorem (Ramsey’s theorem). For every colouring of [ω]2 there is an
infinite homogeneous set.

I10. Prove Ramsey’s theorem. Given a colouring c : [ω]2 → 2 define a subtree
T = {tn : n ∈ ω} of <ω2 as follows: t0 = ∅; if n > 0 and the ti for i ∈ n have
been found define tn � m by recursion: if tn � m = ti for some i ∈ n then put
tn(m) = c(i, n), if tn �m 6= ti for all i then stop: tn = tn �m.

a. The map n 7→ tn is one-to-one.

b. If s < tn then s = ti for some i ∈ n.

c. If ti < tm < tn then c(i,m) = c(i, n).

d. If {tn : n ∈ A} is a branch through T then A is prehomogeneous, i.e., if i ∈ j ∈ k
in A then c(i, j) = c(i, k).

e. An infinite prehomogeneous set contains an infinite homogeneous set.

I11. Every sequence in R (or any linearly ordered set) has a monotone subsequence.
Hint: Given such a sequence 〈xn〉n define f : [ω]2 → 2 by f(i, j) = 1 if xi < xj and
f(i, j) = 0 if xi > xj (where i ∈ j is tacitly assumed).

Aronszajn trees

The proof of König’s Lemma was a fairly easy recursion and it may seem
that a straightforward adaptation will show that every tree of height ω1 with
countable levels has a branch of type ω1.

I12. Investigate where such an adaptation of the proof of König’s Lemma is liable
to break down.
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An Aronszajn tree is a tree of height ω1 with all levels countable, but
without a branch of type ω1.

I13. There is an Aronszajn tree T contained in {t ∈ Z(S) : t ⊆ Q}. Construct
T by recursion, one level at a time and maintaining the following property †α: if
γ < β 6 α, s ∈ Tγ and q > max s, where q ∈ Q, then there is t ∈ Tβ such that s 4 t
and max t = q. Set T0 = {∅}.

a.Given Tα put Tα+1 = {t ∪ {q} : t ∈ Tα, q ∈ Q, q > max t}. If Tα is countable
then so is Tα+1. If †α holds then so does †α+1.

b. If α is a limit and Tβ has been found for β < α such that †β holds for all β < α
choose an increasing sequence 〈αn〉n with α = supn αn. For every pair 〈t, q〉,
where t ∈

S
β<α Tβ and q ∈ Q with q > max t, let n0 be minimal so that

t ∈
S

β<αn0
Tβ and choose a sequence 〈tn〉n>n0 with tn ∈ Tαn , t 4 tn 4 tn+1

and q − 2−n 6 max tn < q for all n. Put st,q =
S

n tn ∪ {q} and let Tα be the
set of all the st,q thus obtained. Then Tα is countable and †α holds.

c. If n ∈ ω and t ∈ Tn then tp t = n.

d. If α > ω and t ∈ Tα then tp t = α+ 1.

e. The tree T =
S

α∈ω1
Tα is an Aronszajn tree.

I14. An alternative construction. There is a sequence 〈rα : α < ω1〉 such that rα is
an injective map from α into N and such that rα =∗ rβ � α whenever α < β. The
tree T = {rβ � α : α 6 β < ω1} is an Aronszajn tree. Hint: Refer to Exercise 2.16.
Choose the rα by recursion, making sure that rα[α] ⊆ xα.
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Chapter 2

Elementarity

This chapter introduces and studies elementary substructures ‘of the uni-
verse’.

1. Definability

Our first task is to define what definable subsets of a set are. Intuitively these
are sets determined by some formula, and this is how we shall work with them,
but the formal definition is more algebraic in nature. The problem is that we
cannot quite formalize a quantifier like “there exists a formula”.

1.1. Definition. For n ∈ ω and i, j < n set

1. Proj(A,R, n) = {s ∈ An : (∃t ∈ R)(t � n = s)};
2. Diag=(A,n, i, j) = {s ∈ An : s(i) = s(j)}; and
3. Diag∈(A,n, i, j) = {s ∈ An : s(i) ∈ s(j)}.

Using these operations we define the definable relations on A, as follows.
First by recursion on k ∈ ω and all n simultaneously define Df ′(k,A, n) by

Df ′(0, A, n) = {Diag=(A,n, i, j) : i, j < n} ∪ {Diag∈(A,n, i, j) : i, j < n}
Df ′(k + 1, A, n) = Df ′(k,A, n) ∪ {An \R : R ∈ Df ′(k,A, n)}

∪ {R ∩ S : R,S ∈ Df ′(k,A, n)}
∪ {Proj(A,R, n) : R ∈ Df ′(k,A, n+ 1)}

Once this is done we set Df(A,n) =
⋃

k∈ω Df ′(k,A, n). These are the definable
n-ary relations on A.

The family of definable relations is closed under taking complements,
intersections and projections.

1.2. Lemma. If R,S ∈ Df(A,n) then An \ R,R ∩ S ∈ Df(A,n) and if R ∈
Df(A,n+ 1) then Proj(A,R, n) ∈ Df(A,n).

Taking complements, intersections and projections, correspond to apply-
ing ¬, ∧ and ∃vi to formulas. The following lemma makes this connection
more explicit.
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1.3. Lemma. Let ϕ(x0, . . . , xn−1) be a formula whose free variables are among
x0, . . . , xn−1. Then for every set A{

s ∈ An : ϕA
(
s(0), . . . , s(n− 1)

)}
∈ Df(A,n).

In order to make sense of this lemma we must delve into the notion of a
formula, explain what free variables are, and define ϕA

(
s(0), . . . , s(n− 1)

)
.

Formulas

We all have a good idea what a formula is and we usually know how to
recognise one when we see it. However, when we want to treat formulas
mathematically we have to formalise our ‘good idea’. We begin by listing the
basic symbols in the language of set theory. These are: ∧, ¬, ∃, (, ), ∈, = and
infinitely many variables: vi (one for each natural number i). Our formulas
will be finite sequences of basic symbols.

1.4. Definition. The formulas of set theory are built up as follows:
1. for all natural numbers i and j the expressions vi ∈ vj and vi = vj are

formulas; and
2. if ϕ and ψ are formulas then so are (ϕ) ∧ (ψ), ¬(ϕ) and ∃vi(ϕ) for any i.

Note the parentheses, these help to keep everything tidy. In practice we
would consider v0 ∈ v2 ∧ ¬(v3 = v4) to be a good formula (and we shall often
do so) but when we want to prove something about formulas we shall replace
it with its correct form (v0 ∈ v2) ∧

(
¬(v3 = v4)

)
. From elementary logic we

know that the formulas allowed by Definition 1.4 express everything we want
to express.

I1. The following are abbreviations for certain more complicated formulas: ∀vi(ϕ),
(ϕ) ∨ (ψ), (ϕ) → (ψ), (ϕ) ↔ (ψ), vi /∈ vj and vi 6= vj . Write down these
complicated forms.

We shall explain most of the notions related to formulas by way of the
following one

(1)
(
∃v0(v0 ∈ v1)

)
∧

(
∃v1(v2 ∈ v1)

)
.

I2. A subformula of a formula ϕ is a consecutive sequence of symbols from ϕ that is
itself a formula. Identify the subformulas of formula 1.

The scope of the occurrence of a quantifier ∃vi in a formula is the (unique)
subformula beginning with that ∃vi.

I3. a. Identify the scopes of ∃v0 and ∃v1 in formula 1.

b. Prove that the scope of an occurrence is well-defined.

An occurrence of a variable vi in a formula is bound if it lies in the scope
of an occurrence of ∃vi in that formula, otherwise it is free.
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16 Elementarity [ Ch. 2, § 1

I4. Identify which occurrence of v1 in formula 1 is free and which is bound.

The truth or falsity of a formula depends on its free-occurring variables,
not on the bound variables. Therefore we would write formula 1 as ϕ(v1, v2),
to indicate that it is about the free variables v1 and v2. However, common
usage is a bit more flexible: if necessary we will write our formula as, for
example, ϕ(v0, v1, v2, v3) to indicate that its free variables are among v0, v1,
v2 and v3.

Now, if a, b, c and d are constants or other variables then ϕ(a, b, c, d) is
the result of replacing every free occurence of v0, v1, v2 and v3 by a, b, c and
d respectively. Thus, ϕ(4, 3, 2, 1) is(

∃v0(v0 ∈ 3)
)

∧
(
∃v1(2 ∈ v1)

)
,

and ϕ(4, v0, v5, 1) is (
∃v0(v0 ∈ v0)

)
∧

(
∃v1(v5 ∈ v1)

)
.

The second substitution is unfortunate because it has changed the meaning
of the first part of ϕ from “v1 has an element” to “something is an element
of itself”. Such substitutions will not be allowed; we only consider free sub-
stitutions: a substitution ϕ(y1, y2, y3, y4) is free if no free occurence of an
original vi is in the scope of a quantifier ∃yi (this only matters if yi is a
variable of course).

In Lemma 1.3 we substitute elements of A for the free occurences of the
variables in ϕA; in that case there is no problem with bad substitutions: the
elements of A are not variables.

Finally we define what ϕA (the relativation of ϕ to A) means:
1. (vi = vj)A is vi = vj and (vi ∈ vj)A is vi ∈ vj ;
2. (ϕ ∧ ψ)A is ϕA ∧ ψA and (¬ϕ)A is ¬(ϕA); and
3. (∃vi(ϕ)

)A is ∃vi

(
(vi ∈ A) ∧ (ϕ)A

)
.

Thus, informally, ϕA is ϕ with every ∃vi replaced by ∃vi ∈ A.

I5. Give ϕA, where ϕ is formula 1.

Now we are ready to prove Lemma 1.3; we know what a formula is, we
know what ϕA is and we know how substitutions work. We abbreviate the
set

{
s ∈ An : ϕA

(
s(0), . . . , s(n − 1)

)}
as G(ϕ,A) and prove the lemma by

induction on the length of ϕ.

I6. a. If ϕ is xi ∈ xj then G(ϕ,A) = Diag∈(A,n, i, j).

b. If ϕ is xi = xj then G(ϕ,A) = Diag=(A,n, i, j).

c.G(ϕ ∧ ψ,A) = G(ϕ,A) ∩G(ϕ,A).

d.G(¬ϕ,A) = An \G(ϕ,A).

If ϕ = ∃y(ψ) then there are two cases: y is not one of the variables x0, . . . , xn−1

or y = xj for some j < n.
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Ch. 2, § 2 ] Elementary substructures 17

e. If y is not one of x0, . . . , xn−1 then G(ϕ,A) = Proj(A,G(ψ,A), n), where we
write ψ as ψ(x0, . . . , xn−1, y).

In case, for example, y = x0 take a variable z not occuring in ϕ, write the formula
ψ(z, x1, . . . , xn−1) as ψ′(x0, . . . , xn−1, z) and let ϕ′ be ∃z(ψ′).

f. The substitution x0 → z is free.

g.ψ and ψ′ are logically equivalent, hence so are ϕ and ϕ′.

G(ϕ,A) = G(ϕ′, A) = Proj(A,G(ψ′, A), n).

2. Elementary substructures

In order to define what elementary substructures are we must count the defi-
nable relations.

2.1. Definition. By recursion on m, we define En(m,A, n), for all n simul-
taneously, as follows
1. If m = 2i · 3j and i, j < n then En(m,A, n) = Diag∈(A,n, i, j).
2. If m = 2i · 3j · 5 and i, j < n then En(m,A, n) = Diag=(A,n, i, j).
3. If m = 2i · 3j · 52 then En(m,A, n) = An \ En(i, A, n).
4. If m = 2i · 3j · 53 then En(m,A, n) = En(i, A, n) ∩ En(j, A, n).
5. If m = 2i · 3j · 54 then En(m,A, n) = Proj(A,En(i, A, n+ 1), n).
6. In all other cases En(m,A, n) = ∅.

I1. For any A and n we have Df(A,n) = {En(m,A, n) : m ∈ ω}.
a.∀n

`
En(m,A, n) ∈ Df(A,n)

´
for all m. Hint: by induction on m.

b.∀n
`
Df ′(k,A, n) ⊆ {En(m,A, n) : m ∈ ω}

´
for all k. Hint: by induction on k.

c. The set Df(A,n) is countable.

The proof of Lemma 1.3 yields the following improvement.

2.2. Lemma. Let ϕ(x0, . . . , xn−1) be a formula whose free variables are among
x0, . . . , xn−1. Then there is an m such that for every set A{

s ∈ An : ϕA
(
s(0), . . . , s(n− 1)

)}
= En(m,A, n).

Using the enumeration we define the relation M ≺ N between sets.

2.3. Definition. We say that M is an elementary substructure of N — no-
tation M ≺ N — if M ⊆ N and

∀n,m
(
En(m,M,n) = En(m,N, n) ∩Mn

)
.

The following Lemma connects this notion to formulas; Lemma 2.2 faci-
litates the proof.

2.4. Lemma. Let ϕ(x0, . . . , xn−1) be a formula whose free variables are among
x0, . . . , xn−1. Then M ≺ N implies{
s ∈Mn : ϕM

(
s(0), . . . , s(n−1)

)}
=

{
s ∈ Nn : ϕN

(
s(0), . . . , s(n−1)

)}
∩Mn.
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18 Elementarity [ Ch. 2, § 2

To get a feeling for what the definition and this lemma say we look at an
important special case.

I2. If a ∈M ≺ N and a ∩N 6= ∅ then a ∩M 6= ∅.
a. Prove this from the definition. Hint: Note that the assumption says a ∈

Proj(N,Diag∈(N, 2, 1, 0), 1) ∩M .

b. Prove this using Lemma 2.4. Hint: Let ϕ(v0) be ∃v1(v1 ∈ v0) and note that
the assumption says a ∈ {s ∈ N : ϕN (s)} ∩M .

A lot of arguments involving elementarity boil down to a clever application
of this exercise: to see that something of the right kind is in M show that the
set of things of the right kind belongs to M and that its intersection with N
is nonempty.

Another special case is when n = 0. This is because A0 = {∅} (only
the empty function has domain 0). Therefore En(m,A, 0) is either 0 or 1.
In Lemma 2.2 the case n = 0 corresponds to formulas without free variables,
so-called sentences, for which ϕA is either false (if En(m,A, 0) = 0) or true
(if En(m,A, 0) = 1). This leads to the following notion from Model Theory:
A and B are elementarily equivalent if En(m,A, 0) = En(m,B, 0) for all m;
we write this as A ≡ B.

I3. If A ≺ B then A ≡ B.

I4. If m is of the form 2i · 3j · 54 then En(m,A, 0) = 1 iff En(i, A, 1) 6= ∅. Therefore
an elementary substructure of a nonempty set is nonempty.

I5. ω is the only elementary substructure of itself. Let M ≺ ω.
a. ∅ ∈M . Hint: use the sentence ∃x

`
∀y(y /∈ x)

´
.

b. If n ∈ M then n + 1 ∈ M . Hint: use the formula ∃y
`
(x ∈ y) ∧ ∀z((x ∈ z) →

((z = y) ∨ (y ∈ z)))
´

The following fundamental result shows that a given structure has many
elementary substructures. It is a special case of the Löwenheim-Skolem the-
orem from Model Theory.

2.5. Theorem. Given N andX ⊆ N there is anM such thatX ⊆M , M ≺ N
and |M | 6 max(ℵ0, |X|).

I6. Prove Theorem 2.5. Hint: Let C be a well-ordering of N . For m,n ∈ ω define
Hmn : Nn → N as follows. If m is of the form 2i · 3j · 54 and s ∈ En(m,N, n) =
Proj(N,En(i,N, n+1), n) then Hmn(s) is the C-first element of N such that sax ∈
En(i,N, n+ 1); in all other cases let Hmn(s) be the C-minimum of N . Let X0 = X
and, recursively, let Xk+1 = Xk ∪

S
m,n∈ω Hmn[Xn

k ]. In the end let M =
S

k∈ω Xk.

a. For all k we have |Xk| 6 max(ℵ0, |X|) and also |M | 6 max(ℵ0, |X|).
b. For all m and n we have En(m,M,n) = En(m,N, n) ∩Mn. Hint: Induction

on m, for all n simultaneously.
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Ch. 2, § 3 ] Elementary substructures of the Universe 19

3. Elementary substructures of the Universe

In applications we work — intuitively — with elementary substructures of the
set-theoretic universe but, because of things like ‘the set of all sets’, this can
only be done on an intuitive level.

However, nothing prevents us from sharpening our intuition a bit before
we put our method on a firm foundation. So, for the moment we treat V ,
the universe of all sets, as a set and fix an elementary substructure, M , of it.
Observe that, because all sets are in V , for any formula ϕ the relativization ϕV

is just ϕ itself.

What must be in M?

Certain things must be in M , simply because they are definable individuals.
For instance, ∅ ∈ M because it is the unique set without elements. To see
this note that the empty set is the only x that satisfies ∀z(z ∈ x → z 6= z).
Therefore if we write this formula as ϕ(x) then the sentence ∃xϕ(x) is true
in V , i.e., after applying Lemma 2.2 to get a number i for ϕ and setting
m = 2i · 30 · 54 we see that En(m,V, 0) = 1 and hence En(m,M, 0) = 1. Now
apply Exercise 2.4 to see that both En(i, V, 1) and En(i,M, 1) are nonempty.
But because M ≺ V we know that En(i,M, 1) = En(i, V, 1) ∩M . Now use
uniqueness of ∅ to see that En(i, V, 1) = {∅}; therefore the only possibility
is that En(i,M, 1) = {∅} as well, and so ∅ ∈M .

I1. a.ω ⊆M . Hint: Apply Exercise 2.5 or do it now.

b.ω ∈M . Hint: ω is the (unique) minimal inductive set.

c.ω1 ∈M . Hint: Find a formula that defines ω1.

We can apply uniqueness to show that M is closed under various set-
theoretic operations, the following exercise contains small sample.

I2. a. If a ∈M then
S
a ∈M .

b. If a, b ∈M then {a, b} ∈M and so a ∪ b ∈M .

c. If a ∈M then P(a) ∈M .

The last part of this exercise gives rise to Skolem’s paradox. In case
M is countable the uncountable set P(ω) belongs to M . Now, as M is an
elementary substructure of the universe, all axioms of set theory are true
in M , so M must somehow contain information that P(ω) is uncountable.
But P(ω) ∩M is countable, so how can this be? The answer is that if f is
a map from ω to P(ω) that belongs to M then it is still subject to Cantor’s
diagonal argument, which yields a subset A of ω that is not in the range of f .
So f belongs to {g : ∃x(x ∈ P(ω) ∧ x /∈ ran g)} ∩M , by elementarity f must
therefore also belong to {g : ∃x(x ∈M ∧ x ∈ P(ω) ∧ x /∈ ran g)}. This shows
that no surjective map from ω onto P(ω) ∩M can be a member of M .
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I3. If F is a finite subset of M then F ∈ M . Hint: Fix n ∈ ω and a bijection
f : n → F . Apply Exercise 3.2 to show by induction that {f(j) : j < i} ∈ M for
every i.

I4. If a ∈ M is countable then a ⊆ M . Hint: a belongs to
˘
x : ∃f

`
(dom f = ω) ∧

(ran f = x)
´¯

∩M , so there is an f ∈ M with dom f = ω and ran f = x. Use
uniqueness to show that f(i) ∈M for all i ∈ ω.

I5. If M is countable then M ∩ ω1 is a countable ordinal.

Closed and unbounded sets and stationary sets

CountableM enable us to give fast proofs of facts about closed and unbounded
sets and about stationary sets. As in the previous chapter we let C be the
family of closed and unbounded subsets of ω1. Also, for countable M we put
δM = M ∩ ω1.

I6. a. C ∈M . Hint: Write down a formula that defines C.

b. If M is countable and C ∈ C∩M then δM ∈ C. Hint: Every α < δM belongs to
M and to {β : ∃γ(γ ∈ C ∧ γ > β)} ∩M , deduce that C ∩ δM is cofinal in δM .

c. If {Cn : n ∈ ω} ⊆ C then
T

n Cn ∈ C. Hint: Let α ∈ ω1 be arbitrary. Let M be
countable with {Cn : n ∈ ω} ∪ α ⊆M . Consider δM .

d. If M is countable and 〈Cα : α < ω1〉 is a sequence in C that belongs to M then
δM ∈ 4α Cα. Hint: If α ∈M then Cα ∈M .

I7. Assume M is countable. If S ∈ M ∩ P(ω1) and δM ∈ S then S is stationary.
Hint: S ∈

˘
A ∈M : ∀C

`
(C ∈M ∧ C ∈ C) → C ∩A 6= ∅

´¯
.

4. Proofs using elementarity

We reprove some of the results from Chapter 1 using elementarity.
First the pressing-down lemma.

I1. Let f : ω1 → ω1 be regressive and let M be countable with f ∈M .
a.α = f(δM ) ∈M .

b.S = {β : f(β) = α} belongs to M and it is stationary.

Next the ∆-system lemma.

I2. Let F = 〈Fα : α < ω1〉 be a sequence of finite subsets of ω1. Let M be countable
with F ∈M .

a. Let R = FδM ∩ δM , then R ∈M .

b. The set S = {α : R = Fα ∩ α} belongs to M .

c. The set C = {α : (∀β < α)(maxFβ < α)} is closed and belongs to M ; also
δM ∈ C, so C is unbounded as well.

d. The set T = C ∩ S is stationary and if α < β in T then Fα ∩ Fβ = R.

And finally:
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I3. Let f : ω1 → R be continuous and let M be countable with f ∈M .
a. Let ε > 0 and take α < δM such that

˛̨
f(β)−f(δM )

˛̨
< ε whenever α < β 6 δM .

Then
˛̨
f(β)− f(γ)

˛̨
< 2ε whenever β, γ > α.

b. f is constant on [δM , ω1).

5. Justification

Taking elementary substructures of the universe of all sets is not something
that can be formalized in Set Theory. One can formalize the applications in
Set Theory, however. To see this we must realize that the arguments use a
limited supply of sets and simply take a large enough set that contains these
sets and rework the argument inside that big set. The most popular of these
large sets are called H(θ). We shall describe these and show how to work
with them.

To define theH(θ) we must first define the transitive closure of sets. First,
a set x is said to be transitive if it satisfies (∀y ∈ x)(y ⊆ x). Around every
set we can find a smallest transitive set, as follows. Given x put x0 = x and,
recursively, xn+1 = xn ∪

⋃
xn; in the end set trclx =

⋃
n xn.

I1. a. trclx is transitive.
b. If y is transitive and x ⊆ y then trclx ⊆ y.

Now we can define H(θ), for cardinal numbers θ:

H(θ) = {x : |trclx| < θ}.
Thus, e.g., H(ℵ1) is the set of all hereditarily countable sets.

I2. a.ω ∈ H(ℵ1), ω1 ∈ H(ℵ2) and, generally, κ ∈ H(κ+) for all κ.
b.ω ⊆ H(ℵ0), ω1 ⊆ H(ℵ1), and, generally, κ ⊆ H(κ) for all κ.

c. P(ω) ∈ H(c+), P(ω1) ∈ H
`
(2ℵ1)+

´
, and, generally, P(κ) ∈ H

`
(2κ)+

´
for all κ.

d. P(ω) ⊆ H(ℵ1), P(ω1) ⊆ H(ℵ2), and, generally, P(κ) ⊆ H(κ+) for all κ.

We check that the proofs from Section 4 can be done within relativelt
small H(θ).

I3. a. Exercise 3.6 can be done for M ≺ H(ℵ2). Hint: C ⊆ H(ℵ2).
b. Exercise 3.7 can be done for M ≺ H(ℵ2). Hint: Replace C ∈ C by a formula

that expresses ‘C is cub’.
c. The proofs of the pressing-down lemma and ∆-system lemma can be done with
M ≺ H(ℵ2).

d. Exercise 4.3 requires M ≺ H(c+).

Theorem 2.5 admits refinements. The following will be needed in the
proof of Arkhangel′skĭı’s theorem.

I4. Let X ⊆ H(θ) be of cardinality c (or less). There is an M such that X ⊆ M ,
M ≺ H(θ), |M | 6 c and ωM ⊆ M . Hint: In the original proof redefine the Xk so
that ωXk ⊆ Xk+1.
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Chapter 3

Arkhangel′skĭı’s theorem

A special case of the theorem of the title says that first-countable compact
Hausdorff spaces have cardinality at most c. In the literature one can find
three approaches to this result; we shall present each of these, in an attempt
to show how better tools do make for lighter work. For expository purposes
we confine ourselves to the basic case of first-countable compact Hausdorff
spaces; at the end of this section we indicate possible generalizations.

1. First proof

This is essentially Arkhangel′skĭı’s original proof. We shall require a few
preliminary topological results.

I1. Let X be first-countable Hausdorff space with a dense set of cardinality c (or
less); then |X| 6 c. Hint: Every point in the space is the limit of a sequence from
the dense set.

I2. Let X be a first-countable compact Hausdorff space and A a closed subset of
cardinality c (or less); then X \ A can be written as the union of no more than c

closed sets. Hint: Choose a countable local base Bx at each point x of A and
consider the family of all finite covers of A whose members belong to

S
x∈A Bx.

1.1. Theorem. Let X be a first-countable compact Hausdorff space; then
|X| 6 c.

I3. Prove Theorem 1.1. Let T denote the tree <ω1c of countable sequences of elements
of c.

a. |T | = c.

Choose closed sets Ft, for all t ∈ T , and points xt, for t ∈ T of successor height,
as follows. First, F∅ = X and x∅ is any point of X. Second, if ht t is a limit
ordinal we let Ft =

T
s<t Fs. Third, we define Ft,α and xt,α for every α < c: Let

At = cl{xs : s 6 t} and write X \ At =
S

α<c Gt,α, where each Gt,α is closed. Now
put Ft,α = Ft ∩ Gt,α and let xt,α be any point of Ft,α unless this set is empty, in
which case we let xt,α = x∅.

b.Ft ⊆ At ∪
S

α<c Ft,α.

c. For every α we have X =
S
{At : ht t = α} ∪

S
{Ft : ht t = α}.

Let T ′ = {t : |Ft| 6 c}.
d.

S
t∈T At ∪

S
t∈T ′ Ft has cardinality c (or less).

Assume X 6=
S

t∈T At ∪
S

t∈T ′ Ft and choose x ∈ X outside the union.
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e. There is a path P through T such that x ∈ Ft for all t ∈ P .

f. cl{xs : s < t} ∩ cl{xs : t 6 s, s ∈ P} = ∅, whenever t ∈ P .

g. If y ∈ cl{xs : s ∈ P} then y ∈ cl{xs : s < t} for some t ∈ P ; thereforeT
t∈P cl{xs : t 6 s, s ∈ P} = ∅.

h.X is compact, hence
T

t∈P cl{xs : t 6 s, s ∈ P} 6= ∅.

2. Second proof

The first proof is tree-like; the second proof proceeds in a linear recursion.

I1. Prove Theorem 1.1. Fix for every x ∈ X a countable local base Bx. Recursively
define closed sets Fα, for α ∈ ω1, as follows. F0 = {x0} for some x0. If α is a limit
ordinal let Fα = cl

S
β<α Fβ . If Fα is given let Bα =

S
x∈Fα

Bx and choose for every

finite subfamily U of Bα that covers Fα but not X one point xU ∈ X \
S

U and let
Fα+1 be the closure of the union of Fα and the set of all points xU.

a. For every α we have |Fα| 6 c and |Bα| 6 c.

b. The set F =
S

α Fα is closed, hence compact.

Let U be a finite subfamily of
S

x∈F Bx that covers F .
c. U ⊆ Bα for some α.

d. U covers X. Hint: U covers Fα+1.

e. Deduce that X = F , hence |X| 6 c.

3. Third proof

The third proof is the second proof in disguise.

I1. Prove Theorem 1.1. Fix for every x ∈ X a countable local base Bx. Let θ be large
enough so that X and the assignment x 7→ Bx belong to H(θ). Take an elementary
substructure M of H(θ), of cardinality c, and such that X and x 7→ Bx belong to M
and ωM ⊆M .

a.F = X ∩M is closed in X. Hint: If x ∈ cl(X ∩M) then some sequence in
X ∩M converges to x; the sequence belongs to M .

b. Every finite subfamily U of
S

x∈F Bx belongs to M ; if it covers F then it also
covers X. Hint: M � (∀x ∈ X)(∃U ∈ U)(x ∈ U).

4. Extensions and generalizations

One can relax the assumptions of Theorem 1.1 considerably.

I1. Theorem 1.1 also holds for Lindelöf spaces. Hint: All the proofs go through with
finite collections replaced by countable ones.

We can replace the assumption of first-countability by the conjunction of
two weaker properties: countable pseudocharacter, i.e., points are Gδ-sets, and
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countable tightness, which means that whenever x ∈ clA there is a countable
subset B of A such that x ∈ clB.

First we rework Exercise 1.1.

I2. Let X be a Lindelöf space with countable pseudocharacter and countable tight-
ness. If A is a subset of X of cardinality c or less then also |clA| 6 c.

a. It suffices to show that |clA| 6 c whenever A is countable.

Hint: clA =
S
{clB : B ∈ [A]6ℵ0}.

Assume X itself is separable and let D be a countable dense subset.
b. For every x we have {x} =

T
{O : x ∈ O and O is regular open}.

c.X has at most c regular open sets. Hint: If O is regular open then O =
int cl(O ∩D).

For every countable family U of regular open sets put NU = X \
S

U and let N be
the family of these NU’s.

d. If O is open and x ∈ O then there is a U such that x ∈ NU ⊆ O. Hint: X \ O
is Lindelöf.

e. For every point x there is a countable subfamily Ny of N such that {x} =
T

Ny.

f. The map x 7→ Ny from X into [N]6ℵ0 is one-to-one.

Exercise 1.2 needs less extra work.

I3. Let X be a Lindelöf space of countable pseudocharacter and A a closed subset of
cardinality c (or less); thenX\A can be written as the union of no more than c closed
sets. Hint: Choose a countable family Bx of open sets at each point x of A withT

Bx = {x} and consider the family of all countable covers of A whose members
belong to

S
x∈A Bx.

I4. Use any of the three proofs to show that a Lindelöf Hausdorff space of countable
pseudocharacter and countable tightness has cardinality at most c.
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Chapter 4

Dowker spaces

Products of normal spaces need not be normal; the square of the Sor-
genfrey line is the best known example of this phenomenon. Lots of effort
has gone into investigating what normal spaces do have normal products.
The simplest case has turned out to be one of the most interesting: when is
X × [0, 1] normal? The spaces whose product with the unit interval I = [0, 1]
is normal were characterized by Dowker and normal spaces whose product
with I is not normal are called Dowker spaces.

1. Normality in products

We exhibit two non-normal products.
We first consider the square of the Sorgenfrey line. Remember that a

local base at a point a is given by
{
(b, a] : b < a

}
.

I1. The Sorgenfrey line is normal. Hint: Given F and G choose for every a ∈ S a
point xa < a such that (xa, a] ∩ F = ∅ if x /∈ F and (xa, a] ∩G = ∅ if x /∈ G; now
let U =

S
a∈F (xa, a] and V =

S
a∈G(xa, a].

I2. The Sorgenfrey plane S2 is not normal. Let P =
˘
(p,−p) : p ∈ P

¯
and Q =˘

(q,−q) : q ∈ Q
¯
, where P and Q are the sets of irrational and rational numbers

respectively.
a.P and Q are closed in S2.

Let U be an open set around P and for n ∈ N put Pn = {p ∈ P : (p − 2−n, p] ×
(−p− 2−n,−p] ⊆ U}.

b. There is an n such that int clPn 6= ∅ in the usual topology of the real line.

c. If q ∈ Q ∩ int clPn then (q,−q) ∈ clU .

The next example is slightly better because, as we shall see, it shows
better how the ingredients in Dowker’s characterization appear.

I3. Consider the ordinal spaces ω1 and ω1 + 1.
a.ω1 and ω1 + 1 are normal.

b.ω1 × ω1 + 1 is not normal. Hint: Consider F =
˘
(α, α) : α ∈ ω1

¯
and G =˘

(α, ω1) : α < ω1

¯
; apply the Pressing-Down Lemma to show that G∩clU 6= ∅

whenever U is an open set around F .

25
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2. Borsuk’s theorem

One of the reasons for wanting to know when X× I is normal is the following
theorem, due to Borsuk.

2.1. Theorem (Borsuk’s Homotopy Extension Theorem). Let X be a space
such thatX×I is normal, let A be a closed subspace ofX and let f, g : A→ Sn

be continuous and homotopic. If f admits a continuous extension to X then
so does g and the extensions may be chosen homotopic, in fact by a homotopy
that extends the given homotopy between f and g.

Two maps f, g : X → Y are homotopic if there is a continuous map
H : X × I → Y such that H(x, 0) = f(x) and H(x, 1) = g(x) for all x.
We call H a homotopy between f and g. Thus Borsuk’s theorem asserts
that homotopies between maps can be extended provided one of the maps
can be extended. Note the codomain, this the n-sphere, i.e, the subspace
{x : ‖x‖ = 1} of Rn+1. For other codomains the proof is quite easy, e.g.,
for In the proof below finishes after the first step.

I1. Prove Borsuk’s Homotopy Extension Theorem. Let h : A × I → Sn be a
homotopy between f and g and let F : X → Sn be an extension of f . Let
B = (A × I) ∪ (X × {0}) and define k : B → Sn by k(x, t) = h(x, t) if t > 0
and k(x, 0) = F (x).

a. The map k can be extended to a neighbourhood U of B. Hint: Extend k to
K : X×I → D, where D is the massive ball, and let U =

˘
(x, t) : K(x, t) 6= 0

¯
;

compose K � U with the projection with 0 as its centre.

b. There is a neighbourhood V of A such that V × I ⊆ U .

c. There is a continuous function l : X → I such that l(x) = 1 for x ∈ A and
l(x) = 0 for x /∈ U .

d. The map H : (x, t) 7→ K(x, l(x) · t) is the desired homotopy.

3. Countable paracompactness

The property that characterizes normality of X × [0, 1] is countable paracom-
pactness. To define it we must first introduce the following notion.

3.1. Definition. A collection A of sets in a space X is locally finite if every
point of X has a neighbourhood that intersects only finitely many elements
of A.

I1. If A is locally finite then cl
S

A =
S
{clA : A ∈ A}.

Given two covers A and B of a set we say that A is a refinement of B if
for every A ∈ A there is a B ∈ B such that A ⊆ B.
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3.2. Definition. A space is paracompact is every open cover has a locally
finite open refinement. It is countably paracompact is every countable open
cover has a locally finite open refinement.

To get a feeling for what locally finite open refinements can do we have
the following.

I2. a. A paracompact Hausdorff space is regular. Hint: Given a closed set F and
x ∈ X \ F choose, for every y ∈ F , an open set Uy with y ∈ Uy and x /∈ clUy.
Consider a locally finite open refinement of {X \ F} ∪ {Uy : y ∈ F}.

b. A paracompact regular space is normal.

I3. A space is countably paracompact iff every countable open cover has a countable
locally finite open refinement. Hint: If V is some locally finite open refinement of U,
choose UV ∈ U with V ⊆ UV for every V ∈ V. Put WU =

S
{V : UV = U}; then

{WU : U ∈ U} is locally finite and of cardinality not more than U.

I4. Let U be a locally finite open cover of the normal space X. There is an open
cover {VU : U ∈ U} of X such that clVU ⊆ U for all U . Hint: Well-order U by ≺
and define VU by recursion on U : first put FU = X \

`S
W≺U VW ∪

S
W�U W

´
and

then choose VU with FU ⊆ VU and clVU ⊆ U .

The following theorem gives more characterizations of countable para-
compactness.

3.3. Theorem. The following are equivalent for a space X.

1. X is countably paracompact;
2. if {Un : n ∈ ω} is an increasing open cover of X then there is a sequence
{Fn : n ∈ ω} of closed sets with Fn ⊆ Un for all n and X =

⋃
n intFn;

and
3. if {Fn : n ∈ ω} is a decreasing sequence of closed sets in X with empty

intersection then there is a sequence {Un : n ∈ ω} of open sets with
Fn ⊆ Un for all n and

⋂
n clUn = ∅.

I5. Prove Theorem 3.3.
a. Prove 1 implies 2. Hint: Apply Exercise 3.3 to get {Vn : n ∈ ω} and put
Fn = X \

S
m>n Vm.

b. Prove 2 implies 1. Hint: Given {Un : n ∈ ω} apply 2 to {
S

m6n Un : n ∈ ω}
and put Vn = Un \

S
m<n Fm.

c. Prove 2 and 3 are equivalent.

The following is the characterization of countable paracompactness that
is used most often.

I6. A normal space X is countably paracompact iff whenever {Fn : n ∈ ω} is a
decreasing sequence of closed sets in X with empty intersection there is a sequence
{Un : n ∈ ω} of open sets with Fn ⊆ Un for all n and

T
n Un = ∅.

The following theorem is the promised characterization of normality of
X × [0, 1].
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3.4. Theorem. The product X×[0, 1] is normal iff X is normal and countably
paracompact.

The proof is in the following two exercises.

I7. Assume X × [0, 1] is normal.
a.X is normal.

b.X is countably paracompact. Hint: Let {Fn : n ∈ ω} be a decreasing sequence
of closed sets with empty intersection. Let F =

S
n

`
Fn × [2−n, 1]

´
and G =

X × {0}.

I8. Assume X is normal and countably paracompact. Let F and G be closed and
disjoint in X × [0, 1]. Let B be a countable base for the topology of [0, 1], closed
under finite unions. For x ∈ X let Fx = {t ∈ [0, 1] : (x, t) ∈ F} and define Gx

similarly.
a.Fx and Gx are closed and disjoint.

b. For every x there is a B ∈ B with Fx ⊆ B and clB ∩Gx = ∅.

c. If B ∈ B then UB = {x : Fx ⊆ B and clB ∩Gx = ∅} is open in X.

Take a locally finite open cover {VB : B ∈ B} of X with clVB ⊆ UB for all B and
let V =

S
B∈B(VB ×B).

d.F ⊆ V and clV ∩G = ∅. Hint: {VB ×B : B ∈ B} is locally finite.
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Chapter 5

Balogh’s Dowker space

Balogh’s example is constructed using pairs of elementary substructures
of the universe. To see how it works we look at an easier example first.

1. An example of Rudin’s

We discuss an example of a normal space that is not collectionwise Hausdorff,
it is an adaptation of an example due to Rudin.

The space will have c ∪ [c]2 as its underlying set, where [c]2 denotes{
{α, β} : α < β < c

}
. Each of the points {α, β} will be isolated. For each α

we will find a filter Fα of subsets of c and define the neighbourhoods of α to
be the sets of the form U(α, F ) = {α} ∪

{
{α, β} : β ∈ F

}
, with F ∈ Fα.

I1. a.U(α, F ) ∩ U(β,G) ⊆
˘
{α, β}

¯
.

b.U(α, F ) ∩ U(α,G) 6= ∅ iff α ∈ G and β ∈ F .

We shall choose for every α ∈ c and every subset A of c a subset F (α,A)
and let Fα be the filter generated by {F (α,A) : A ⊆ c}. Note that Fα may
be an improper filter.

Normality will be achieve by ensuring that β /∈ F (α,A) or α /∈ F (β,A)
whenever α /∈ A and β ∈ A.

To this end we define I(α,A) = A if α ∈ A and I(α,A) = c \A if α /∈ A.
We shall also define sets J(α,A) for all α and A and put

F (α,A) = I(α,A) ∪ {β > α : β ∈ J(α,A)} ∪ {β < α : α /∈ J(β,A)}.
This already gives us normality.

I2. If A ⊆ c, α ∈ A and β /∈ A then α /∈ F (β,A) or β /∈ F (α,A).

Notice that every element of Fα is determined by a finite family of subsets
of c, so, to get our space to be not collectionwise Hausdorff, we must consider
all possible assignments f : α 7→ Aα of finite families of subsets of c and,
somehow, ensure that there are disctinct α and β with α ∈

⋂
A∈Aβ

F (β,A)
and β ∈

⋂
A∈Aα

F (α,A).
Our strategy for dealing with 2c such assignments in only c steps is based

on the following idea. Take a countable elementary substructure M of the
universe that has the assignment f in it and look at the restriction of f to M ,

29
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i.e., the map fM : c ∩M →
[
P(M ∩ c)

]<ω defined by fM (β) = {A ∩M :
A ∈ Aα}. There are only c many such restrictions and they give us enough
information to deal with all possible assignments using just c many points.

So let
{
(Aβ , fβ) : β ∈ P

}
enumerate the family of all pairs of the

form (M ∩ c, fM ), where M is an elementary substructure of H(θ) and where
we assume that P ⊆ c and the enumeration is such that always Aβ ⊆ β.

Given (Aβ , fβ) define a function gβ : N→ Aβ , as follows. Assume gβ � nk

is known and put Bk =
⋃

i<nk
fβ

(
gβ(i)

)
, so Bk is a finite family of subsets

of Aβ . For every function χ : Bk → {0, 1} choose, if possible, a point αχ not
in {gβ(i) : i < nk} such that for all B ∈ Bk we have αχ ∈ B iff χ(B) = 1.
Extend gβ to some nk+1 > nk so that {gβ(i) : nk 6 i < nk+1} counts the set
of αχ’s.

I3. The map gβ is one-to-one and defined on all of N.

Define f ′β : N→
[
P(A)

]<ω by f ′β(i) = fβ

(
gβ(i)

)
\Bk for nk 6 i < nk+1.

Now we can define the sets J(α,A):

J(α,A) =
{
β > α : (∃i)

(
α = gβ(i) ∧ A ∩Aβ ∈ f ′β(i)

)}
.

With this the definition of the F (α,A) is complete.
Let f : c →

[
P(c)

]<ω be given and fix a countable elementary substruc-
ture M of the universe with f ∈M . Fix β with c ∩M = Aβ and fM = fβ .

I4. There is a k such that A ∈ f(β) and A ∩M ∈ f ′β(i) imply i < nk.

Define χ : Bk → {0, 1} by: if i < nk and B ∈ fβ

(
gβ(i)

)
and then

χ(B ∩M) = 1 iff β ∈ B.

I5. a.χ is well-defined, i.e., there are no B,C ∈ Bk with B ∩ M = C ∩ M and
β ∈ B \ C. Hint: elementarity.

b.αχ is defined. Hint: elementarity.

I6. β ∈ F (αχ, A), whenever A ∈ f(αχ). Fix j ∈ [nk, nk+1) with αχ = gβ(j).
a. If A ∩M ∈ f ′β(i) for some i < nk then β ∈ A iff αχ ∈ A, hence β ∈ I(αχ, A).

b. If A ∩M ∈ f ′β(j) then β ∈ J(β,A).

I7. αχ ∈ F (β,A), whenever A ∈ f(β).
a. If A ∩M ∈ f ′β(i) for some i < nk then β ∈ A iff αχ ∈ A, hence αχ ∈ I(β,A).

b. If A ∩M /∈ f ′β(i) for any i < nk then A ∩M /∈ f ′β(j) and so β /∈ J(αχ, A),
whence αχ ∈ F (β,A).

2. Balogh’s example

Balogh’s example is, to some extent, similar in spirit to Rudin’s example but
much more complicated.

Monday 19-11-2001 at 13:17:09 — balogh.tex



Ch. 5, § 2 ] Balogh’s example 31

The underlying set of our spaceX will be c×ω. As above we will construct,
for each α, a filter Fα and use these filters to define the topology: U is open iff
whenever (α, n+ 1) ∈ U there is an F ∈ Fα such that

{
(β, n) : β ∈ F

}
⊆ U .

I1. a. For every n the set Un = c× [0, n] is open.

b. For every n the set Ln = c× {n} is relatively discrete.

The hard part will be to ensure that the space is normal and not countably
paracompact. Normality is handled much like in Rudin’s example: there will
be F (α,A) in Fα such that F (α,A) ∩ F (β, c \ A) = ∅ whenever α ∈ A and
β /∈ A. Countable paracompactness follows because, for every n, a closed set
contained in c× n must be ‘small’, in fact so small that whenever we choose
closed sets Fn ⊆ c× n for every n, their union will not even cover c× {0}.

The following combinatorial lemma lies at the basis of the construction.

2.1. Lemma. There is a map c 7→ dc from c2 to itself such that whenever
f : c → ω, g : c → [c2]<ω and h : c → [c]<ω are given we can find α < β in c
with f(α) = f(β), if c ∈ g(α) then c(α) = dc(β), and β /∈ h(α).

The construction

Given the lemma, the construction proceeds as follows. For α ∈ c, s ∈ [c2]<ω

and a ∈ [c]<ω put

F (α, s, a) =
{
β ∈ c : (∀c ∈ s)

(
dc(β) = c(α)

)}
\ a.

Furthermore, for each α, let Fα be the family of all sets of the form F (α, s, a).

I2. F (α, s1, a1) ∩ F (α, s2, a2) = F (α, s1 ∪ s2, a1 ∪ a2).

It is very well possible that F (α, s, a) = ∅ for some α, s and a; for example
when c(α) = 1 and dc is constantly 0: in that case F (α, {c},∅) = ∅. We will
see however that this does not happen too often.

Normality

The space is even hereditarily normal.
Let H and K be separated subsets of X, i.e., H ∩ clK = clH ∩K = ∅.

We have to find disjoint open sets around H and K.

I3. It suffices to find, for each n, open sets Vn and Wn with H ∩ Ln ⊆ Vn and
clVn ∩ K = ∅, as well as K ∩ Ln ⊆ Wn and clWn ∩ H = ∅.
Hint: Let V =

S
n(Vm \

S
m6n clWn) and W =

S
n(Wm \

S
m6n clVn) .

I4. Let A ⊆ c and n ∈ ω. Then A × {n} and (c \ A) × {n} have disjoint open
neighbourhoods.

a. The statement holds for n = 0. Hint: See Exercise 2.1.

b. If the statement holds for n then it holds for n+ 1. Hint: Let c be the charac-
teristic function of A and show that F (α, {c},∅) and F (β, {c},∅) are disjoint
whenever α ∈ A and β /∈ A. Look at A′ × {n}, where A′ =

S
α∈A F (α, {c},∅).
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I5. If m < n then K ∩ Lm and H ∩ Ln have disjoint open neighbourhoods.
a. There are disjoint open sets OK and OH in Um such that Ln ∩ clK ⊆ OK and
Ln \ clK ⊆ OH .

b. The set O∗H = OH ∪ (Un \ (Um ∪ clK)) is open and contains H ∩ Ln.

c.O∗H and OK are as required.

I6. There are disjoint open sets Vn and O around H ∩ Ln and K respectively.
a. There are disjoint open sets Vn and O′ around H ∩Ln and K ∩Un respectively.

Hint: Apply the previous two exercises.

b. The set O = O′ ∪ (X \ (Un ∪ clH)) is open and as required.

Countable paracompactness

We call a subset A of c separated if we can find for each α ∈ A a set Fα ∈ Fα

such that α /∈ Fβ and β /∈ Fα whenever α 6= β in A. A set is σ-separated if it
is the union of countably many separated sets.

I7. c is not σ-separated. Hint: Apply Lemma 2.1.

I8. Let n ∈ ω and A ⊆ c. Then A\ϕ(A) is separated, where ϕ(A) =
˘
α : (α, n+1) ∈

cl
`
A× {n}

´¯
.

I9. If n ∈ ω and Fn is closed and a subset of Un then An = {α : (α, 0) ∈ Fn} is the
union of n+ 1 many separated sets. Hint: ϕn+1(An) = ∅.

I10. X is not countably paracompact.

Proof of Lemma 2.1

The proof of Lemma 2.1 is much like that in Section 1: we try to deal with
2c many possibilities by looking at their restrictions to countable elementary
substructures of H(θ), where θ is sufficiently big, larger than 22c

will work.
However, we need an extra twist to the construction. Assume we have f ,

g and h as in the lemma. We take two countable elementary substructures M
and N of H(θ), with f, g, h ∈ M and M ∈ N . We define A = c ∩ N and
B = {c �A : c ∈ c2 ∩M}.

I11. If α ∈ N and β /∈ A then β /∈ h(α).

I12.a. For every n the preimage f←(n) belongs to M .

b. If β /∈ A and f(β) = n then f←(n) is uncountable.

These two exercises show that it is quite easy to find α < β with f(α) =
f(β) and β /∈ h(α): simply take β outside A and α ∈ A with f(α) = f(β).

To get, given β, an α such that dc(β) = c(α) for all c ∈ g(α) we have to
do more work.

I13. If c ∈ c2 ∩ N \ M then c � A /∈ B. Hint: If c′ ∈ c2 ∩ M then c′ 6= c, use
elementarity.
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For α ∈ c define eα : g(α)→ 2 by eα(c) = c(α).

I14. The function eα depends only on the restriction of g to N , defined by gN (α) =
{c �N : c ∈ g(α)}.

I15. Let E = g(β) ∩M and n = f(β), and put e = eβ � E.
a. The set H = {γ : f(γ) = n, E ⊆ g(γ) and e = eγ � E} belongs to M and is

cofinal in c.

b. If F is a finite subset of M and α ∈ c ∩M then there is a γ ∈ H ∩M with
γ > α and F ∩ g(γ) \ E = ∅.

c. Choose, in M , a maximal subset K of H such that g(γ) ∩ g(δ) = E whenever
γ 6= δ in K. Then K is uncountable. Hint: If K is countable then K ⊆ M ;
consider K ∪ {β}.

d. If α ∈ K and c ∈ E then c(α) = c(β).

This gives us a clue as to how to define the value dc(β) for certain c: if
there is an α ∈ K with c ∈ g(α) then dc(β) = c(β) = c(α) if c ∈ E and
dc(β) = c(α) if c /∈ E. If there is no such α then dc(β) is not important, so
we set dc(β) = 0. However, this assumes that we know M and N , whereas
we need to define the dc knowing only c∩M , c∩N and the restrictions of f ,
g and h.

To give the true definition we let {(aβ , Aβ , Bβ , fβ , gβ , hβ) : β ∈ P} enu-
merate the set of structures of the form

(c ∩M, c ∩N, {c � (c ∩N) : c ∈M}, f �N, gN , h �N),

where M,N ≺ H(θ), M ∈ N and f, g, h ∈ M . Also, gN is defined on A by
gN (α) = {c � (c ∩ N) : c ∈ g(α)}. We assume P and the enumeration are
chosen so that always Aβ ⊆ β.

Fix β ∈ P and consider the βth structure (aβ , Aβ , Bβ , fβ , gβ , hβ).
Inspired by Exercise 2.15 we consider triples (n,E, e), where n ∈ N, E ∈

[aβ ]<ℵ0 and e : E → {0, 1}. For each such triple put

H(n,E, e) = {γ ∈ Aβ : f(γ) = n, g(γ) ∩Bβ = E and e = eγ � E}.
Here we define eγ as above: eγ(c) = c(γ) for c ∈ gβ(γ).

Still using Exercise 2.15 as our guideline we consider the set Iβ of those
(n,E, e) for which H(n,E, e) has an infinite subset K(n,E, e) such that
gβ(γ) ∩ gβ(δ) = E whenever γ 6= δ in K(n,E, e).

I16. There are an infinite set Jβ in Aβ and a function uβ : Jβ → [Aβ 2]<ℵ0 with
disjoint values such that for every (n,E, e) ∈ Iβ there are infinitely many γ ∈
Jβ ∩K(n,E, e) with uβ(γ) = gβ(γ) \ E.

Now we define the dc:
1. if β ∈ P and c �Aβ ∈ Bβ then set dc(β) = c(β);
2. if β ∈ P and c � Aβ /∈ Bβ but c � Aβ ∈ uβ(α) for a (unique) α ∈ Jβ then

set then dc(β) = c(α);
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3. in all other cases set dc(β) = 0.
This definition works.

I17. Let f , g and h be given and take M and N with f, g, h ∈ M , M ∈ N and
M,N ≺ H(θ). Fix β with (aβ , Aβ , Bβ , fβ , gβ , hβ) = (c∩M, c∩N, {c�A : c ∈M}, f �
N, gN , h �N). Let n = f(β), E = g(β ∩M) and e = eβ � E. If α ∈ Jβ ∩K(n,E, e)
then f(α) = f(β), β /∈ h(α) and dc(β) = c(α) for all c ∈ g(α).
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Chapter 6

Rudin’s Dowker space

Rudin’s Dowker space is of a totally different nature than that of Balogh;
it was based on an example of Misčenko’s of a linearly Lindelöf space that is
not Lindelöf.

1. Description of the space

We work in the product P =
∏∞

n=1(ωn + 1) of the successors of the first ℵ0

many uncountable ordinals. We give P the box topology, where each ordinal
has its usual order topology. The box topology has the family of all open
boxes as a base; an open box is simply a product

∏∞
n=1On, where On is open

in ωn + 1.
We consider two subspaces of P :

X ′ = {x ∈ P : (∀n)(cf xn > ω0)}
and its subset

X = {x ∈ P : (∃i)(∀n)(ωi > cf xn > ω0)}.

The space X is Rudin’s Dowker space. The rest of this chapter will be devoted
to verifying this.

A nice base

We need an easy-to-handle base for the topology of X ′ and X. To this end we
introduce the following notation. For x, y ∈ P we say x < y if xn < yn for all n
and x 6 y means xn 6 yn for all n. For x, y ∈ P with x < y we use (x, y] to
denote the set {z ∈ X ′ : (∀n)(xn < zn 6 yn)}, i.e, (x, y] = X ′∩

∏∞
n=1(xn, yn].

I1. If x ∈ X ′ then
˘
(y, x] : y < x

¯
is a local base at x.

We shall be using the family B =
{
(x, y] : x, y ∈ P, x < y

}
as a base for

the open sets of X ′. The following consequence of the choice of points in X ′

will be very useful.

I2. X ′ is a P -space, i.e., if U is a countable family of open sets then
T

U is open.

35
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2. X is normal

To prove X is normal we prove two things:
1. every open cover of X ′ has a disjoint open refinement, and
2. if A and B are closed and disjoint in X then their closures in X ′ are

disjoint too.

I1. The two statements above imply that X is indeed normal.

The property that every open cover has a disjoint open refinement is called
ultraparacompactness; it is (much) stronger than ordinary paracompactness.

X ′ is ultraparacompact

Let O be an open cover of X ′. We build a sequence 〈Uα : α < ω1〉 of open
covers of X ′ such that
1. each Uα is a disjoint open cover and a subfamily of B,
2. if α < β then Uβ is a refinement of Uα,
3. if U ∈ Uα and U ⊆ O for some O ∈ O then U ∈ Uα+1, and
4. if U ∈ Uα, say U = (x, y], and U ⊆ O for no O ∈ O then for every V ∈

Uα+1 with V ⊆ U and V = (u, v] there is some n such that vn < yn or
V ⊆ O for some O ∈ O.

I2. Let y ∈ X ′ and denote for α < ω1 the unique element of Uα that contains y by
(uα, vα].

a. For every n there is an αn such that vα(n) = vαn(n) whenever α > αn.

Let αy = supn αn and β = αy + 1.

b.There is an O ∈ O with (uβ , vβ ] ⊆ O.

c. If γ > β then (uγ , vγ ] = (uβ , vβ ].

I3. The family
˘
(uαy , vαy ] : y ∈ X ′¯ is a disjoint open refinement of O.

To construct the sequence we start with U0 = {X ′}. Note thatX ′ = (0, t],
where ti = ωi for all i.

To make Uα+1 from Uα let U ∈ Uα, say U = (x, y]. If there is an O ∈ O

with U ⊆ O put IU = {U}. If not then consider two cases.
y ∈ X ′ Take z < y so that x < z and (z, y] ⊆ O for some O ∈ O. For every

subset A of N put

VA = {u ∈ (x, y] : (∀i ∈ A)(ui 6 zi) ∧ (∀i /∈ A)(ui > zi)}.

Set IU = {VA : A ⊆ N}.
y /∈ X ′ Fix n with cf yn = ω0 and fix an increasing cofinal sequence 〈αi〉i of

ordinals in yn with α0 = xn. For i ∈ ω put Vi = {u ∈ (x, y] : αi < un 6
αi+1} and let IU = {Vi : i ∈ ω}.
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Disjoint closed sets in X have disjoint closures in X ′

Let A and B be closed and disjoint in X. Define An = {x ∈ A : (∀i)(cf xi 6
ℵn)} and define Bn similarly.

I4. It suffices to show that for every n the sets An and Bn have disjoint closures
in X ′. Hint: A =

S
n An and X ′ is a P -space.

Fix n and take x ∈ X ′ \X. Let θ be large enough and take a countable
elementary substructure M0 of H(θ) with A,B, x,X ′, X, P ∈M0. Use M0 as
the starting point of a sequence 〈Mα < α < ωn〉 of elementary substructures
ofH(θ) such thatMα∪{Mα} ⊆Mα+1 (and |Mα+1| 6 max{|Mα|,ℵ0}) for all α
and Mα =

⋃
β<αMβ whenever α is a limit. In the end let M =

⋃
α<ωn

Mα.

I5. a. For every limit ordinal β the set Mβ is an elementary substructure of H(θ).

b. For every α we have α ⊆Mα.

c. For every α we have |Mα| = max{|α|,ℵ0}.

Define x̂ by x̂i = supM ∩ xi and for every α < ωn define uα by uα(i) =
supMα ∩ xi.

I6. a. If cf xi 6 ℵn then x̂i = xi. Hint: There is C ∈M0 with |C| 6 ℵn that is cofinal
in x(i). Show that C ⊆M .

b. If cf x(i) > ℵn then x̂n(i) < x(i) and cf x̂n(i) = ℵn.

c. x̂n ∈ X for all n.

I7. a. There is an α such that (uα, x̂] ∩A = ∅ or (uα, x̂] ∩B = ∅.

b. For this α we have (uα, x] ∩An = ∅ or (uα, x] ∩Bn = ∅.

I8. X is collectionwise normal, i.e., if F is a discrete collection of closed sets then
there is a disjoint family {UF : F ∈ F} of open sets with F ⊆ UF for all F . Hint:
{clX′ F : F ∈ F} is discrete.

3. X is not countably paracompact

We apply Exercise 3.6. For n > 1 let Fn = {x ∈ X : (∀i 6 n)(xi = ωi)}; we
show that

⋂∞
n=1 Un 6= ∅ whenever 〈Un〉n is a sequence of open sets with Un ⊇

Fn for all n.

I1. The sets Fn are indeed closed and
T∞

n=1 Fn = ∅.

The key to the proof is the following lemma. We let t denote the top of P ,
i.e., ti = ωi for all i.

3.1. Lemma. If U is an open set around Fn then there is an x < t such that
X ∩ (x, t] ⊆ U .

Given this lemma, the rest of the proof is easy.

I2.
T∞

n=1 Un 6= ∅. Hint: Apply Lemma 3.1 infinitely often to get an x < t with
(x, t] ∩X ⊆

T
n Un.
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Proof of Lemma 3.1

Let n and U be given. Choose θ large enough, so that P,X,U ∈ H(θ).

I3. There is M ≺ H(θ) with ωn ∪ {P,X,U} ⊆ M , |M | = ℵn and such that M ∩Q
i>n ωi is cofinal in

Q
i>n(M ∩ ωn). Hint: Obtain M as the union of a sequence

〈Mα : α < ωn〉, where Mα ∈Mα+1 for all α.

Define x ∈ P by xi = ωi for i 6 n and xi = supM ∩ ωi for i > n.

I4. x ∈ Fn.

Choose x′ < x so that (x′, x] ∩X ⊆ U .

I5. a. There is z ∈M ∩ P with x′ 6 z < x.

b. For every u ∈M ∩ (z, t] ∩X we have t ∈ U .

c. (z, t] ∩X ⊆ U .

This completes the proof. In the next chapter we shall see that X has a
(much smaller) subspace that is also a Dowker space.
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Chapter 7

A Dowker space of size ℵω+1

In this chapter we show that Rudin’s Dowker space has a closed subspace
of cardinality ℵω+1 that is also a Dowker space.

1. A special sequence in
∏∞

n=1 ωn

We shall not be working with the full product
∏∞

n=1 ωn but with a subproduct
over a subset B of N. For B ⊆ N we write PB for

∏
n∈B(ωn + 1) and QB =∏

n∈B ωn. As before, for x, y ∈ PB we write
• x < y if (∀n ∈ B)(xn < yn);
• x 6 y if (∀n ∈ B)(xn 6 yn);
• x <∗ y if {n : xn > yn} is finite;
• x 6∗ y if {n : xn > yn} is finite; and
• x = ∗y if {n : xn 6= yn} is finite.

For us the following result, which we quote without proof, will give us our
Dowker subspace.

1.1. Theorem. There are a subset B of N and a sequence 〈xα : α < ℵω+1〉
in QB such that

1. the sequence is increasing with respect to <∗, i.e., xα <∗ xβ whenever
α < β; and

2. the sequence is cofinal, i.e., if x ∈ QB then there is an α with x <∗ xα.

We call a sequence as in this theorem an ℵω+1-scale. We can improve the
scale a bit.

I1. We can assume that for every δ of uncountable cofinality if {xα : α < δ} has a
least upper bound with respect to 6∗ then xδ is such a least upper bound.
Hint: Start with some ℵω+1-scale 〈yα : α < ℵω+1〉. Given 〈xα : α < δ〉 let xδ be a
least upper bound in case cf δ > ω0 and a least upper bound exists, otherwise let
xδ = yβ , where β is minimal with xα <

∗ yβ for all α.

We shall need many least upper bounds. We write Bk = B ∩ (k, ω) when
k ∈ N.

1.2. Lemma. Let k > m and let 〈αη : η < ℵm〉 be strictly increasing with
δ = supη αη < ℵω+1. Let 〈yη : η < ℵm〉 be a sequence in QBk

that is

39
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increasing with respect to < and such that yη =∗ xαη for all η, and let y be
the pointwise least upper bound of the yη.

1. y ∈ QBk
and it is a least upper bound of 〈xαη : η < ℵm〉;

2. cf y(n) = ℵm for all n > k; and
3. y =∗ xδ.

I2. Prove Lemma 1.2.
a. cf y(n) = ℵm for n > k. Hint: The sequence is <-increasing.

b. y ∈ QBk . Hint: Use cf y(n) = ℵm.

Let y′ be any upper bound of the xαη and C = {n ∈ B : n > k and y′(n) < y(n)}.
c. For n ∈ C there is ηn with yηn(n) > y′(n).

d. sup{ηn : n ∈ C} = η < ℵm.

e. yη(n) > yηn(n) > y′(n) for n ∈ C.

f.C is finite. Hint: yη =∗ xαη 6∗ y′.

g. y =∗ xδ.

2. The space

We use a subproduct of Rudin’s space X, to wit the space XB , where XB =
{x �B : x ∈ X}.

I1. The space XB is also a Dowker space.

The desired subspace Z of XB is now easily defined:

Z = {x ∈ XB : (∃α < ℵω+1)(x =∗ xα)}.
Some simple but useful observations about Z.

I2. The space Z has cardinality ℵω+1. Hint: If α < ℵω+1 then {x ∈ XB : x =∗ xα}
has cardinality ℵω+1.

I3. If x ∈ Z then there is a unique α with x =∗ xα.

I4. If x, y ∈ Z then x <∗ y or y <∗ x or x =∗ y.

Z is collectionwise normal

To show that Z is (collectionwise) normal it suffices to show that Z is closed
in XB .

I5. Assume m 6 k and let 〈yη : η < ℵm〉 be a sequence in Z such that 〈yη �Bk : η <
ℵm〉 is <-increasing and let y be its pointwise supremum. Then y ∈ Z. Hint: Apply
Lemma 1.2; for every η there is one αη with yη =∗ xαη .

Now we show that Z is closed in XB . Fix a point t ∈ XB that is in the
closure of Z. For every z ∈ Z put E(z, t) = {n ∈ B : zn = tn}. Of course we
seek a z so that E(z, t) is cofinite.

Sunday 21-08-2005 at 15:34:23 — kojman-shelah.tex



Ch. 7, § 2 ] The space 41

I6. If z ∈ Z and z 6 t then E(z, t) is finite or cofinite. Define y by yn = 0 if
n ∈ E(z, t) and yn = zn if n /∈ E(z, t).

a. y < t and there is x ∈ Z ∩ (y, t].

b. If z <∗ x then E(z, t) is finite. Hint: {n : zn < xn} ∩ E(z, t) = ∅.

c. If x =∗ z or x <∗ z then E(z, t) is cofinite. Hint: {n : xn < zn} ⊆ E(z, t).

For w ⊆ B let Zw = {z ∈ Z : z 6 t and E(z, t) = w}. Note that Zw is
only nonempty if w is finite or cofinite.

I7. There are w such that t ∈ clZw. Hint: XB is a P -space, show that cl{z ∈ Z :
z 6 t} =

S
w clZw.

Fix some w such that t ∈ clZw; if this w is infinite we are done, so assume
it is finite. Also put Mm = {n ∈ B : cf tn = ℵm} and M<m =

⋃
i<mMi.

I8. There is an m such that Mm is infinite.

Let m be minimal such that Mm is infinite. Let k = max(M<m ∪w). For
each n ∈Mn fix an increasing and cofinal sequence 〈γn

η : η < ℵm〉 in tn.

I9. There is a sequence 〈yη : η < ℵm〉 in Zw such that

1. yη 6 t for all η;
2. if η < ζ then yη < yζ < t on Bk; and
3. yη(n) > γn

η for n ∈ Bk ∩Mm.

I10. Let y be the pointwise supremum of the sequence 〈yη : η < ℵm〉.
a. y ∈ Z.

b.E(y, t) is cofinite. Hint: Mn ⊆ E(y, t).

c. t ∈ Z.

Z is not countably paracompact

This is relatively easy. Let Fn = {z ∈ XB : (∀i ∈ B)(i 6 n → zi = ωi)} for
every n.

I11. If U is open in Z and U ⊇ Fn ∩ Z then there is z ∈ Z with (z, t] ∩ Z ⊆ U .
a. The set V = U ∪ (XB \ Z) is open in XB and Fn ⊆ V .

b. There is x ∈ XB with (x, t] ∩XB ⊆ V .

c. There is z ∈ Z with z > x.

I12. If Un is open and Un ⊇ Fn for all n then
T

n Un 6= ∅.
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Appendix A

The Axioms of Set Theory

In the parlance of Mathematical Logic, Set Theory is a first-order theory
with equality and one binary predicate, denoted ∈, with the following axioms.

The Axiom of Extensionality. Sets with the same elements are equal:
(∀x)(x ∈ a↔ x ∈ b)→ (a = b).

The Axiom of Pairing. For any two sets a and b there is a third set having
only a and b as its elements: (∀a)(∀b)(∃c)(∀x)

(
x ∈ c↔ (x = a ∨ x = b)

)
.

The Axiom of Union. For any set a there is a set consisting of all the
elements of the elements of a: (∀a)(∃b)(∀x)

(
x ∈ b↔ (∃y)(y ∈ a ∧ x ∈ y)

)
.

The Axiom of Power Set. For any set a there is a set consisting of all the
subsets of a: (∀a)(∃b)(∀x)

(
x ∈ b↔ (∀y)(y ∈ x→ y ∈ a)

)
.

The Axiom of Separation. If ϕ is a property, possibly with a parameter
p, then for every a and p there is a set that consists of those elements of a
that satisfy ϕ: (∀a)(∀p)(∃b)(∀x)(x ∈ b↔ (x ∈ a ∧ ϕ(x, p))).

The Axiom of Replacement. If F is a function then for every set a its
image F [a] under F is a set: (∀a)(∃b)(∀y)(y ∈ b↔ (∃x)(x ∈ a ∧ F (x) = y)).

The Axiom of Infinity. There is an infinite set: (∃a)(∅ ∈ a ∧ (∀x)(x ∈
a→ x ∪ {x} ∈ a).

The Axiom of Foundation. Every nonempty set has a ∈-minimal element:
(∀a)

(
a 6= ∅→ (∃b)(b ∈ a ∧ (∀c)(c ∈ b→ c /∈ a))

)
.

The Axiom of Choice. Every set of nonempty sets has a choice function:
(∀a)(∃b)

(
(∀x ∈ a)(∃y ∈ x)(〈x, y〉 ∈ b) ∧ (∀x)(∀y)(∀z)((〈x, y〉 ∈ b ∧ 〈x, z〉 ∈

b)→ y = z)
)
.

These axioms form the starting point for Set Theory, just like Euclid’s
axioms were the starting point for Euclidean geometry.

The Axiom of Extensionality connects = and ∈; it mirrors the way in
which we normally show that sets are equal.

The Axiom of Pairing, combined with the Axiom of Extensionality, lets
us define a new ‘function’: {a, b} is the unique c such that (∀x)(x ∈ c ↔
(x = a ∨ x = b)). We can then form {a} = {a, a}, the singleton set, and{
{a}, {a, b}

}
, the ordered pair, usually denoted 〈a, b〉.
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I13. Verify that 〈a, b〉 = 〈c, d〉 iff a = c and b = d.

The Axioms of Union and Power Set give additional operations:
⋃
a ={

y : (∃x ∈ a)(y ∈ x)
}

and P(a) =
{
x : (∀y ∈ x)(y ∈ a)

}
. By combining

Union and Pairing we can form a ∪ b =
⋃
{a, b}.

The Axioms of Separation and Replacement deserve special consideration;
both in fact represent an infinite list of axioms, one for each property or func-
tion. As such they should properly called axiom schemas. As an application
let ϕ(x, p) be x ∈ p; then for any sets a and p the set {x ∈ a : x ∈ p} exists
— it is of course nothing but a∩p. Similarly, if ϕ(x, p) is (∀y ∈ p)(x ∈ p) and
a ∈ p then {x ∈ a : ϕ(x, p)} defines

⋂
p.

In the Replacement schema proper one considers formulas that define
functions: if ϕ(x, y, p) satisfies (∀x)(∀y)(∀z)(ϕ(x, y, p) ∧ ϕ(x, z, p) → y = z)
then (∀a)(∃b)(∀y)

(
y ∈ b↔ (∃x ∈ a)ϕ(x, y, p)

)
.

The Axiom of Infinity may look strange at first but we must realize that
none of the axioms so far can express the notions of ‘finite’ and ‘infinite’ in
any way. As can be seen in Appendix B the present formulation leads to a
satisfactory set that does all we may expect of the natural numbers. A set
as in the Axiom of Infinity is called inductive and an inductive set deserves
to be called infinite because it contains the chain ∅ ∈ {∅} ∈

{
∅, {∅}

}
∈ · · ·

that goes on forever. The Axiom of Foundation is also called the Axiom of
Regularity because it proscribes infinite chains · · · ∈ x2 ∈ x1 ∈ x0 and thus
ensures that the universe of sets can be built up by iterating the power set
operation, thus: V0 = ∅, Vα+1 = P(Vα) and Vα =

⋃
β<α Vβ if α is a limit

ordinal.

I14. Every set belongs to Vα for some α. Hint: Given a let b =
˘
x ∈ trcl a : (∃α)(x ∈

Vα)
¯
. If b 6= trcl a let x be ∈-minimal in trcl a \ b; by the Axiom of Replacement

x ⊆ Vα for some α and so x ∈ Vα+1 and hence x ∈ b.

The Axiom of Choice accounts for the C in ZFC. Because of its noncon-
structive nature — the existence of the choice function is simply asserted, no
description is given — it is treated with suspicion by some. We will use it
freely in this book and at some places point out some of its stranger conse-
quences.
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Appendix B

Basics of Set Theory

In this chapter we collect some notions from Set Theory that are used
throughout the book. We take the opportunity to illustrate how familiar set-
theoretic operations can be justified on the basis of the axioms presented in
Chapter A.

1. The Natural numbers

To see how N can be conceived as a set we apply the Axiom of Infinity to get
an inductive set I. This means that ∅ ∈ I and that x ∪ {x} ∈ I whenever
x ∈ I.

I1. There is a smallest inductive set.
a. Apply the Power Set and Separation Axioms to construct N =

T
{X : X ⊆ I

and X is inductive}.
b. The set N is inductive and a subset of any other inductive set.

Thus, the official Set-Theoretic definition of N is that it is the smallest
inductive set. We make some abbreviations: 0 = ∅, 1 = {0}, 2 = {0, 1}, and
so on.

I2. The set N, together with the operation n 7→ n ∪ {n}, satisfies Peano’s Axioms
for the natural numbers.

This exercise allows us to define addition and multiplication as usual and
m < n by (∃k)(k 6= 0 ∧ n = m+ k).

I3. The order < is identical to ∈.

2. Ordered pairs and sequences

We defined ordered pairs in Appendix A. In a similar fashion one can define
ordered triples: 〈x, y, z〉 =

{
{x}, {x, y}, {x, y, z}

}
3. Products and relations

Relations abound in mathematics; they have a reasonably simple mathema-
tical foundation.
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Products

Given two sets X and Y the product X×Y is defined to be the set of ordered
pairs 〈x, y〉 with x ∈ X and y ∈ Y . The next exercise shows that this is a
sound definition.

I1. The existence of X × Y can be deduced from the Axioms of Pairing, Union,
Power Set and Separation.

a. If x ∈ X and y ∈ Y then 〈x, y〉 ∈ P
`
P(X ∪ Y )

´
.

b.X × Y =
˘
z ∈ P

`
P(X ∪ Y )

´
: (∃x ∈ X)(∃y ∈ Y )(z = 〈x, y〉)

¯
.

There will be situations where the Power Set Axiom is not available; we
can avoid it in building X × Y .

I2. The existence of X × Y can be deduced from the Axioms of Pairing, Union, and
Replacement.

a.Given x ∈ X use the map y 7→ 〈x, y〉 to deduce that {x} × Y is a set.

b.Use the map x 7→ {x} × Y to deduce that X =
˘
{x} × Y : x ∈ X

¯
is a set.

c.X × Y =
S

X is a set.

Relations

A relation is a set of ordered pairs. Its domain is the set of its first coordinates
and its range the set of its second coordinates.

I3. a. z is an ordered pair iff (∃u ∈ z)(∃v ∈ z)(∃x ∈ u)(∃y ∈ v)
`
z = 〈x, y〉

´
.

b.x is the first coordinate of z iff (∃v ∈ z)(∃y ∈ v)
`
z = 〈x, y〉

´
.

c. y is the second coordinate of z iff (∃u ∈ z)(∃x ∈ u)
`
z = 〈x, y〉

´
.
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