
3. Cardinal Numbers

Cardinality

Two sets X , Y have the same cardinality (cardinal number, cardinal),

(3.1) |X | = |Y |,

if there exists a one-to-one mapping of X onto Y .
The relation (3.1) is an equivalence relation. We assume that we can

assign to each set X its cardinal number |X | so that two sets are assigned
the same cardinal just in case they satisfy condition (3.1). Cardinal numbers
can be defined either using the Axiom of Regularity (via equivalence classes
of (3.1)), or using the Axiom of Choice. In this chapter we define cardinal
numbers of well-orderable sets; as it follows from the Axiom of Choice that
every set can be well-ordered, this defines cardinals in ZFC.

We recall that a set X is finite if |X | = |n| for some n ∈ N ; then X is
said to have n elements. Clearly, |n| = |m| if and only if n = m, and so we
define finite cardinals as natural numbers, i.e., |n| = n for all n ∈ N .

The ordering of cardinal numbers is defined as follows:

(3.2) |X | ≤ |Y |

if there exists a one-to-one mapping of X into Y . We also define the strict
ordering |X | < |Y | to mean that |X | ≤ |Y | while |X | �= |Y |. The relation ≤
in (3.2) is clearly transitive. Theorem 3.2 below shows that it is indeed a par-
tial ordering, and it follows from the Axiom of Choice that the ordering is
linear—any two sets are comparable in this ordering.

The concept of cardinality is central to the study of infinite sets. The
following theorem tells us that this concept is not trivial:

Theorem 3.1 (Cantor). For every set X , |X | < |P (X)|.

Proof. Let f be a function from X into P (X). The set

Y = {x ∈ X : x /∈ f(x)}

is not in the range of f : If z ∈ X were such that f(z) = Y , then z ∈ Y if
and only if z /∈ Y , a contradiction. Thus f is not a function of X onto P (X).
Hence |P (X)| �= |X |.
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The function f(x) = {x} is a one-to-one function of X into P (X) and so
|X | ≤ |P (X)|. It follows that |X | < |P (X)|. ��

In view of the following theorem, < is a partial ordering of cardinal num-
bers.

Theorem 3.2 (Cantor-Bernstein). If |A| ≤ |B| and |B| ≤ |A|, then
|A| = |B|.

Proof. If f1 : A → B and f2 : B → A are one-to-one, then if we let B′ =
f2(B) and A1 = f2(f1(A)), we have A1 ⊂ B′ ⊂ A and |A1| = |A|. Thus
we may assume that A1 ⊂ B ⊂ A and that f is a one-to-one function of A
onto A1; we will show that |A| = |B|.

We define (by induction) for all n ∈ N :

A0 = A, An+1 = f(An),

B0 = B, Bn+1 = f(Bn).

Let g be the function on A defined as follows:

g(x) =
{

f(x) if x ∈ An − Bn for some n,

x otherwise.

Then g is a one-to-one mapping of A onto B, as the reader will easily verify.
Thus |A| = |B|. ��

The arithmetic operations on cardinals are defined as follows:

(3.3) κ + λ = |A ∪ B| where |A| = κ, |B| = λ, and A, B are disjoint,

κ · λ = |A × B| where |A| = κ, |B| = λ,

κλ = |AB| where |A| = κ, |B| = λ.

Naturally, the definitions in (3.3) are meaningful only if they are independent
of the choice of A and B. Thus one has to check that, e.g., if |A| = |A′| and
|B| = |B′|, then |A × B| = |A′ × B′|.

Lemma 3.3. If |A| = κ, then |P (A)| = 2κ.

Proof. For every X ⊂ A, let χX be the function

χX(x) =
{

1 if x ∈ X ,

0 if x ∈ A − X .

The mapping f : X → χX is a one-to-one correspondence between P (A) and
{0, 1}A. ��
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Thus Cantor’s Theorem 3.1 can be formulated as follows:

κ < 2κ for every cardinal κ.

A few simple facts about cardinal arithmetic:

+ and · are associative, commutative and distributive.(3.4)
(κ · λ)µ = κµ · λµ.(3.5)
κλ+µ = κλ · κµ.(3.6)
(κλ)µ = κλ·µ.(3.7)
If κ ≤ λ, then κµ ≤ λµ.(3.8)
If 0 < λ ≤ µ, then κλ ≤ κµ.(3.9)
κ0 = 1; 1κ = 1; 0κ = 0 if κ > 0.(3.10)

To prove (3.4)–(3.10), one has only to find the appropriate one-to-one func-
tions.

Alephs

An ordinal α is called a cardinal number (a cardinal) if |α| �= |β| for all β < α.
We shall use κ, λ, µ, . . . to denote cardinal numbers.

If W is a well-ordered set, then there exists an ordinal α such that |W | =
|α|. Thus we let

|W | = the least ordinal such that |W | = |α|.

Clearly, |W | is a cardinal number.
Every natural number is a cardinal (a finite cardinal); and if S is a finite

set, then |S| = n for some n.
The ordinal ω is the least infinite cardinal. Note that all infinite cardinals

are limit ordinals. The infinite ordinal numbers that are cardinals are called
alephs.

Lemma 3.4.

(i) For every α there is a cardinal number greater than α.
(ii) If X is a set of cardinals, then sup X is a cardinal.

For every α, let α+ be the least cardinal number greater than α, the
cardinal successor of α.

Proof. (i) For any set X , let

(3.11) h(X) = the least α such that there is no one-to-one
function of α into X .

There is only a set of possible well-orderings of subsets of X . Hence there
is only a set of ordinals for which a one-to-one function of α into X exists.
Thus h(X) exists.
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If α is an ordinal, then |α| < |h(α)| by (3.11). That proves (i).
(ii) Let α = supX . If f is a one-to-one mapping of α onto some β < α,

let κ ∈ X be such that β < κ ≤ α. Then |κ| = |{f(ξ) : ξ < κ}| ≤ β,
a contradiction. Thus α is a cardinal. ��

Using Lemma 3.4, we define the increasing enumeration of all alephs. We
usually use ℵα when referring to the cardinal number, and ωα to denote the
order-type:

ℵ0 = ω0 = ω, ℵα+1 = ωα+1 = ℵ+
α ,

ℵα = ωα = sup{ωβ : β < α} if α is a limit ordinal.

Sets whose cardinality is ℵ0 are called countable; a set is at most countable
if it is either finite or countable. Infinite sets that are not countable are
uncountable.

A cardinal ℵα+1 is a successor cardinal. A cardinal ℵα whose index is
a limit ordinal is a limit cardinal.

Addition and multiplication of alephs is a trivial matter, due to the fol-
lowing fact:

Theorem 3.5. ℵα · ℵα = ℵα.

To prove Theorem 3.5 we use a pairing function for ordinal numbers:

The Canonical Well-Ordering of α × α

We define a well-ordering of the class Ord × Ord of ordinal pairs. Under
this well-ordering, each α × α is an initial segment of Ord2; the induced
well-ordering of α2 is called the canonical well-ordering of α2. Moreover, the
well-ordered class Ord2 is isomorphic to the class Ord , and we have a one-
to-one function Γ of Ord2 onto Ord . For many α’s the order-type of α × α
is α; in particular for those α that are alephs.

We define:

(3.12) (α, β) < (γ, δ) ↔ either max{α, β} < max{γ, δ},
or max{α, β} = max{γ, δ} and α < γ,

or max{α, β} = max{γ, δ}, α = γ and β < δ.

The relation < defined in (3.12) is a linear ordering of the class Ord × Ord .
Moreover, if X ⊂ Ord ×Ord is nonempty, then X has a least element. Also,
for each α, α × α is the initial segment given by (0, α). If we let

Γ(α, β) = the order-type of the set {(ξ, η) : (ξ, η) < (α, β)},
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then Γ is a one-to-one mapping of Ord2 onto Ord , and

(3.13) (α, β) < (γ, δ) if and only if Γ(α, β) < Γ(γ, δ).

Note that Γ(ω×ω) = ω and since γ(α) = Γ(α×α) is an increasing function
of α, we have γ(α) ≥ α for every α. However, γ(α) is also continuous, and so
Γ(α × α) = α for arbitrarily large α.

Proof of Theorem 3.5. Consider the canonical one-to-one mapping Γ of Ord×
Ord onto Ord . We shall show that Γ(ωα × ωα) = ωα. This is true for α = 0.
Thus let α be the least ordinal such that Γ(ωα ×ωα) �= ωα. Let β, γ < ωα be
such that Γ(β, γ) = ωα. Pick δ < ωα such that δ > β and δ > γ. Since δ×δ is
an initial segment of Ord × Ord in the canonical well-ordering and contains
(β, γ), we have Γ(δ× δ) ⊃ ωα, and so |δ× δ| ≥ ℵα. However, |δ× δ| = |δ| · |δ|,
and by the minimality of α, |δ| · |δ| = |δ| < ℵα. A contradiction. ��

As a corollary we have

(3.14) ℵα + ℵβ = ℵα · ℵβ = max{ℵα,ℵβ}.

Exponentiation of cardinals will be dealt with in Chapter 5. Without the
Axiom of Choice, one cannot prove that 2ℵα is an aleph (or that P (ωα) can
be well-ordered), and there is very little one can prove about 2ℵα or ℵℵβ

α .

Cofinality

Let α > 0 be a limit ordinal. We say that an increasing β-sequence 〈αξ :
ξ < β〉, β a limit ordinal, is cofinal in α if limξ→β αξ = α. Similarly, A ⊂ α is
cofinal in α if supA = α. If α is an infinite limit ordinal, the cofinality of α
is

cf α = the least limit ordinal β such that there is an increasing
β-sequence 〈αξ : ξ < β〉 with limξ→β αξ = α.

Obviously, cf α is a limit ordinal, and cf α ≤ α. Examples: cf(ω + ω) =
cf ℵω = ω.

Lemma 3.6. cf(cf α) = cf α.

Proof. If 〈αξ : ξ < β〉 is cofinal in α and 〈ξ(ν) : ν < γ〉 is cofinal in β, then
〈αξ(ν) : ν < γ〉 is cofinal in α. ��

Two useful facts about cofinality:

Lemma 3.7. Let α > 0 be a limit ordinal.

(i) If A ⊂ α and sup A = α, then the order-type of A is at least cf α.
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(ii) If β0 ≤ β1 ≤ . . . ≤ βξ ≤ . . ., ξ < γ, is a nondecreasing γ-sequence of
ordinals in α and limξ→γ βξ = α, then cf γ = cf α.

Proof. (i) The order-type of A is the length of the increasing enumeration
of A which is an increasing sequence with limit α.

(ii) If γ = limν→cf γ ξ(ν), then α = limν→cf γ βξ(ν), and the nondecreasing
sequence 〈βξ(ν) : ν < cf γ〉 has an increasing subsequence of length ≤ cf γ,
with the same limit. Thus cf α ≤ cf γ.

To show that cf γ ≤ cf α, let α = limν→cf α αν . For each ν < cf α, let
ξ(ν) be the least ξ greater than all ξ(ι), ι < ν, such that βξ > αν . Since
limν→cf α βξ(ν) = α, it follows that limν→cf α ξ(ν) = γ, and so cf γ ≤ cf α. ��

An infinite cardinal ℵα is regular if cf ωα = ωα. It is singular if cf ωα < ωα.

Lemma 3.8. For every limit ordinal α, cf α is a regular cardinal.

Proof. It is easy to see that if α is not a cardinal, then using a mapping
of |α| onto α, one can construct a cofinal sequence in α of length ≤ |α|, and
therefore cf α < α.

Since cf(cf α) = cf α, it follows that cf α is a cardinal and is regular. ��

Let κ be a limit ordinal. A subset X ⊂ κ is bounded if supX < κ, and
unbounded if supX = κ.

Lemma 3.9. Let κ be an aleph.

(i) If X ⊂ κ and |X | < cf κ then X is bounded.
(ii) If λ < cf κ and f : λ → κ then the range of f is bounded.

It follows from (i) that every unbounded subset of a regular cardinal has
cardinality κ.

Proof. (i) Lemma 3.7(i).
(ii) If X = ran(f) then |X | ≤ λ, and use (i). ��

There are arbitrarily large singular cardinals. For each α, ℵα+ω is a sin-
gular cardinal of cofinality ω.

Using the Axiom of Choice, we shall show in Chapter 5 that every ℵα+1

is regular. (The Axiom of Choice is necessary.)

Lemma 3.10. An infinite cardinal κ is singular if and only if there exists
a cardinal λ < κ and a family {Sξ : ξ < λ} of subsets of κ such that |Sξ| < κ
for each ξ < λ, and κ =

⋃
ξ<λ Sξ. The least cardinal λ that satisfies the

condition is cf κ.

Proof. If κ is singular, then there is an increasing sequence 〈αξ : ξ < cf κ〉
with limξ αξ = κ. Let λ = cf κ, and Sξ = αξ for all ξ < λ.

If the condition holds, let λ < κ be the least cardinal for which there is
a family {Sξ : ξ < λ} such that κ =

⋃
ξ<λ Sξ and |Sξ| < κ for each ξ < λ. For
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every ξ < λ, let βξ be the order-type of
⋃

ν<ξ Sν . The sequence 〈βξ : ξ < λ〉
is nondecreasing, and by the minimality of λ, βξ < κ for all ξ < λ. We shall
show that limξ βξ = κ, thus proving that cf κ ≤ λ.

Let β = limξ→λ βξ. There is a one-to-one mapping f of κ =
⋃

ξ<λ Sξ into
λ× β: If α ∈ κ, let f(α) = (ξ, γ), where ξ is the least ξ such that α ∈ Sξ and
γ is the order-type of Sξ ∩α. Since λ < κ and |λ× β| = λ · |β|, it follows that
β = κ. ��

One cannot prove without the Axiom of Choice that ω1 is not a countable
union of countable sets. Compare this with Exercise 3.13

The only cardinal inequality we have proved so far is Cantor’s Theorem
κ < 2κ. It follows that κ < λκ for every λ > 1, and in particular κ < κκ

(for κ �= 1). The following theorem gives a better inequality. This and other
cardinal inequalities will also follow from König’s Theorem 5.10, to be proved
in Chapter 5.

Theorem 3.11. If κ is an infinite cardinal, then κ < κcf κ.

Proof. Let F be a collection of κ functions from cf κ to κ: F = {fα : α < κ}.
It is enough to find f : cf κ → κ that is different from all the fα. Let κ =
limξ→cf κ αξ. For ξ < cf κ, let

f(ξ) = least γ such that γ �= fα(ξ) for all α < αξ.

Such γ exists since |{fα(ξ) : α < αξ}| ≤ |αξ| < κ. Obviously, f �= fα for all
α < κ. ��

Consequently, κλ > κ whenever λ ≥ cf κ.
An uncountable cardinal κ is weakly inaccessible if it is a limit cardinal

and is regular. There will be more about inaccessible cardinals later, but let
me mention at this point that existence of (weakly) inaccessible cardinals is
not provable in ZFC.

To get an idea of the size of an inaccessible cardinal, note that if ℵα > ℵ0

is limit and regular, then ℵα = cf ℵα = cf α ≤ α, and so ℵα = α.
Since the sequence of alephs is a normal sequence, it has arbitrarily large

fixed points; the problem is whether some of them are regular cardinals. For
instance, the least fixed point ℵα = α has cofinality ω:

κ = lim〈ω, ωω, ωωω , . . .〉 = limn→ω κn

where κ0 = ω, κn+1 = ωκn .
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Exercises

3.1. (i) A subset of a finite set is finite.
(ii) The union of a finite set of finite sets is finite.
(iii) The power set of a finite set is finite.
(iv) The image of a finite set (under a mapping) is finite.

3.2. (i) A subset of a countable set is at most countable.
(ii) The union of a finite set of countable sets is countable.
(iii) The image of a countable set (under a mapping) is at most countable.

3.3. N ×N is countable.
[f(m, n) = 2m(2n + 1) − 1.]

3.4. (i) The set of all finite sequences in N is countable.
(ii) The set of all finite subsets of a countable set is countable.

3.5. Show that Γ(α× α) ≤ ωα.

3.6. There is a well-ordering of the class of all finite sequences of ordinals such
that for each α, the set of all finite sequences in ωα is an initial segment and its
order-type is ωα.

We say that a set B is a projection of a set A if there is a mapping of A onto B.
Note that B is a projection of A if and only if there is a partition P of A such
that |P | = |B|. If |A| ≥ |B| > 0, then B is a projection of A. Conversely, using the
Axiom of Choice, one shows that if B is a projection of A, then |A| ≥ |B|. This,
however, cannot be proved without the Axiom of Choice.

3.7. If B is a projection of ωα, then |B| ≤ ℵα.

3.8. The set of all finite subsets of ωα has cardinality ℵα.
[The set is a projection of the set of finite sequences.]

3.9. If B is a projection of A, then |P (B)| ≤ |P (A)|.
[Consider g(X) = f−1(X), where f maps A onto B.]

3.10. ωα+1 is a projection of P (ωα).
[Use |ωα×ωα| = ωα and project P (ωα×ωα): If R ⊂ ωα×ωα is a well-ordering,

let f(R) be its order-type.]

3.11. ℵα+1 < 22ℵα
.

[Use Exercises 3.10 and 3.9.]

3.12. If ℵα is an uncountable limit cardinal, then cf ωα = cf α; ωα is the limit of
a cofinal sequence 〈ωξ : ξ < cf α〉 of cardinals.

3.13 (ZF). Show that ω2 is not a countable union of countable sets.
[Assume that ω2 =

S

n<ω Sn with Sn countable and let αn be the order-type
of Sn. Then α = supn αn ≤ ω1 and there is a mapping of ω × α onto ω2.]

A set S is Dedekind-finite (D-finite) if there is no one-to-one mapping of S
onto a proper subset of S. Every finite set is D-finite. Using the Axiom of Choice,
one proves that every infinite set is D-infinite, and so D-finiteness is the same as
finiteness. Without the Axiom of Choice, however, one cannot prove that every
D-finite set is finite.

The set N of all natural numbers is D-infinite and hence every S such that
|S| ≥ ℵ0, is D-infinite.
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3.14. S is D-infinite if and only if S has a countable subset.
[If S is D-infinite, let f : S → X ⊂ S be one-to-one. Let x0 ∈ S − X and

xn+1 = f(xn). Then S ⊃ {xn : n < ω}.]

3.15. (i) If A and B are D-finite, then A ∪B and A×B are D-finite.
(ii) The set of all finite one-to-one sequences in a D-finite set is D-finite.
(iii) The union of a disjoint D-finite family of D-finite sets is D-finite.

On the other hand, one cannot prove without the Axiom of Choice that a pro-
jection, power set, or the set of all finite subsets of a D-finite set is D-finite, or that
the union of a D-finite family of D-finite sets is D-finite.

3.16. If A is an infinite set, then PP (A) is D-infinite.
[Consider the set {{X ⊂ A : |X| = n} : n < ω}.]

Historical Notes

Cardinal numbers and alephs were introduced by Cantor. The proof of the Cantor-
Bernstein Theorem is Bernstein’s; see Borel [1898], p. 103. (There is an earlier proof
by Dedekind.) The first proof of ℵα ·ℵα = ℵα appeared in Hessenberg [1906], p. 593.
Regularity of cardinals was investigated by Hausdorff, who also raised the question
of existence of regular limit cardinals. D-finiteness was formulated by Dedekind.


