
9. Combinatorial Set Theory

In this chapter we discuss topics in infinitary combinatorics such as trees and
partition properties.

Partition Properties

Let us consider the following argument (the pigeonhole principle): If seven
pigeons occupy three pigeonholes, then at least one pigenhole is occupied by
three pigeons. More generally: If an infinite set is partitioned into finitely
many pieces, then at least one piece is infinite.

Recall that a partition of a set S is a pairwise disjoint family P = {Xi :
i ∈ I} such that

⋃
i∈I Xi = S. With the partition P we can associate a func-

tion F : S → I such that F (x) = F (y) if and only if x and y are in the same
X ∈ P . Conversely, any function F : S → I determines a partition of S. (We
shall sometimes say that F is a partition of S.)

For any set A and any natural number n > 0,

(9.1) [A]n = {X ⊂ A : |X | = n}

is the set of all subsets of A that have exactly n elements. It is sometimes
convenient, when A is a set of ordinals, to identify [A]n with the set of all
sequences 〈α1, . . . , αn〉 in A such that α1 < . . . < αn. We shall consider
partitions of sets [A]n for various infinite sets A and natural numbers n. Our
starting point is the theorem of Ramsey dealing with finite partitions of [ω]n.

If {Xi : i ∈ I} is a partition of [A]n, then a set H ⊂ A is homogeneous for
the partition if for some i, [H ]n is included in Xi; that is, if all the n-element
subsets of H are in the same piece of the partition.

Theorem 9.1 (Ramsey). Let n and k be natural numbers. Every partition
{X1, . . . , Xk} of [ω]n into k pieces has an infinite homogeneous set.

Equivalently, for every F : [ω]n → {1, . . . , k} there exists an infinite H ⊂
ω such that F is constant on [H ]n.

Proof. By induction on n. If n = 1, the theorem is trivial, so we assume
that it holds for n and prove for n + 1. Let F be a function from [ω]n+1 into
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{1, . . . , k}. For each a ∈ ω, let Fa be the function on [ω − {a}]n defined as
follows:

Fa(X) = F ({a} ∪ X).

By the induction hypothesis, there exists for each a ∈ ω and each infinite
S ⊂ ω an infinite set HS

a ⊂ S − {a} such that Fa is constant on [HS
a ]n. We

construct an infinite sequence 〈ai : i = 0, 1, 2, . . .〉: We let S0 = ω and a0 = 0,
and

Si+1 = HSi
ai

, ai+1 = the least element of Si+1 greater than ai.

It is clear that for each i ∈ ω, the function Fai is constant on [{am : m > i}]n;
let G(ai) be its value. Now there is an infinite subset H ⊂ {ai : i ∈ ω}
such that G is constant on H . It follows that F is constant on [H ]n+1;
this is because for x1 < . . . < xn+1 in H we have F ({x1, . . . , xn+1}) =
Fx1({x2, . . . , xn+1}). ��

The following lemma explains the terminology introduced in Chapter 7
where Ramsey ultrafilters were defined:

Lemma 9.2. Let D be a nonprincipal ultrafilter on ω. D is Ramsey if and
only if for all natural numbers n and k, every partition F : [ω]n → {1, . . . , k}
has a homogeneous set H ∈ D.

Proof. First assume that D has the partition property stated in the lemma.
Let A be a partition of ω such that A /∈ D for all A ∈ A; we shall find
X ∈ D such that |X ∩ A| ≤ 1 for all A ∈ A. Let F : [ω]2 → {0, 1} be as
follows: F (x, y) = 1 if x and y are in different members of A. If H ∈ D is
homogeneous for F , then clearly H has at most one element common with
each A ∈ A.

Now let us assume that D is a Ramsey ultrafilter. We shall first prove
that D has the following property:

(9.2) if X0 ⊃ X1 ⊃ X2 ⊃ . . . are sets in D, then there is a sequence
a0 < a1 < a2 < . . . such that {an}∞n=0 ∈ D, a0 ∈ X0 and an+1 ∈ Xan

for all n.

Thus let X0 ⊃ X1 ⊃ . . . be sets in D. Since D is a p-point, there exists Y ∈ D
such that each Y − Xn is finite. Let us define a sequence y0 < y1 < . . . in Y
as follows:

y0 = the least y0 ∈ Y such that {y ∈ Y : y > y0} ⊂ X0,

y1 = the least y1 ∈ Y such that y1 > y0 and {y ∈ Y : y > y1} ⊂ Xy0 ,

. . .

yn = the least yn ∈ Y such that yn > yn−1 and {y ∈ Y : y > yn} ⊂ Xyn−1.

For each n, let An = {y ∈ Y : yn < y ≤ yn+1}. Since D is Ramsey, there
exists a set {zn}∞n=0 ∈ D such that zn ∈ An for all n.
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We observe that for each n, zn+2 ∈ Xzn : Since zn+2 > yn+2, we have
zn+2 ∈ Xyn+1, and since yn+1 ≥ zn, we have Xyn+1 ⊂ Xzn and hence
zn+2 ∈ Xzn .

Thus if we let an = z2n and bn = z2n+1, for all n, then either {an}∞n=0 ∈ D
or {bn}∞n=0 ∈ D; and in either case we get a sequence that satisfies (9.2).

Now we use the property (9.2) to prove the partition property; we proceed
by induction on n and follow closely the proof of Ramsey’s Theorem. Let F
be a function from [ω]n+1 into {1, . . . , k}. For each a ∈ ω, let Fa be the
function on [ω − {a}]n defined by Fa(x) = F (x ∪ {a}). By the induction
hypothesis, there exists for each a ∈ ω a set Ha ∈ D such that Fa is constant
on [Ha]n. There exists X ∈ D such that the constant value of Fa is the same
for all a ∈ X ; say Fa(x) = r for all a ∈ X and all x ∈ [Ha]n.

For each n, let Xn = X∩H0∩H1∩. . .∩Hn. By (9.2) there exists a sequence
a0 < a1 < a2 < . . . such that a0 ∈ X0 and an+1 ∈ Xan for each n, and that
{an}∞n=0 ∈ D. Let H = {an}∞n=0. It is clear that for each i ∈ ω, ai ∈ X and
{am : m > i} ⊂ Hai . Hence Fai(x) = r for all x ∈ [{am : m > i}]n, and it
follows that F is constant on [H ]n+1. ��

To facilitate our investigation of generalizations of Ramsey’s Theorem,
we shall now introduce the arrow notation. Let κ and λ be infinite cardinal
numbers, let n be a natural number and let m be a (finite or infinite) cardinal.
The symbol

(9.3) κ → (λ)n
m

(read: κ arrows λ) denotes the following partition property: Every partition
of [κ]n into m pieces has a homogeneous set of size λ. In other words, every
F : [κ]n → m is constant on [H ]n for some H ⊂ κ such that |H | = λ. Using
the arrow notation, Ramsey’s Theorem is expressed as follows:

(9.4) ℵ0 → (ℵ0)n
k (n, k ∈ ω).

The subscript m in (9.3) is usually deleted when m = 2, and so

κ → (λ)n

is the same as κ → (λ)n
2 .

The relation κ → (λ)n
m remains true if κ is made larger or if λ or m are

made smaller. A moment’s reflection is sufficient to see that the relation also
remains true when n is made smaller.

Obviously, the relation (9.3) makes sense only if κ ≥ λ and κ > m; if
m = κ, then it is clearly false. Thus we always assume 2 ≤ m < κ and λ ≤ κ.
If n = 1, then (9.3) holds just in case either κ > λ, or κ = λ and cf κ > m.
We shall concentrate on the nontrivial case: n ≥ 2.

We start with two negative partition relations.
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Lemma 9.3. For all κ,
2κ �→ (ω)2κ.

In other words, there is a partition of 2κ into κ pieces that does not have an
infinite homogeneous set.

Proof. In fact, we find a partition that has no homogeneous set of size 3. Let
S = {0, 1}κ and let F : [S]2 → κ be defined by F ({f, g}) = the least α < κ
such that f(α) �= g(α). If f , g, h are distinct elements of S, it is impossible
to have F ({f, g}) = F ({f, h}) = F ({g, h}). ��

Lemma 9.4. For every κ,
2κ �→ (κ+)2.

(Thus the obvious generalization of Ramsey’s Theorem, namely ℵ1 →
(ℵ1)22, is false.)

To construct a partition of [2κ]2 that violates the partition property, let
us consider the linearly ordered set (P, <) where P = {0, 1}κ, and f < g if
and only if f(α) < g(α) where α is the least α such that f(α) �= g(α) (the
lexicographic ordering of P ).

Lemma 9.5. The lexicographically ordered set {0, 1}κ has no increasing or
decreasing κ+-sequence.

Proof. Assume that W = {fα : α < κ+} ⊂ {0, 1}κ is such that fα < fβ

whenever α < β (the decreasing case is similar). Let γ ≤ κ be the least γ
such that the set {fα�γ : α < κ+} has size κ+, and let Z ⊂ W be such that
|Z| = κ+ and f�γ �= g�γ for f, g ∈ Z. We may as well assume that Z = W ,
so let us do so.

For each α < κ+, let ξα be such that fα�ξα = fα+1�ξα and fα(ξα) = 0,
fα+1(ξα) = 1; clearly ξα < γ. Hence there exists ξ < γ such that ξ = ξα

for κ+ elements fα of W . However, if ξ = ξα = ξβ and fα�ξ = fβ�ξ, then
fβ < fα+1 and fα < fβ+1; hence fα = fβ. Thus the set {fα�ξ : α < κ+} has
size κ+, contrary to the minimality assumption on γ. ��

Proof of Lemma 9.4. Let 2κ = λ and let {fα : α < λ} be an enumeration
of the set P = {0, 1}κ. Let ≺ be a linear ordering of λ induced by the
lexicographic ordering of P : α ≺ β if fα < fβ.

Now we define a partition F : [λ]2 → {0, 1} by letting F ({α, β}) = 1
when the ordering ≺ of {α, β} agrees with the natural ordering; and letting
F ({α, β}) = 0 otherwise. If H ⊂ λ is a homogeneous set of order-type κ+,
then {fα : α ∈ H} constitutes an increasing or decreasing κ+-sequence
in (P, <); a contradiction. ��

By Lemma 9.4, the relation κ → (ℵ1)2 is false if κ ≤ 2ℵ0 . On the other
hand, if κ > 2ℵ0 , then κ → (ℵ1)2 is true, as follows from this more general
theorem:
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Theorem 9.6 (Erdős-Rado).

�+
n → (ℵ1)n+1

ℵ0
.

In particular, (2ℵ0)+ → (ℵ1)2ℵ0
.

Proof. We shall first prove the case n = 1 since the induction step parallels
closely this case. Thus let κ = (2ℵ0)+ and let F : [κ]2 → ω be a partition
of [κ]2 into ℵ0 pieces. We want to find a homogeneous H ⊂ κ of size ℵ1.

For each a ∈ κ, let Fa be a function on κ − {a} defined by Fa(x) =
F ({a, x}). We shall first prove the following claim: There exists a set A ⊂ κ
such that |A| = 2ℵ0 and such that for every countable C ⊂ A and every
u ∈ κ − C there exists v ∈ A − C such that Fv agrees with Fu on C.

To prove the claim, we construct an ω1-sequence A0 ⊂ A1 ⊂ . . . ⊂ Aα ⊂
. . ., α < ω1, of subsets of κ, each of size 2ℵ0 , as follows: Let A0 be arbitrary,
and for each limit α, let Aα =

⋃
β<α Aβ . Given Aα, there exists a set Aα+1 ⊃

Aα of size 2ℵ0 such that for each countable C ⊂ Aα and every u ∈ κ − C
there exists v ∈ Aα+1 − C such that Fv agrees with Fu on C (because the
number of such functions is ≤ 2ℵ0). Then we let A =

⋃
α<ω1

Aα, and clearly
A has the required property.

Next we choose some a ∈ κ − A, and construct a sequence 〈xα : α < ω1〉
in A as follows: Let x0 be arbitrary, and given {xβ : β < α} = C, let xα be
some v ∈ A − C such that Fv agrees with Fa on C. Let X = {xα : α < ω1}.

Now we consider the function G : X → ω defined by G(x) = Fa(x). It is
clear that if α < β, then F ({xα, xβ}) = Fxβ

(xα) = Fa(xα) = G(xα). Since
the range of G is countable, there exists H ⊂ X of size ℵ1 such that G is
constant on H . It follows that F is constant on [H ]2.

Thus we have proved the theorem for n = 1. The general case is proved
by induction. Let us assume that �+

n−1 → (ℵ1)n
ℵ0

and let F : [κ]n+1 → ω,
where κ = �+

n . For each a ∈ κ, let Fa : [κ − {a}]n → ω be defined by
Fa(x) = F (x∪ {a}). As in the case n = 1, there exists a set A ⊂ κ of size �n

such that for every C ⊂ A of size |C| ≤ �n−1 and every u ∈ κ − C there
exists v ∈ A − C such that Fv agrees with Fu on [C]n.

Next we choose a ∈ κ−A and construct a set X = {xα : α < �+
n−1} ⊂ A

such that for each α, Fxα agrees with Fa on [{xβ : β < α}]n.
Then we consider G : [X ]n → ω where G(x) = Fa(x). As before, if

α1 < . . . < αn+1, then F ({xα1 , . . . , xαn+1}) = G({xα1 , . . . , xαn}). By the
induction hypothesis, there exists H ⊂ X of size ℵ1 such that G is constant
on [H ]n. It follows that F is constant on [H ]n+1. ��

Erdős and Rado proved that for each n, the partition property �+
n →

(ℵ1)n+1
ℵ0

is best possible. The property also generalizes easily to larger cardi-
nals.

A natural generalization of the partition property (9.3) is when we allow λ
to be a limit ordinal, not just a cardinal. Let κ, n and m be as in (9.3) and
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let α > 0 be a limit ordinal. The symbol

(9.5) κ → (α)n
m

stands for: For every F : [κ]n → m there exists an H ⊂ κ of order-type α
such that F is constant on [H ]n.

There are various results about the partition relation (9.5). For instance,
Baumgartner and Hajnal proved in [1973] that ℵ1 → (α)2 for all α < ω1.
The analogous case for ℵ2 is different: If 2ℵ0 = ℵ1, then ℵ2 → (ω1)2 (by
Erdős-Rado), but it is consistent (with 2ℵ0 = ℵ1) that ℵ2 �→ (ω1 + ω)2.

Among other generalizations of (9.3), we mention the following:

(9.6) κ → (α, β)n

means that for every F : [κ]n → {0, 1}, either there exists an H1 ⊂ κ of order-
type α such that F = 0 on [H1]n or there exists and H2 ⊂ κ of order-type β
such that F = 1 on [H2]n.

Theorem 9.7 (Dushnik-Miller). For every infinite cardinal κ,

κ → (κ, ω)2.

Proof. Let {A, B} be a partition of [κ]2. For every x ∈ κ, let Bx = {y ∈ κ :
x < y and {x, y} ∈ B}. First let us assume that in every set X ⊂ κ of
cardinality κ there exists an x ∈ X such that |Bx ∩ X | = κ. In this case, we
construct an infinite H with [H ]2 ⊂ B as follows:

Let X0 = κ and x0 ∈ X0 such that |Bx0 ∩X0| = κ. For each n, let Xn+1 =
Bxn ∩Xn and let xn+1 ∈ Xn+1 be such that xn+1 > xn and |Bxn+1∩Xn+1| =
κ. Then let H = {xn}∞n=0; it is clear that [H ]2 ⊂ B.

Thus let us assume, for the rest of the proof, that there exists a set S ⊂ κ
of cardinality κ such that

(9.7) for every x ∈ S, |Bx ∩ S| < κ.

If κ is regular, then we construct (by induction) an increasing κ-sequence
〈xα : α < κ〉 in S such that {xα, xβ} ∈ A for all α < β; this is possible
by (9.7).

Thus let us assume that κ is singular, let λ = cf κ and let 〈κξ : ξ < λ〉 be
an increasing sequence of regular cardinals > λ with limit κ. Furthermore,
we assume that there is no infinite H with [H ]2 ⊂ B, and that κξ → (κξ, ω)2

holds for every ξ < λ. We shall find a set H ⊂ κ of cardinality κ such that
[H ]2 ⊂ A.

Let {Sξ : ξ < λ} be a partition of S into disjoint sets such that Sξ = κξ.
It follows from our assumptions that there exist sets Kξ ⊂ Sξ, |Kξ| = κξ,
such that [Kξ]2 ⊂ A.

For every x ∈ Kξ there exists, by (9.7), some α < λ such that |Bx ∩ S| <
κα; since λ < κξ, there exists an α(ξ) such that the set Zξ = {x ∈ Kξ :
|Bx ∩ S| < κα(ξ)} has cardinality κξ.
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Let 〈ξν : ν < λ〉 be an increasing sequence of ordinals < λ such that if
ν1 < ν2 then α(ξν1 ) < ξν2 . We define, by induction on ν,

Hν = Zξ(ν) −
⋃
{Bx : x ∈

⋃
η<ν Zξ(η)}.

Clearly, |Hν | = κξ(ν), and [Hν ]2 ⊂ A.
Finally, we let H =

⋃
ν<λ Hν . It follows from the construction of H that

[H ]2 ⊂ A. ��

Weakly Compact Cardinals

In the positive results given by the Erdős-Rado Theorem, the size of the ho-
mogeneous set is smaller than the size of the set being partitioned. A natural
question arises, whether the relation κ → (κ)2 can hold for cardinals other
than κ = ω.

Definition 9.8. A cardinal κ is weakly compact if it is uncountable and
satisfies the partition property κ → (κ)2.

The reason for the name “weakly compact” is that these cardinals satisfy
a certain compactness theorem for infinitary languages; we shall investigate
weakly compact cardinals further in Part II.

Lemma 9.9. Every weakly compact cardinal is inaccessible.

Proof. Let κ be a weakly compact cardinal. To show that κ is regular, let
us assume that κ is the disjoint union

⋃
{Aγ : γ < λ} such that λ < κ

and |Aγ | < κ for each γ < λ. We define a partition F : [κ]2 → {0, 1} as
follows: F ({α, β}) = 0 just in case α and β are in the same Aγ . Obviously,
this partition does not have a homogeneous set H ⊂ κ of size κ.

That κ is a strong limit cardinal follows from Lemma 9.4: If κ ≤ 2λ

for some λ < κ, then because 2λ �→ (λ+)2, we have κ �→ (λ+)2 and hence
κ �→ (κ)2. ��

We shall prove in Chapter 17 that every weakly compact cardinal κ is the
κth inaccessible cardinal.

Trees

Many problems in combinatorial set theory can be formulated as problems
about trees.

In this chapter we discuss Suslin’s Problem as well as the use of trees in
partition calculus and large cardinals.
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Definition 9.10. A tree is a partially ordered set (T, <) with the property
that for each x ∈ T , the set {y : y < x} of all predecessors of x is well-ordered
by <.

The αth level of T consists of all x ∈ T such that {y : y < x} has order-
type α. The height of T is the least α such that the αth level of T is empty;
in other words, it is the height of the well-founded relation <:

(9.8) o(x) = the order-type of {y : y < x},
αth level = {x : o(x) = α},
height(T ) = sup{o(x) + 1 : x ∈ T }.

A branch in T is a maximal linearly ordered subset of T . The length of
a branch b is the order-type of b. An α-branch is a branch of length α.

We shall now turn our attention to Suslin’s Problem introduced in Chap-
ter 4. In Lemma 9.14 below we show that the problem can be restated as
a question about the existence of certain trees of height ω1.

Suslin’s Problem asks whether the real line is the only complete dense
unbounded linearly ordered set that satisfies the countable chain condition.
An equivalent question is whether every dense linear ordering that satisfies
the countable chain condition is separable, i.e., has a countable dense subset.

Definition 9.11. A Suslin line is a dense linearly ordered set that satisfies
the countable chain condition and is not separable.

Thus Suslin’s Problem asks whether a Suslin line exists. We shall show
that the existence of a Suslin line is equivalent to the existence of a Suslin
tree.

Let T be a tree. An antichain in T is a set A ⊂ T such that any two
distinct elements x, y of A are incomparable, i.e., neither x < y nor y < x.

Definition 9.12. A tree T is a Suslin tree if

(i) the height of T is ω1;
(ii) every branch in T is at most countable;
(iii) every antichain in T is at most countable.

For the formulation of Suslin’s Problem in terms of trees it is useful to
consider Suslin trees that are called normal.

Let α be an ordinal number, α ≤ ω1. A normal α-tree is a tree T with
the following properties:

(i) height(T ) = α;
(ii) T has a unique least point (the root);
(iii) each level of T is at most countable;
(iv) if x is not maximal in T , then there are infinitely many y > x at

the next level (immediate successors of x);

(9.9)
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(v) for each x ∈ T there is some y > x at each higher level less
than α;

(vi) if β < α is a limit ordinal and x, y are both at level β and if
{z : z < x} = {z : z < y}, then x = y.

See Exercise 9.6 for a representation of normal trees.

Lemma 9.13. If there exists a Suslin tree then there exists a normal Suslin
tree.

Proof. Let T be a Suslin tree. T has height ω1, and each level of T is count-
able. We first discard all points x ∈ T such that Tx = {y ∈ T : y ≥ x} is at
most countable, and let T1 = {x ∈ T : Tx is uncountable}. Note that if x ∈ T1

and α > o(x), then |Ty| = ℵ1 for some y > x at level α. Hence T1 satisfies
condition (v). Next, we satisfy property (vi): For every chain C = {z : z < y}
in T1 of limit length we add an extra node aC and stipulate that z < aC for
all z ∈ C, and aC < x for every x such that x > z for all z ∈ C. The resulting
tree T2 satisfies (iii), (v) and (vi). For each x ∈ T2 there are uncountably
many branching points z > x, i.e., points that have at least two immediate
successors (because there is no uncountable chain and T2 satisfies (v)). The
tree T3 = {the branching points of T2} satisfies (iii), (v) and (vi) and each
x ∈ T3 is a branching point. To get property (iv), let T4 consists of all z ∈ T3

at limit levels of T3. The tree T4 satisfies (i), (iii), (iv), and (v); and then
T5 ⊂ T4 satisfying (ii) as well is easily obtained. ��

Lemma 9.14. There exists a Suslin line if and only if there exists a Suslin
tree.

Proof. (a) Let S be a Suslin line. We shall construct a Suslin tree. The tree
will consist of closed (nondegenerate) intervals on the Suslin line S. The
partial ordering of T is by inverse inclusion: If I, J ∈ T , then I ≤ J if and
only if I ⊃ J .

The collection T of intervals is constructed by induction on α < ω1. We
let I0 = [a0, b0] be arbitrary (such that a0 < b0). Having constructed Iβ ,
β < α, we consider the countable set C = {aβ : β < α} ∪ {bβ : β < α} of
endpoints of the intervals Iβ , β < α. Since S is a Suslin line, C is not dense
in S and so there exists an interval [a, b] disjoint from C; we pick some such
[aα, bα] = Iα. The set T = {Iα : α < ω1} is uncountable and partially ordered
by ⊃. If α < β, then either Iα ⊃ Iβ or Iα is disjoint from Iβ . It follows that
for each α, {I ∈ T : I ⊃ Iα} is well-ordered by ⊃ and thus T is a tree.

We shall show that T has no uncountable branches and no uncountable
antichains. Then it is immediate that the height of T is at most ω1; and since
every level is an antichain and T is uncountable, we have height(T ) = ω1.

If I, J ∈ T are incomparable, then they are disjoint intervals of S; and
since S satisfies the countable chain condition, every antichain in T is at most
countable. To show that T has no uncountable branch, we note first that if



116 Part I. Basic Set Theory

b is a branch of length ω1, then the left endpoints of the intervals I ∈ B
form an increasing sequence {xα : α < ω1} of points of S. It is clear that the
intervals (xα, xα+1), α < ω1, form a disjoint uncountable collection of open
intervals in S, contrary to the assumption that S satisfies the countable chain
condition.

(b) Let T be a normal Suslin tree. The line S will consist of all branches
of T (which are all countable). Each x ∈ T has countably many immediate
successors, and we order these successors as rational numbers. Then we order
the elements of S lexicographically: If α is the least level where two branches
a, b ∈ S differ, then α is a successor ordinal and the points aα ∈ a and bα ∈ b
are both successors of the same point at level α − 1; we let a < b or b < a
according to whether aα < bα or bα < aα.

It is easy to see that S is linearly ordered and dense. If (a, b) is an open
interval in S, then one can find x ∈ T such that Ix ⊂ (a, b), where Ix is the
interval Ix = {c ∈ S : x ∈ c}. And if Ix and Iy are disjoint, then x and y are
incomparable points of T . Thus every disjoint collection of open intervals of S
must be at most countable, and so S satisfies the countable chain condition.

The line S is not separable: If C is a countable set of branches of T , let α
be a countable ordinal bigger than the length of any branches b ∈ C. Then if
x is any point at level α, the interval Ix does not contain any b ∈ C, and so
C is not dense in S. ��

Lemma 9.14 reduces Suslin’s Problem to a purely combinatorial problem.
In Part II we shall return to it and show that the problem is independent of
the axioms of set theory.

We now turn our attention to the following problem, related to Suslin
trees.

Definition 9.15. An Aronszajn tree is a tree of height ω1 all of whose levels
are at most countable and which has no uncountable branches.

Theorem 9.16 (Aronszajn). There exists an Aronszajn tree.

Proof. We construct a tree T whose elements are some bounded increasing
transfinite sequences of rational numbers. If x, y ∈ T are two such sequences,
then we let x ≤ y just in case y extends x, i.e., x ⊂ y. Also, if y ∈ T and x is
an initial segment of y, then we let x ∈ T ; thus the αth level of T will consist
of all those x ∈ T whose length is α.

It is clear that an uncountable branch in T would yield an increasing
ω1-sequence of rational numbers, which is impossible. Thus T will be an
Aronszajn tree, provided we arrange that T has ℵ1 levels, all of them at
most countable. We construct T by induction on levels. For each α < ω1

we construct a set Uα of increasing α-sequences of rationals; Uα will be the
αth level of T . We construct the Uα so that for each α, |Uα| ≤ ℵ0, and that:

For each β < α, each x ∈ Uβ and each q > sup x there is y ∈ Uα such
that x ⊂ y and q ≥ sup y.

(9.10)
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Condition (9.10) enables us to continue the construction at limit steps.
To start, we let U0 = {∅}. The successor steps of the construction are also

fairly easy. Given Uα, we let Uα+1 be the set of all extensions x�r of sequences
in Uα such that r > sup x. It is clear that since Uα satisfies condition (9.10),
Uα+1 satisfies it also (for α + 1), and it is equally clear that Uα+1 is at most
countable.

Thus let α be a limit ordinal (α < ω1) and assume that we have con-
structed all levels Uγ , γ < α, of T below α, and that all the Uγ satisfy (9.10);
we shall construct Uα. The points x ∈ T below level α form a (normal) tree Tα

of length α. We claim that Tα has the following property:

For each x ∈ Tα and each q > sup x there is an increasing α-sequence
of rationals y such that x ⊂ y and q ≥ sup y and that y�β ∈ Tα for
all β < α.

(9.11)

The last condition means that {y�β : β < α} is a branch in Tα. To prove the
claim, we let αn, n = 0, 1, . . . , be an increasing sequence of ordinals such
that x ∈ Uα0 and limn αn = α, and let {qn}∞n=0 be an increasing sequence
of rational numbers such that q0 > sup x and limn qn ≤ q. Using repeatedly
condition (9.10), for all αn (n = 0, 1, . . . ), we can construct a sequence
y0 ⊂ y1 ⊂ . . . ⊂ yn . . . such that y0 = x, yn ∈ Uαn , and sup yn ≤ qn for
each n. Then we let y =

⋃∞
n=0 yn; clearly, y satisfies (9.11).

Now we construct Uα as follows: For each x ∈ Tα and each rational
number q such that q > sup x, we choose a branch y in Tα that satisfies (9.11),
and let Uα consists of all these y : α → Q. The set Uα so constructed is
countable and satisfies condition (9.10).

Then T =
⋃

α<ω1
Uα is an Aronszajn tree. ��

The Aronszajn tree constructed in Theorem 9.16 has the property that
there exists a function f : T → R such that f(x) < f(y) whenever x < y
(Exercise 9.8). With a little more care, one can construct T so that there is
a function f : T → Q such that f(x) < f(y) if x < y. Such trees are called
special Aronszajn trees. In Part II we’ll show that it is consistent that all
Aronszajn trees are special.

Almost Disjoint Sets and Functions

In combinatorial set theory one often consider families of sets that are as
much different as possible; a typical example is an almost disjoint family of
infinite sets—any two intersect in a finite set. Here we present a sample of
results and problems of this kind.

Definition 9.17. A collection of finite sets Z is called a ∆-system if there
exists a finite set S such that X ∩ Y = S for any two distinct sets X, Y ∈ Z.
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The following theorem is often referred to as the ∆-Lemma:

Theorem 9.18 (Shanin). Let W be an uncountable collection of finite sets.
Then there exists an uncountable Z ⊂ W that is a ∆-system.

Proof. Since W is uncountable, it is clear that uncountably many X ∈ W
have the same size; thus we may assume that for some n, |X | = n for all
X ∈ W . We prove the theorem by induction on n. If n = 1, the theorem is
trivial. Thus assume that the theorem holds for n, and let W be such that
|X | = n + 1 for all X ∈ W .

If there is some element a that belongs to uncountably many X ∈ W ,
we apply the induction hypothesis to the collection {X − {a} : X ∈ W and
a ∈ X}, and obtain Z ⊂ W with the required properties.

Otherwise, each a belongs to at most countably many X ∈ W , and we
construct a disjoint collection Z = {Xα : α < ω1} as follows, by induction
on α. Given Xξ, ξ < α, we find X = Xα ∈ W that is disjoint from all Xξ,
ξ < α. ��

For an alternative proof, using Fodor’s Theorem, see Exercise 9.10. The-
orem 9.18 generalizes to greater cardinals, under the assumption of GCH:

Theorem 9.19. Assume κ<κ = κ. Let W be a collection of sets of cardi-
nality less than κ such that |W | = κ+. Then there exist a collection Z ⊂ W
such that |Z| = κ+ and a set A such that X ∩ Y = A for any two distinct
elements X, Y ∈ Z. ��

Definition 9.20. If X and Y are infinite subsets of ω then X and Y are
almost disjoint if X ∩ Y is finite.

Let κ be a regular cardinal. If X∩Y are subsets of κ of cardinality κ then
X and Y are almost disjoint if |X ∩ Y | < κ.

An almost disjoint family of sets is a family of pairwise almost disjoint
sets.

Lemma 9.21. There exists an almost disjoint family of 2ℵ0 subsets of ω.

Proof. Let S be the set of all finite 0–1 sequences: S =
⋃∞

n=0{0, 1}n. For every
f : ω → {0, 1}, let Af ⊂ S be the set Af = {s ∈ S : s ⊂ f} = {f�n : n ∈ ω}.
Clearly, Af ∩ Ag is finite if f �= g; thus {Af : f ∈ {0, 1}ω} is a family of
2ℵ0 almost disjoint subsets of the countable set S, and the lemma follows.

��

A generalization from ω to arbitrary regular κ is not provable in ZFC (al-
though under GCH the generalization is straightforward; see Exercise 9.11).
Without assuming the GCH, the best one can do is to find an almost disjoint
family of κ+ subsets of κ; this follows from Lemma 9.23 below.

Definition 9.22. Let κ be a regular cardinal. Two functions f and g on κ
are almost disjoint if |{α : f(α) = g(α)}| < κ.
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Lemma 9.23. For every regular cardinal κ, there exists an almost disjoint
family of κ+ functions from κ to κ.

Proof. It suffices to show that given κ almost disjoint functions {fν : ν < κ},
then there exists f : κ → κ almost disjoint from all fν , ν < κ; this we do by
diagonalization: Let f(α) �= fν(α) for all ν < α. ��

Let us consider the special case when κ = ω1.

Definition 9.24. A tree (T, <) is a Kurepa tree if:

(i) height(T ) = ω1;
(ii) each level of T is at most countable;
(iii) T has at least ℵ2 uncountable branches.

If T is a Kurepa tree, then the family of all ω1-branches is an almost
disjoint family of uncountable subsets of T . In fact, since the levels of T are
countable, we can identify the ω1-branches with the functions from ω1 into ω
and get the following result: There exists an almost disjoint family of ℵ2

functions f : ω1 → ω.

Lemma 9.25. A Kurepa tree exists if and only if there exists a family F of
subsets of ω1 such that :

(i) |F| ≥ ℵ2;
(ii) for each α < ω1, |{X ∩ α : X ∈ F}| ≤ ℵ0.

(9.12)

Proof. (a) Let (T, <T ) be a Kurepa tree. Since T has size ℵ1, we may assume
that T = ω1, and moreover that α < β whenever α <T β. If we let F be the
family of all ω1-branches of T , then F satisfies (9.12).

(b) Let F be a family of subsets of ω1 such that (9.12) holds. For each
X ∈ F , let fX be the functions on ω1 defined by

fX(α) = X ∩ α (α < ω1).

For each α < ω1, let Uα = {fX�α : X ∈ F} and let T =
⋃

α<ω1
Uα. Then

(T,⊂) is a tree, the Uα are the levels of T and the functions fX correspond
to branches of T . By (9.12)(ii), every Uα is countable, and it follows that T is
a Kurepa tree. ��

The existence of a Kurepa tree is independent of the axioms of set theory.
In fact, the nonexistence of Kurepa trees is equiconsistent with an inaccessible
cardinal.
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The Tree Property and Weakly Compact Cardinals

Generalizing the concept of Aronszajn tree to cardinals > ω1 we say that
a regular uncountable cardinal κ has the tree property if every tree of height κ
whose levels have cardinality < κ has a branch of cardinality κ.

Lemma 9.26.

(i) If κ is weakly compact, then κ has the tree property.
(ii) If κ is inaccessible and has the tree property, then κ is weakly compact,

and in fact κ → (κ)2m for every m < κ.

Proof. (i) Let κ be weakly compact and let (T, <T ) be a tree of height κ such
that each level of T has size < κ. Since κ is inaccessible, |T | = κ and we
may assume that T = κ. We extend the partial ordering <T of κ to a linear
ordering ≺: If α <T β, then we let α ≺ β; if α and β are incomparable and if
ξ is the first level where the predecessors αξ, βξ of α and β are distinct, we
let α ≺ β if and only if αξ < βξ.

Let F : [κ]2 → {0, 1} be the partition defined by F ({α, β}) = 1 if and
only if ≺ agrees with < on {α, β}. By weak compactness, let H ⊂ κ be
homogeneous for F , |H | = κ.

We now consider the set B ⊂ κ of all x ∈ κ such that {α ∈ H : x <T α}
has size κ. Since every level has size < κ, it is clear that at each level there
is at least one x in B. Thus if we show that any two elements of B are
<T -comparable, we shall have proved that B is a branch in T of size κ.

Thus assume that x, y are incomparable elements of B; let x ≺ y. Since
both x and y have κ successors in H , there exist α < β < γ in H such that
x <T α, y <T β, and x <T γ. By the definition of ≺, we have α ≺ β and
γ ≺ β. Thus F ({α, β}) = 1 and F ({γ, β}) = 0, contrary to the homogeneity
of H .

(ii) Let κ be an inaccessible cardinal with the tree property, and let F :
[κ]2 → I be a partition such that |I| < κ. We shall find a homogeneous H ⊂ κ
of size κ.

We construct a tree (T,⊂) whose elements are some functions t : γ → I,
γ < κ. We construct T by induction: At step α < κ, we put into T one more
element t, calling it tα. Let t0 = ∅. Having constructed t0, . . . , tβ , . . . , β < α,
let us construct tα as follows, by induction on ξ. Having constructed tα�ξ, we
look first whether tα�ξ is among the tβ , β < α (note that for ξ = 0 we have
tα�0 = t0). If not, then we consider tα constructed: tα = tα�ξ. If tα�ξ = tβ
for some β < α, then we let tα(ξ) = i where i = F ({β, α}).

(T,⊂) is a tree of size κ; and since κ is inaccessible, each level of T has
size < κ and the height of T is κ. It follows from the construction that if
tβ ⊂ tα, then β < α and F ({β, α}) = tα(length(tβ)). By the assumption,
T has a branch B of size κ. If we now let, for each i ∈ I,

(9.13) Hi = {α : tα ∈ B and t�α i ∈ B},
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then each Hi is homogeneous for the partition F , and at least one Hi has
size κ. ��

It should be mentioned that an argument similar to the one above, only
more complicated, shows that if κ is inaccessible and has the tree property,
then κ → (κ)n

m for all n ∈ ω, m < κ.

Ramsey Cardinals

Let us consider one more generalization of Ramsey’s Theorem. Let κ be an
infinite cardinal, let α be an infinite limit ordinal, α ≤ κ, and let m be
a cardinal, 2 ≤ m < κ. The symbol

(9.14) κ → (α)<ω
m

denotes the property that for every partition F of the set [κ]<ω =
⋃∞

n=0[κ]n

into m pieces, there exists a set H ⊂ κ of order-type α such that for each
n ∈ ω, F is constant on [H ]n. (Again, the subscript m is deleted when m = 2.)

It is not difficult to see that the partition property ω → (ω)<ω is false
(see Exercise 9.13).

A cardinal κ is a Ramsey cardinal if κ → (κ)<ω. Clearly, every Ram-
sey cardinal is weakly compact. We shall investigate Ramsey cardinals and
property (9.14) in general in Part II.

Exercises

9.1. (i) Every infinite partially ordered set either has an infinite chain or has
an infinite set of mutually incomparable elements.

(ii) Every infinite linearly ordered set either has an infinite increasing sequence
of elements or has an infinite decreasing sequence of elements.

[Use Ramsey’s Theorem.]

For each κ, let exp0(κ) = κ and expn+1(κ) = 2expn(κ).

9.2. For every κ, (expn(κ))+ → (κ+)n+1
κ . In particular, we have (2κ)+ → (κ+)2.

9.3. ω1 → (ω1, ω + 1)2.
[Let {A, B} be a partition of [ω1]

2. For every limit ordinal α let Kα be a maximal
subset of α such that [Kα∪{α}]2 ⊂ B. If Kα is finite for each α, use Fodor’s Theorem
to find a stationary set S such that all Kα, α ∈ S, are the same. Then [S]2 ⊂ A.]

If A is an infinite set of ordinals and α an ordinal, let [A]α denote the set of all
increasing α-sequences in A. The symbol

κ→ (λ)α

stands for: For every partition F : [κ]α → {0, 1} of [κ]α into two pieces, there exists
a set H of order-type λ such that F is constant on [H ]α.
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9.4. For all infinite cardinals κ, κ �→ (ω)ω.
[For s, t ∈ [κ]ω let s ≡ t if and only if {n : s(n) �= t(n)} is finite. Pick a repre-

sentative in each equivalence class. Let F (s) = 0 if s differs from the representative
of its class at an even number of places; let F (s) = 1 otherwise. F has no infinite
homogeneous set.]

9.5 (König’s Lemma). If T is a tree of height ω such that each level of T is
finite, then T has an infinite branch.

[To construct a branch {x0, x1, . . . , xn, . . .} in T , pick x0 at level 0 such that
{y : y > x0} is infinite. Then pick x1, x2, . . . similarly.]

9.6. If T is a normal α-tree, then T is isomorphic to a tree T whose elements are
β-sequences (β < α), ordered by extension; if t ⊂ s and s ∈ T , then t ∈ T , and the

βth level of T is the set {t ∈ T : dom t = β}.

9.7. If T is a normal ω1-tree and if T has uncountable branch, then T has an
uncountable antichain.

[For each x in the branch B pick a successor zx of x such that zx /∈ B. Let
A = {zx : x ∈ B}.]

9.8. Show that if T is the tree in Theorem 9.16 then there exists some f : T → R
such that f(x) < f(y) whenever x < y.

9.9. An Aronszajn tree is special if and only if T is the union of ω antichains.
[If T =

S∞
n=0 An, where each An is an antichain, define π : T → Q by induction

on n, constructing π�An at stage n, so that the range of π remains finite.]

9.10. Prove Theorem 9.18 using Fodor’s Theorem.
[Let W = {Xα : α < ω1} with Xα ⊂ ω1. For each α, let f(α) = Xα ∩ α.

By Fodor’s Theorem, f is constant on a stationary set S; by induction construct
a ∆-system W ⊂ {Xα : α ∈ S}.]

9.11. If 2<κ = κ, then there exists an almost disjoint family of 2κ subsets of κ.
[As in Lemma 9.21, let S =

S

α<κ{0, 1}α; |S| = κ.]

9.12. Given a family F of ℵ2 almost disjoint functions f : ω1 → ω, there exists
a collection S of ℵ2 pairwise disjoint stationary subsets of ω1.

[Each f ∈ F is constant on a stationary set Sf with value nf . There is G ⊂ F
of size ℵ2 such that nf is the same for all f ∈ G. Let S = {Sf : f ∈ G}.]

9.13. ω �→ (ω)<ω.
[For x ∈ [ω]<ω, let F (x) = 1 if |x| ∈ x, and F (x) = 0 otherwise. If H ⊂ ω is

infinite, pick n ∈ H and show that F is not constant on [H ]n.]

Historical Notes

Theorem 9.1 is due to Ramsey [1929/30]. Ramsey ultrafilters are investigated in
Booth [1970/71]. The theory of partition relations has been developed by Erdős,
who has written a number of papers on the subject, some coauthored by Rado,
Hajnal, and others. The arrow notation is introduced in Erdős and Rado [1956].
Other major comprehensive articles on partition relations are Erdős, Hajnal, and
Rado [1965] and Erdős and Hajnal [1971].
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The equivalence of Suslin’s Problem with the tree formulation (Lemma 9.14) is
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trees, with Lemma 9.25.

Theorems 9.18 and 9.19: Shanin [1946] and Erdős-Rado [1960].
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