
10. Measurable Cardinals

The theory of large cardinals owes its origin to the basic problem of measure
theory, the Measure Problem of H. Lebesgue.

The Measure Problem

Let S be an infinite set. A (nontrivial σ-additive probabilistic) measure on S
is a real-valued function µ on P (S) such that:

(i) µ(∅) = 0 and µ(S) = 1;
(ii) if X ⊂ Y , then µ(X) ≤ µ(Y );
(iii) µ({a}) = 0 for all a ∈ S (nontriviality);
(iv) if Xn, n = 0, 1, 2, . . . , are pairwise disjoint, then

µ
( ∞⋃

n=0
Xn

)
=

∞∑
n=0

µ(Xn) (σ-additivity).

(10.1)

It follows from (ii) that µ(X), the measure of X , is nonnegative for every
X ⊂ S; in a special case of (iv) we get µ(X ∪ Y ) = µ(X) + µ(Y ) whenever
X ∩ Y = ∅ (finite additivity).

More generally, let A be a σ-complete algebra of sets. A measure on A
is a real-valued function µ on A satisfying (i)–(iv). Thus a measure on S is
a measure on P (S).

An example of a measure on a σ-complete algebra of sets is the Lebesgue
measure on the algebra of all Lebesgue measurable subsets of the unit in-
terval [0, 1]. The Lebesgue measure has, in addition to (i)–(iv), the following
property:

If X is congruent by translation to a measurable set Y , then X is
measurable and µ(X) = µ(Y ).

(10.2)

It is well known that there exist sets of reals that are not Lebesgue mea-
surable, and in fact that there is no measure on [0, 1] with the property (10.2)
(translation invariant measure); see Exercise 10.1.

The natural question to ask is whether the Lebesgue measure can be
extended to some measure (not translation invariant) such that all subsets
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of [0, 1] are measurable, or whether there exists any measure on [0, 1]. Or,
whether there exists a measure on some set S.

The investigation of this problem has lead to important discoveries in set
theory, opening up a new field, the theory of large cardinal numbers, which
has far-reaching consequences both in pure set theory and in descriptive set
theory.

A measure µ on S is two-valued if µ(X) is either 0 or 1 for all X ⊂ S. If
µ is a two-valued measure on S, let

(10.3) U = {X ⊂ S : µ(X) = 1}.

It is easy to verify that U is an ultrafilter on S. (For instance, if X ∈ U and
Y ∈ U , then X∩Y ∈ U . If µ(X) = µ(Y ) = 1, then X = (X−Y )∪(X∩Y ) and
Y = (Y −X)∪(X∩Y ). If µ(X∩Y ) were not 1, then µ(X−Y ) = µ(Y −X) = 1,
and we would have µ(X ∪ Y ) = 2.)

Next we note that the ultrafilter U is σ-complete. This is so because µ is
σ-additive, and an ultrafilter U on S is σ-complete if and only if there is no
partition of S into countably many disjoint parts S =

⋃∞
n=0 Xn such that

Xn /∈ U , for all n.
Thus if µ is a two-valued measure on S, U is a σ-complete ultrafilter on S.

Conversely, if U is a σ-complete ultrafilter on S, then the following function
is a two-valued measure on S:

(10.4) µ(X) =
{

1 if X ∈ U,

0 if X /∈ U.

Let µ be a measure on S. A set A ⊂ S is an atom of µ if µ(A) > 0 and if
for every X ⊂ A, we have either µ(X) = 0 or µ(X) = µ(A).

If µ has an atom A, then

(10.5) U = {X ⊂ S : µ(X ∩ A) = µ(A)}

is again a σ-complete ultrafilter on S.
A measure µ on S is atomless if it has no atoms. Then every set X ⊂ S

of positive measure can be split into two disjoint sets of positive measure:
X = Y ∪ Z, and µ(Y ) > 0, µ(Z) > 0.

We shall eventually prove various strong consequences of the existence of
a nontrivial σ-additive measure and establish the relationship between the
Measure Problem and large cardinals. Our starting point is the following
theorem which shows that if a measure exists, then there exists at least
a weakly inaccessible cardinal.

Theorem 10.1 (Ulam). If there is a σ-additive nontrivial measure on S,
then either there exists a two-valued measure on S and |S| is greater than
or equal to the least inaccessible cardinal, or there exists an atomless mea-
sure on 2ℵ0 and 2ℵ0 is greater than or equal to the least weakly inaccessible
cardinal.
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Theorem 10.1 will be proved in a sequence of lemmas, which will also
provide additional information on the Measure Problem and introduce ba-
sic notions and methods of the theory of large cardinals. First we make the
following observation. Let κ be the least cardinal that carries a nontrivial
σ-additive two-valued measure. Clearly, κ is uncountable and is also the least
cardinal that has a nonprincipal countably complete ultrafilter. And we ob-
serve that such an ultrafilter is in fact κ-complete:

Lemma 10.2. Let κ be the least cardinal with the property that there is
a nonprincipal σ-complete ultrafilter on κ, and let U be such an ultrafilter.
Then U is κ-complete.

Proof. Let U be a σ-complete ultrafilter on κ, and let us assume that U is
not κ-complete. Then there exists a partition {Xα : α < γ} of κ such that
γ < κ, and Xα /∈ U for all α < γ. We shall now use this partition to construct
a nonprincipal σ-complete ultrafilter on γ, thus contradicting the choice of κ
as the least cardinal that carries such an ultrafilter.

Let f be the mapping of κ onto γ defined as follows:

f(x) = α if and only if x ∈ Xα (x ∈ κ).

The mapping f induces a σ-complete ultrafilter on γ: we define D ⊂ P (γ) by

(10.6) Z ∈ D if and only if f−1(Z) ∈ U.

The ultrafilter D is nonprincipal: Assume that {α} ∈ D for some α < γ. Then
Xα ∈ U , contrary to our assumption on Xα. Thus γ carries a σ-complete
nonprincipal ultrafilter. ��

Measurable and Real-Valued Measurable Cardinals

We are now ready to define the central notion of this chapter.

Definition 10.3. An uncountable cardinal κ is measurable if there exists
a κ-complete nonprincipal ultrafilter U on κ.

By Lemma 10.2, the least cardinal that carries a nontrivial two-valued σ-
additive measure is measurable. Note that if U is a κ-complete nonprincipal
ultrafilter on κ, then every set X ∈ U has cardinality κ because every set of
smaller size is the union of fewer than κ singletons. For similar reasons, κ is
a regular cardinal because if κ is singular, then it is the union of fewer than
κ small sets. The next lemma gives a first link of the Measure Problem with
large cardinals.

Lemma 10.4. Every measurable cardinal is inaccessible.
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Proof. We have just given an argument why a measurable cardinal is regular.
Let us show that measurable cardinals are strong limit cardinals. Let κ be
measurable, and let us assume that there exists λ < κ such that 2λ ≥ κ; we
shall reach a contradiction.

Let S be a set of functions f : λ → {0, 1} such that |S| = κ, and let U be
a κ-complete nonprincipal ultrafilter on S. For each α < λ, let Xα be that
one of the two sets {f ∈ S : f(α) = 0}, {f ∈ S : f(α) = 1} which is in U , and
let εα be 0 or 1 accordingly. Since U is κ-complete, the set X =

⋂
α<λ Xα is

in U . However, X has at most one element, namely the function f that has
the values f(α) = εα. A contradiction. ��

Let us now turn our attention to measures that are not necessarily two-
valued. Let µ be a nontrivial σ-additive measure on a set S. In analogy
with (10.3) we consider the ideal of all null sets :

(10.7) Iµ = {X ⊂ S : µ(X) = 0}.

Iµ is a nonprincipal σ-complete ideal on S. Moreover, it has these properties:

(i) {x} ∈ I for every x ∈ S;
(ii) every family of pairwise disjoint sets X ⊂ S that are not in I is

at most countable.

(10.8)

To see that (ii) holds, note that if W is a disjoint family of set of positive
measure, then for each integer n > 0, there are only finitely many sets X ∈ W
of measure ≥ 1/n.

A σ-complete nonprincipal ideal I on S is called σ-saturated if it satis-
fies (10.8).

The following lemma is an analog of Lemma 10.2:

Lemma 10.5.

(i) Let κ be the least cardinal that carries a nontrivial σ-additive measure
and let µ be such a measure on κ. Then the ideal Iµ of null sets is
κ-complete.

(ii) Let κ be the least cardinal with the property that there is a σ-complete
σ-saturated ideal on κ, and let I be such an ideal. Then I is κ-complete.

Proof. (i) Let us assume that Iµ is not κ-complete. There exists a collection
of null sets {Xα : α < γ} such that γ < κ and that their union X has positive
measure. We may assume without loss of generality that the sets Xα, α < γ,
are pairwise disjoint; let m = µ(X).

Let f be the following mapping of X onto γ:

f(x) = α if and only if x ∈ Xα (x ∈ X).

The mapping f induces a measure ν on γ:

(10.9) ν(Z) =
1
m

· µ(f−1(Z)).
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The measure ν is σ-additive and is nontrivial since ν({α}) = µ(Xα) = 0 for
each α ∈ γ. This contradicts the choice of κ as the least cardinal that carries
a measure.

(ii) The proof is similar. We define an ideal J on γ by: Z ∈ J if and only
if f−1(Z) ∈ I. The induced ideal J is σ-complete and σ-saturated. ��

Let {ri : i ∈ I} be a collection of nonnegative real numbers. We define

(10.10)
∑
i∈I

ri = sup
{ ∑

i∈E

ri : E is a finite subset of I
}
.

Note that if the sum (10.10) is not ∞, then at most countably many ri are
not equal to 0.

Let κ be an uncountable cardinal. A measure µ on S is called κ-additive
if for every γ < κ and for every disjoint collection Xα, α < γ, of subsets of S,

(10.11) µ
( ⋃

α<γ
Xα

)
=

∑
α<γ

µ(Xα).

If µ is a κ-additive measure, then the ideal Iµ of null sets is κ-complete.
The converse is also true and we get a better analog of Lemma 10.2 for
real-valued measures:

Lemma 10.6. Let µ be a measure on S, and let Iµ be the ideal of null sets.
If Iµ is κ-complete, then µ is κ-additive.

Proof. Let γ < κ, and let Xα, α < γ, be disjoint subsets of S. Since the Xα

are disjoint, at most countably many of them have positive measure. Thus
let us write

{Xα : α < γ} = {Yn : n = 0, 1, 2, . . .} ∪ {Zα : α < γ},

where each Zα has measure 0. Then we have

µ
( ⋃

α<γ
Xα

)
= µ

( ∞⋃
n=0

Yn

)
+ µ

( ⋃
α<γ

Zα

)
.

Now first µ is σ-additive, and we have

µ
( ∞⋃

n=0
Yn

)
=

∞∑
n=0

µ(Yn),

and secondly Iµ is κ-complete and

µ
( ⋃

α<γ
Zα

)
= 0 =

∑
α<γ

µ(Zα).

Thus µ(
⋃

α Xα) =
∑

α µ(Xα). ��
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Corollary 10.7. Let κ be the least cardinal that carries a nontrivial σ-addi-
tive measure and let µ be such a measure. Then µ is κ-additive. ��

Definition 10.8. An uncountable cardinal κ is real-valued measurable if
there exists a nontrivial κ-additive measure µ on κ.

By Corollary 10.7, the least cardinal that carries a nontrivial σ-additive
measure is real-valued measurable. We shall show that if a real-valued mea-
surable cardinal κ is not measurable, then κ ≤ 2ℵ0 . Note that if µ is a non-
trivial κ additive measure on κ, then every set of size < κ has measure 0,
and moreover κ cannot be the union of fewer than κ sets of size < κ. Thus
a real-valued measurable cardinal is regular. We shall show that it is weakly
inaccessible.

We shall first prove the first claim made in the preceding paragraph.

Lemma 10.9.

(i) If there exists an atomless nontrivial σ-additive measure, then there
exists a nontrivial σ-additive measure on some κ ≤ 2ℵ0 .

(ii) If I is a σ-complete σ-saturated ideal on S, then either there exists
Z ⊂ S, such that I�Z = {X ⊂ Z : X ∈ I} is a prime ideal, or there
exists a σ-complete σ-saturated ideal on some κ ≤ 2ℵ0 .

Proof. (i) Let µ be such a measure on S. We construct a tree T of subsets
of S, partially ordered by reverse inclusion. The 0th level of T is {S}. Each
level of T consists of pairwise disjoint subsets of S of positive measure. Each
X ∈ T has two immediate successors: We choose two sets Y , Z of positive
measure such that Y ∪ Z = X and Y ∩ Z = ∅. If α is a limit ordinal, then
the αth level consists of all intersections X =

⋂
ξ<α Xξ such that each Xξ is

on the ξth level of T and such that X has positive measure.
We observe that every branch of T has countable length: If {Xξ : ξ < α} is

a branch in T , then the set {Yξ : ξ < α}, where Yξ = Xξ −Xξ+1, is a disjoint
collection of sets of positive measure. Consequently, T has height at most ω1.
Similarly, each level of T is at most countable, and it follows that T has at
most 2ℵ0 branches.

Let {bα : α < κ}, κ ≤ 2ℵ0 , be an enumeration of all branches b = {Xξ :
ξ < γ} such that

⋂
ξ<γ Xξ is nonempty; for each α < κ, let Zα =

⋂
{X : X ∈

bα}. The collection {Zα : α < κ} is a partition of S into κ sets of measure 0.
We induce a measure ν on κ as follows: Let f be the mapping of S onto κ

defined by
f(x) = α if and only if x ∈ Zα (x ∈ S),

and let
ν(Z) = µ(f−1(Z))

for all Z ⊂ κ. It follows that ν is a nontrivial σ-additive measure on κ.
(ii) The proof is similar. We define a tree T as above and then induce an

ideal J on κ by letting Z ∈ J if and only if f−1(Z) ∈ I. ��



10. Measurable Cardinals 131

The proof of Lemma 10.9 shows that if µ is atomless, then there is a par-
tition of S into at most 2ℵ0 null sets; in other words, µ is not (2ℵ0)+-additive.
Hence if κ carries an atomless κ-additive measure, then κ ≤ 2ℵ0 and we have:

Corollary 10.10. If κ is a real-valued measurable cardinal, then either κ is
measurable or κ ≤ 2ℵ0 .

More generally, if κ carries a κ-complete σ-saturated ideal, then either
κ is measurable or κ ≤ 2ℵ0 . ��

The measure ν obtained in Lemma 10.9(i) is atomless; this follows from
the fact that κ ≤ 2ℵ0 and Lemma 10.4. If there exists an atomless σ-additive
measure, then there is one on some κ ≤ 2ℵ0 . Clearly, such a measure can
be extended to a measure on 2ℵ0 : For X ⊂ 2ℵ0 , we let µ(X) = µ(X ∩ κ).
Thus we conclude that there exists an atomless σ-additive measure on the
set R of all reals. It turns out that using the same assumption, we can obtain
a σ-additive measure on R that extends Lebesgue measure. This can be done
by a slight modification of the proof of Lemma 10.9:

Using Exercise 10.3, we construct for each finite 0–1 sequence s, a set
Xs ⊂ S such that X∅ = S, and for every s ∈ Seq, Xs�0 ∪ Xs�1 = Xs,
Xs�0 ∩ Xs�1 = ∅, and µ(Xs�0) = µ(Xs�1) = 1

2 · µ(Xs�0). Then we define
a measure ν1 on 2ω by

ν1(Z) = µ(
⋃
{Xf : f ∈ Z}),

where Xf =
⋂∞

n=0 Xf�n for each f ∈ 2ω. Using the mapping F : 2ω → [0, 1]
defined by

F (f) =
∞∑

n=0
f(n)/2n+1

we obtain a nontrivial σ-additive measure ν on [0, 1]. This measure agrees
with the Lebesgue measure on all intervals [k/2n, (k + 1)/2n], and hence on
all Borel sets. Every set of Lebesgue measure 0 is included in a Borel (in fact,
Gδ) set of Lebesgue measure 0 and hence has ν-measure 0. Every Lebesgue
measurable set X can be written as X = (B−N1)∪N2, where N1 and N2 have
Lebesgue measure 0, and hence the Lebesgue measure of X is equal to ν(X).
Thus ν agrees with the Lebesgue measure on all Lebesgue measurable subsets
of [0, 1].

We shall now show that a real-valued measurable cardinal is weakly in-
accessible. The proof is by a combinatorial argument, using matrices of sets.

Definition 10.11. An Ulam matrix (more precisely, an Ulam (ℵ1,ℵ0)-
matrix) is a collection {Aα,n : α < ω1, n < ω} of subsets of ω1 such that:

(i) if α �= β, then Aα,n ∩ Aβ,n = ∅ for every n < ω;
(ii) for each α, the set ω1 −

⋃∞
n=0 Aα,n is at most countable.

(10.12)

An Ulam matrix has ℵ1 rows and ℵ0 columns. Each column consists of
pairwise disjoint sets, and the union of each row contains all but countably
many elements of ω1.
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Lemma 10.12. An Ulam matrix exists.

Proof. For each ξ < ω1, let fξ be a function on ω such that ξ ⊂ ran(fξ). Let
us define Aα,n for α < ω1 and n < ω by

(10.13) ξ ∈ Aα,n if and only if fξ(n) = α.

If n < ω, then for each ξ ∈ ω1 there is only one α such that ξ ∈ Aα,n, namely
α = fξ(n); and we have property (i) of (10.12). If α < ω1, then for each ξ > α
there is an n such that fξ(n) = α and hence (ω1 −

⋃∞
n=0 Aα,n) ⊂ α + 1; that

verifies property (ii). ��

Using an Ulam matrix, we can show that there is no measure on ω1:

Lemma 10.13. There is no nontrivial σ-additive measure on ω1. More gen-
erally, there is no σ-complete σ-saturated ideal on ω1.

Proof. Let {Aα,n : α < ω1, n < ω} be an Ulam matrix. Assuming that we
have a measure on ω1, there is for each α some n = nα such that Aα,n has
positive measure (because of (10.12)(ii)). Hence there exist an uncountable
set W ⊂ ω1 and some n < ω such that nα = n for all α ∈ W . Then
{Aα,n : α ∈ W} is an uncountable, pairwise disjoint (by (10.12)(i)) family of
sets of positive measure; a contradiction. ��

A straightforward generalization of Lemmas 10.12 and 10.13 gives the
result mentioned above:

Lemma 10.14. If κ = λ+, then there is no κ-complete σ-saturated ideal
on κ.

Proof. For each ξ < λ+, we let fξ be a function on λ such that ξ ⊂ ran(fξ),
and let

ξ ∈ Aα,η if and only if fξ(η) = α.

Then {Aα,η : α < λ+, η < λ} is an Ulam (λ+, λ)-matrix, that is a collection
of subsets of λ+ such that:

(i) Aα,η ∩ Aβ,η = ∅ whenever α �= β < λ+, and η < λ;
(ii) |λ+ −

⋃
η<λ Aα,η| ≤ λ for each α < λ+.

(10.14)

The proof of Lemma 10.13 generalizes to show that there is no κ-complete
σ-saturated ideal on κ. ��

Corollary 10.15. Every real-valued measurable cardinal is weakly inacces-
sible. ��
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Lemma 10.14 completes the proof of Theorem 10.1: If there is a σ-additive
nontrivial measure on S, then either the measure has an atom A and we can
construct a two-valued measure on S via a σ-complete nonprincipal ultrafilter
on A, and then |S| ≥ the least measurable cardinal, which is inaccessible; or
the measure on S is atomless and we construct, as in Lemma 10.9, an atomless
measure on 2ℵ0 , and then 2ℵ0 ≥ the least real-valued measurable cardinal,
which is weakly inaccessible. ��

Prior to Ulam’s work, Banach and Kuratowski proved that if the Con-
tinuum Hypothesis holds then there exists no σ-additive measure on R. We
present their proof below; in fact, Lemma 10.16 gives a slightly more general
result.

If f and g are functions from ω to ω, let f < g mean that f(n) < g(n) for
all but finitely many n ∈ ω. A κ-sequence of functions 〈fα : α < κ〉 is called
a κ-scale if fα < fβ whenever α < β, and if for every g : ω → ω there exists
an α such that g < fα.

Lemma 10.16. If there exists a κ-scale, then κ is not a real-valued measur-
able cardinal.

Proof. Let fα, α < κ, be a κ-scale. We define an (ℵ0,ℵ0)-matrix of subsets
of κ as follows: For n, k < ω, let

(10.15) α ∈ An,k if and only if fα(n) = k (α ∈ κ).

Since for each n and each α there is k such that α ∈ An,k, we have

∞⋃
k=0

An,k = κ

for every n = 0, 1, 2, . . . .
Now assume that µ is a nontrivial κ-additive measure on κ. For each n,

let kn be such that

µ(An,0 ∪ An,1 ∪ . . . ∪ An,kn) ≥ 1 − (1/2n+2),

and let Bn = An,0 ∪ . . .∪An,kn . If we let B =
⋂∞

n=0 Bn, then we clearly have
µ(B) ≥ 1/2.

Let g : ω → ω be the function g(n) = kn. If α ∈ B, then by the definition
of B and by (10.15), we have

fα(n) ≤ g(n)

for all n = 0, 1, 2, . . . ; hence g �< fα. However, since B has positive measure,
B has size κ, and therefore we have g �< fα for cofinally many α < κ. This
contradicts the assumption that the fα form a scale. ��

Corollary 10.17. If there is a measure on 2ℵ0 , then 2ℵ0 > ℵ1.
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Proof. If 2ℵ0 = ℵ1, then there exists an ω1-scale; a scale 〈fα : α < ω1〉 is
constructed by transfinite induction to ω1:

Let {gα : α < ω1} enumerate all functions from ω to ω. At stage α, we
construct, by diagonalization, a function fα such that for all β < α, fα > fβ

and fα > gβ . Then 〈fα : α < ω1〉 is an ω1-scale. ��

Measurable Cardinals

By Lemma 10.4, every measurable cardinal is inaccessible. While we shall
investigate measurable cardinals extensively in Part II, we now present a few
basic results that establish the relationship of measurable cardinals and the
large cardinals introduced in Chapter 9.

We recall that by Lemma 9.26, a cardinal κ is weakly compact if and only
if it is inaccessible and has the tree property.

Lemma 10.18. Every measurable cardinal is weakly compact.

Proof. Let κ be a measurable cardinal. To show that κ is weakly compact,
it suffices to prove the tree property. Let (T, <) be a tree of height κ with
levels of size < κ. We consider a nonprincipal κ-complete ultrafilter U on T .
Let B be the set of all x ∈ T such that the set of all successors of x is in U .
It is clear that B is a branch in T and it is easy to verify that each level of T
has one element in B; thus B is a branch of size κ. ��

Normal Measures

In Chapter 8 we defined the notion of a normal κ-complete filter, namely
a filter closed under diagonal intersections (8.7).

Thus we call a normal κ-complete nonprincipal ultrafilter a normal mea-
sure on κ. Note that by Exercise 8.8, a measure is normal if and only if every
regressive function on a set of measure one is constant on a set of measure
one.

Lemma 10.19. If D is a normal measure on κ, then every set in D is sta-
tionary.

Proof. By Lemma 8.11, every closed unbounded set is in D, and the lemma
follows. ��

Theorem 10.20 below shows that if κ is measurable cardinal then a normal
measure exists.

Theorem 10.20. Every measurable cardinal carries a normal measure. If
U is a nonprincipal κ-complete ultrafilter on κ then there exists a function
f : κ → κ such that f∗(U) = {X ⊂ κ : f−1(X) ∈ U} is a normal measure.
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Proof. Let U be a nonprincipal κ-complete ultrafilter on κ. For f and g in κκ,
let

f ≡ g if and only if {α < κ : f(α) = g(α)} ∈ U.

It is easily seen that ≡ is an equivalence relation on κκ. Let [f ] denote the
equivalence class of f ∈ κκ. Furthermore, if we let

f < g if and only if {α < κ : f(α) < g(α)} ∈ U,

then < is a linear ordering of (the equivalence classes of) κκ.
There exists no infinite descending sequence f0 > f1 > . . . > fn > . . .:

Otherwise, let Xn = {α : fn(α) > fn+1(α)}, and let X =
⋂∞

n=0 Xn. X is
nonempty, and if α ∈ X , we would have f0(α) > f1(α) > . . . > fn(α) > . . .,
a contradiction.

Thus < is a well-ordering of κκ/≡.
Now let f : κ → κ be the least function (in this well-ordering) with the

property that for all γ < κ, {α : f(α) > γ} ∈ U . Such functions exist: for
instance, the diagonal function d(α) = α has this property.

Let D = f∗(U) = {X ⊂ κ : f−1(X) ∈ U}. We claim that D is a normal
measure.

It is easy to verify that D is a κ-complete ultrafilter. For every γ < κ, we
have f−1({γ}) /∈ U , and so {γ} /∈ D, and so D is nonprincipal.

In order to show that D is normal, let h be a regressive function on a set
X ∈ D. We shall show that h is constant on a set in D. Let g be the function
defined by g(α) = h(f(α)). As g(α) < f(α) for all α ∈ f−1(X), we have
g < f , and it follows by the minimality of f that g is constant on some
Y ∈ U . Hence h is constant on f(Y ) and f(Y ) ∈ D. ��

As an application of normal measures we show that every measurable
cardinal is a Mahlo cardinal, and improve Lemma 10.18 by showing that
every measurable cardinal is a Ramsey cardinal.

Lemma 10.21. Every measurable cardinal is a Mahlo cardinal.

Proof. Let κ be a measurable cardinal. We shall show that the set of all
inaccessible cardinals α < κ is stationary. As κ is strong limit, the set of all
strong limit cardinals α < κ is closed unbounded, and it suffices to show that
the set of all regular cardinals α < κ is stationary.

Let D be a normal measure on κ. We claim that {α < κ : α is regu-
lar} ∈ D; this will complete the proof, since every set in D is stationary, by
Lemma 10.19.

Toward a contradiction, assume that {α : cf α < α} ∈ D. By normality,
there is some λ < κ such that Eλ = {α : cf α = λ} ∈ D. For each α ∈ Eλ,
let 〈xα,ξ : ξ < λ〉 be an increasing sequence with limit α. For each ξ < λ
there exist yξ and Aξ ∈ D such that xα,ξ = yξ for all α ∈ Aξ. Let A =⋂

ξ<λ Aξ. Then A ∈ D, but A contains only one element, namely limξ→λ yξ;
a contradiction. ��



136 Part I. Basic Set Theory

Theorem 10.22. Let κ be a measurable cardinal, let D be a normal measure
on κ, and let F be a partition of [κ]<ω into less than κ pieces. Then there
exists a set H ∈ D homogeneous for F . Hence every measurable cardinal is
a Ramsey cardinal.

Proof. Let D be a normal measure on κ, and let F be a partition of [κ]<ω

into fewer than κ pieces. It suffices to show that for each n = 1, 2, . . . ,
there is Hn ∈ D such that F is constant on [Hn]n; then H =

⋂∞
n=1 Hn is

homogeneous for F .
We prove, by induction on n, that every partition of [κ]n into fewer than κ

pieces is constant on [H ]n for some H ∈ D. The assertion is trivial for n = 1,
so we assume that it is true for n and prove that it holds also for n + 1. Let
F : [κ]n+1 → I, where |I| < κ. For each α < κ, we define Fα on [κ − {α}]n
by Fα(x) = F ({α} ∪ x).

By the induction hypothesis, there exists for each α < κ a set Xα ∈ D
such that Fα is constant on [Xα]n; let ia be its constant value. Let X be the
diagonal intersection X = {α < κ : α ∈

⋂
γ<α Xγ}. We have X ∈ D since

D is normal; also, if γ < α1 < . . . < αn are in X , then {α1, . . . , αn} ∈ [Xγ ]n

and so F ({γ, α1, . . . , αn}) = Fγ({α1, . . . , αn}) = iγ . Now, there exist i ∈ I
and H ⊂ X in D such that iγ = i for all γ ∈ H . It follows that F (x) = i for
all x ∈ [H ]n+1. ��

Strongly Compact and Supercompact Cardinals

Among the various large cardinals that we shall investigate in more detail
in Part II there are two that are immediate generalizations of measurable
cardinals.

Definition 10.23. An uncountable cardinal κ is strongly compact if for any
set S, every κ-complete filter on S can be extended to a κ-complete ultrafilter
on S.

Clearly, every strongly compact cardinal is measurable.
Let A be a set of size at least κ, and let us consider the filter F on Pκ(A)

generated by the sets P̂ = {Q ∈ Pκ(A) : P ⊂ Q}. F is a κ-complete filter and
if κ is strongly compact, F can be extended to a κ-complete ultrafilter U .
A κ-complete ultrafilter U on Pκ(A) that extends F is called a fine measure.
In Part II we prove that if a fine measure on Pκ(A) exists for every A, then
κ is strongly compact.

A fine measure U on P<κ(A) is normal if whenever f : Pκ(A) → A is
such that f(P ) ∈ P for all P in a set in U , then f is constant on a set
in U . Equivalently, U is normal if it is closed under diagonal intersections
a∈A Xa = {x ∈ Pκ(A) : x ∈

⋂
a∈x Xa}.

Definition 10.24. An uncountable cardinal κ is supercompact if for every A
such that |A| ≥ κ there exists a normal measure on Pκ(A).
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We return to the subject of strongly compact and supercompact cardinals
in Part II.

Exercises

10.1 (Vitali). Let M be maximal (under ⊂) subset of [0, 1] with the property that
x− y is not a rational number, for any pair of distinct x, y ∈ M . Show that M is
not Lebesgue measurable.

[Consider the sets Mq = {x + q : x ∈M} where q is rational. They are pairwise
disjoint and [0, 1] ⊂

S

{Mq : q ∈ Q ∩ [−1, 1]} ⊂ [−1, 2].]

10.2. Prove directly that the measure ν defined in the proof of Lemma 10.9(i) is
atomless.

[Assume that Z is an atom of ν, and let Y = f−1(Z). If X ∈ T is such that
µ(Y ∩ X) �= 0 and if X1, X2 are the two immediate successors of X, then either
µ(Y ∩X1) = 0 or µ(Y ∩X2) = 0. Prove by induction that on each level of T there
is a unique X such that µ(Y ∩X) �= 0, and that these X’s constitute a branch in T
of length ω1; a contradiction.]

10.3. If µ is an atomless measure on S, there exists Z ⊂ S such that µ(Z) = 1/2.
More generally, given Z0 ⊂ S, there exists Z ⊂ Z0 such that µ(Z) = (1/2) · µ(Z0).

[Construct a sequence S = S0 ⊃ S1 ⊃ . . . ⊃ Sα ⊃ . . ., α < ω1, such that
µ(Sα) ≥ 1/2, and if µ(Sα) > 1/2, then 1/2 ≤ µ(Sα+1) < µ(Sα); if α is a limit
ordinal, let Sα =

T

β<α Sβ. There exists α < ω1 such that µ(Sα) = 1/2.]

10.4. Let µ be a two-valued measure and U the ultrafilter of all sets of measure
one. Then µ is κ-additive if and only if U is κ-complete.

10.5. A measure U on κ is normal if and only if the diagonal function d(α) = α is
the least function f with the property that for all γ < κ, {α : f(α) > γ} ∈ U .

10.6. Let D be a normal measure on κ and let f : [κ]<ω → κ be such that f(x) = 0
or f(x) < min x for all x ∈ [κ]<ω. Then there is H ∈ D such that for each n, f is
constant on [H ]n.

[By induction, as in Theorem 10.22. Given f on [κ]n+1, let fα(s) = f({α} ∪ s)
for α < min s; fα is constant on [Xα]n with value γα < α. Let X be the diagonal
intersection of Xα, α < κ, and let γ and H ⊂ X be such that H ∈ D and γα = γ
for all α ∈ H .]

10.7. If κ is measurable then there exists a normal measure on Pκ(κ).

Historical Notes

The study of measurable cardinals originated around 1930 with the work of Banach,
Kuratowski, Tarski, and Ulam. Ulam showed in [1930] that measurable cardinals are
large, that the least measurable cardinal is at least as large as the least inaccessible
cardinal.

The main result on measurable and real-valued measurable cardinals (Theo-
rem 10.1) is due to Ulam [1930]. The fact that a measurable cardinal is inaccessible
(Lemma 10.4) was discovered by Ulam and Tarski (cf. Ulam [1930]). Prior to Ulam,
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Banach and Kuratowski proved in [1929] that if 2ℵ0 = ℵ1, then there is no mea-
sure on the continuum; their proof is as in Lemma 10.16. Real-valued measurable
cardinals were introduced by Banach in [1930].

Lemma 10.18: Erdős and Tarski [1943]. Hanf [1963/64a] proved that the least
inaccessible cardinal is not measurable. That every measurable cardinal is a Ram-
sey cardinal was proved by Erdős and Hajnal [1962]; the stronger version (Theo-
rem 10.22) is due to Rowbottom [1971].

Strongly compact cardinals were introduced by Keisler and Tarski in [1963/64];
supercompact cardinals were defined by Reinhardt and Solovay, cf. Solovay et
al. [1978].

Exercise 10.1: Vitali [1905].


