
11. Borel and Analytic Sets

Descriptive set theory deals with sets of reals that are described in some
simple way: sets that have a simple topological structure (e.g., continuous
images of closed sets) or are definable in a simple way. The main theme is
that questions that are difficult to answer if asked for arbitrary sets of reals,
become much easier when asked for sets that have a simple description. An
example of that is the Cantor-Bendixson Theorem (Theorem 4.6): Every
closed set of reals is either at most countable or has size 2ℵ0 .

Since properties of definable sets can usually be established effectively,
without use of the Axiom of Choice, we shall work in set theory ZF without
the Axiom of Choice. When some statement depends on the Axiom of Choice,
we shall explicitly say so. However, we shall assume a weak form of the Axiom
of Choice. The reason is that in descriptive set theory one frequently considers
unions and intersections of countably many sets of reals, and we shall often
use facts like “the union of countably many countable sets is countable.” Thus
we shall work, throughout this chapter, in set theory ZF + the Countable
Axiom of Choice.

In this chapter we develop the basic theory of Borel and analytic sets in
Polish spaces. A Polish space is a topological space that is homeomorphic to
a complete separable metric space (Definition 4.12).

A canonical example of a Polish space is the Baire space N . The following
lemma shows that every Polish space is a continuous image of N :

Lemma 11.1. Let X be a Polish space. Then there exists a continuous map-
ping from N onto X.

Proof. Let X be a complete separable metric space; we construct a mapping f
of N onto X as follows: It is easy to construct, by induction on the length of
s ∈ Seq, a collection {Cs : s ∈ Seq} of closed balls such that C∅ = X and

(i) diameter(Cs) ≤ 1/n where n = length(s),
(ii) Cs ⊂

⋃∞
k=0 Cs�k (all s ∈ Seq),

(iii) if s ⊂ t then center(Ct) ∈ Cs.

(11.1)

For each a ∈ N , let f(a) be the unique point in
⋂
{Cs : s ⊂ a}; it is easily

checked that f is continuous and that X = f(N ). ��
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Borel Sets

Let X be a Polish space. A set A ⊂ X is a Borel set if it belongs to the
smallest σ-algebra of subsets of X containing all closed sets. We shall now
give a more explicit description of Borel sets. For each α < ω1, let us define
the collections Σ0

α and Π0
α of subsets of X :

(11.2) Σ0
1 = the collection of all open sets;

Π0
1 = the collection of all closed sets;

Σ0
α = the collection of all sets A =

⋃∞
n=0 An, where each An

belongs to Π0
β for some β < α;

Π0
α = the collection of all complements of sets in Σ0

α

= the collection of all sets A =
⋂∞

n=0 An, where each An

belongs to Σ0
β for some β < α.

It is clear (by induction on α) that the elements of each Σ0
α and each Π0

α are
Borel sets. Since every open set is the union of countably many closed sets,
we have Σ0

1 ⊂ Σ0
2, and consequently, if α < β, then

Σ0
α ⊂ Σ0

β , Σ0
α ⊂ Π0

β, Π0
α ⊂ Π0

β , Π0
α ⊂ Σ0

β .

Hence

(11.3)
⋃

α<ω1

Σ0
α =

⋃
α<ω1

Π0
α

and it is easy to verify that the collection (11.3) is a σ-algebra (here we
use the Countable Axiom of Choice). Hence every Borel set is in some Σ0

α,
α < ω1.

Note that each Σ0
α (and each Π0

α) is closed under finite unions, finite
intersections, and inverse images by continuous functions (i.e., if A ∈ Σ0

α

in Y , then f−1(A) ∈ Σ0
α in X whenever f : X → Y is a continuous function).

If the Polish space X is countable, then of course every A ∈ X is a Borel
set, in fact an Fσ set. Uncountable Polish spaces are more interesting: Not
all sets are Borel, and the collections Σ0

α form a hierarchy. We show below
that for each α, Σ0

α �⊂ Π0
α, and hence Σ0

α �= Σ0
α+1 for all α < ω1.

While we prove the next lemma for the special case when X is the Baire
space, the proof can be modified to prove the same result for any uncountable
Polish space.

Lemma 11.2. For each α ≥ 1 there exists a set U ⊂ N 2 such that U is Σ0
α

(in N 2), and that for every Σ0
α set A in N there exists some a ∈ N such

that

(11.4) A = {x : (x, a) ∈ U}.
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U is a universal Σ0
α set.

Proof. By induction on α. To construct a universal open set in N 2, let G1, . . . ,
Gk, . . . be an enumeration of all basic open sets in N , and let G0 = ∅. Let

(11.5) (x, y) ∈ U if and only if x ∈ Gy(n) for some n.

Since U =
⋃∞

n=0 Hn where each Hn = {(x, y) : x ∈ Gy(n)} is an open set
in N 2, we see that U is open. Now if G is an open set in N , we let a ∈ N be
such that G =

⋃∞
n=0 Ga(n); then G = {x : (x, a) ∈ U}.

Next let U be a universal Σ0
α set, and let us construct a universal

Σ0
α+1 set V . Let us consider some continuous mapping of N onto the product

space Nω; for each a ∈ N and each n, let a(n) be the nth coordinate of the
image of a. [For instance, let us define a(n) as follows: a(n)(k) = a(Γ(n, k)),
where Γ is the canonical one-to-one pairing function Γ : N ×N → N .] Now
let

(11.6) (x, y) ∈ V if and only if for some n, (x, y(n)) /∈ U .

Since V =
⋃∞

n=0 Hn where each Hn = {(x, y) : (x, y(n)) /∈ U} is a Π0
α set,

we see that V is Σ0
α+1. If A is a Σ0

α+1 set in N , then A =
⋃∞

n=0 An where
each An is Π0

α. For each n, let an be such that N − An = {x : (x, an) ∈ U},
and let a be such that a(n) = an for all n. Then A = {x : (x, a) ∈ V }.

Finally, let α be a limit ordinal, and let Uβ , 1 ≤ β ≤ α, be universal
Σ0

β sets. Let 1 ≤ α0 < α1 < . . . < αn < . . . be an increasing sequence of
ordinals such that limn→∞ αn = α. Let

(11.7) (x, y) ∈ U if and only if for some n, (x, y(n)) /∈ Uαn

(where a(n) has the same meaning as above). The set U is Σ0
α. If A is a Σ0

α set
in N then A =

⋃∞
n=0 An where each An is Π0

αn
. For each n, let an be such

that N − An = {x : (x, an) ∈ Uαn}, and let a be such that a(n) = an for
all n. Then A = {x : (x, a) ∈ U}. ��

Corollary 11.3. For every α ≥ 1, there is a set A ⊂ N that is Σ0
α but

not Π0
α.

Proof. Let U ⊂ N 2 be a universal Σ0
α set. Let us consider the set

(11.8) A = {x : (x, x) ∈ U}.

Clearly, A is a Σ0
α set. If A were Π0

α, then its complement would be Σ0
α and

there would be some a such that

A = {x : (x, a) /∈ U}.

But this contradicts (11.8): Simply let x = a. ��
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Analytic Sets

While the collection of Borel sets of reals is closed under Boolean operations,
and countable unions and intersections, it is not closed under continuous
images: As we shall learn presently, the image of a Borel set by a continuous
function need not be a Borel set. We shall now investigate the continuous
images of Borel sets.

Definition 11.4. A subset of A of a Polish space X is analytic if there exists
a continuous function f : N → X such that A = f(N ).

Definition 11.5. The projection of a set S ⊂ X × Y (into X) is the set
P = {x ∈ X : ∃y (x, y) ∈ S}.

The following lemma gives equivalent definitions of analytic sets.

Lemma 11.6. The following are equivalent, for any set A in a Polish
space X :

(i) A is the continuous image of N .
(ii) A is the continuous image of a Borel set B (in some Polish space Y ).
(iii) A is the projection of a Borel set in X × Y , for some Polish space Y .
(iv) A is the projection of a closed set in X ×N .

Proof. We shall prove that every closed set (in any Polish space) is analytic
and that every Borel set is the projection of a closed set in X × N . Then
the lemma follows: Since the projection map π : X × Y → X defined by
π(x, y) = x is continuous, it follows that every Borel set is analytic and that
the continuous image of a Borel set is analytic. Conversely, if A ⊂ X is an
analytic set, A = f(N ), then A is the projection of the set {(f(x), x) : x ∈ N}
which is a closed set in X ×N .

In order to prove that every closed set is analytic, note that every closed
set in a Polish space is itself a Polish space, and thus a continuous image
of N by Lemma 11.1.

In order to prove that every Borel set in X is the projection of a closed
set in X ×N , it suffices to show that the family P of all subsets of X that
are such projections contains all closed sets, all open sets, and is closed under
countable unions and intersections.

Clearly, the family P contains all closed sets. Moreover, every open set
is a countable union of closed sets; thus it suffices to show that P is closed
under

⋃∞
n=0 and

⋂∞
n=0.

Recall the continuous mapping a �→ 〈a(n) : n ∈ N〉 of N onto Nω from
Lemma 11.2, and also recall that the inverse image of a closed set under
a continuous function is closed. Let An, n < ω, be projections of closed sets
in X×N ; we shall show that

⋃∞
n=0 An and

⋂∞
n=0 An are projections of closed

sets.
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For each n, let Fn ⊂ X ×N be a closed set such that

An = {x : ∃a (x, a) ∈ Fa}.

Thus

x ∈
∞⋃

n=0
An ↔ ∃n ∃a (x, a) ∈ Fn

↔ ∃a ∃b (x, a) ∈ Fb(0)

↔ ∃c (x, c(0)) ∈ Fc(1)(0),

and
x ∈

∞⋂
n=0

An ↔ ∀n ∃a (x, a) ∈ Fn

↔ ∃c ∀n (x, c(n)) ∈ Fn

↔ ∃c (x, c) ∈
∞⋂

n=0
{(x, c) : (x, c(n)) ∈ Fn}.

Hence
⋃∞

n=0 An is the projection of the closed set

{(x, c) : (x, c(0)) ∈ Fc(1)(0)}

and
⋂∞

n=0 An is the projection of an intersection of closed sets. ��

The Suslin Operation A
For each a ∈ ωω, a�n is the finite sequence 〈ak : k < n〉. For each s ∈ Seq,
O(s) is the basic open set {a ∈ N : a�n = s} of the Baire space. O(s) is both
open and closed. For every set A in a Polish space, A denotes the closure
of A.

Let {As : s ∈ Seq} be a collection of sets indexed by elements of Seq. We
define

(11.9) A{As : s ∈ Seq} =
⋃

a∈ωω

∞⋂
n=0

Aa�n

Note that if {Bs : s ∈ Seq} is arbitrary, then

⋃
a∈ωω

∞⋂
n=0

Ba�n =
⋃

a∈ωω

∞⋂
n=0

(Ba�0 ∩ Ba�1 ∩ . . . ∩ Ba�n)

and hence A{Bs : s ∈ Seq} = A{As : s ∈ Seq} where the sets As are finite
intersections of the sets Bs and satisfy the following condition:

(11.10) if s ⊂ t, then As ⊃ At.

Thus we shall restrict our use of A to families that satisfy condi-
tion (11.10). The operation A is called the Suslin operation.
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Lemma 11.7. A set A in a Polish space is analytic if and only if A is the
result of the operation A applied to a family of closed sets.

Proof. First we show that if Fs, s ∈ Seq, are closed sets in a Polish space X ,
then A = A{Fs : s ∈ Seq} is analytic. We have

x ∈ A ↔ ∃a ∈ N x ∈
∞⋂

n=0

Fa�n

↔ ∃a (x, a) ∈
∞⋂

n=0
Bn

where Bn = {(x, a) : x ∈ Fa�n}. Clearly, each Bn is a Borel set in X ×N and
hence A is analytic.

Conversely, let A ⊂ X be analytic. There is a continuous function f :
N → X such that A = f(N ). Notice that for every a ∈ N ,

(11.11)
∞⋂

n=0
f(O(a�n)) =

∞⋂
n=0

f(O(a�n)) = {f(a)}.

Thus
A = f(N ) =

⋃
a∈ωω

∞⋂
n=0

f(O(a�n)),

and hence A is the result of the operation A applied to the closed sets f(O(s))
(which satisfy the condition (11.10)). ��

It follows from the preceding lemmas that the collection of all analytic
sets in a Polish space is closed under countable unions and intersections,
continuous images, and inverse images, and the Suslin operation (the last
statement is proved like the first part of Lemma 11.7). It is however not the
case that the complement of an analytic set is analytic (if X is an uncountable
Polish space). In the next section we establish exactly that; we show that
there exists an analytic set (in N ) whose complement is not analytic.

The Hierarchy of Projective Sets

For each n ≥ 1, we define the collections Σ1
n, Π1

n, and ∆1
n of subsets of

a Polish space X as follows:

(11.12) Σ1
1 = the collection of all analytic sets,

Π1
1 = the complements of analytic sets,

Σ1
n+1 = the collection of the projections of all Π1

n sets in X ×N ,

Π1
n = the complements of the Σ1

n sets in X ,

∆1
n = Σ1

n ∩ Π1
n.
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The sets belonging to one of the collections Σ1
n or Π1

n are called projective
sets. It is easily seen that for every n, ∆1

n ⊂ Σ1
n ⊂ ∆1

n+1 and ∆1
n ⊂ Π1

n ⊂
∆1

n+1.
We shall show that for each n there is a Σ1

n set in N that is not Π1
n; thus

the above inclusions are proper inclusions.

Lemma 11.8. For each n ≥ 1, there exists a universal Σ1
n set in N 2; i.e.,

a set U ⊂ N 2 such that U is Σ1
n and that for every Σ1

n set A in N there
exists some v ∈ N such that

A = {x : (x, v) ∈ U}.

Proof. Let h be a homeomorphism of N × N onto N . If n = 1, let V be
a universal Σ0

1 set; if n > 1, let V be, by the induction hypothesis, a universal
Σ1

n−1 set. Let

(11.13) (x, y) ∈ U if and only if ∃a ∈ N (h(x, a), y) /∈ V.

Since the set {(x, y, a) : (h(x, a), y) /∈ V } is closed (if n = 1) or Π1
n−1 (if

n > 1), U is Σ1
n.

If A ⊂ N is Σ1
n, there is a closed (or Π1

n−1) set B such that

(11.14) x ∈ A if and only if ∃a ∈ N (x, a) ∈ B.

The set C = N − h(B) is open (or Σ1
n−1) in N and since V is universal,

there exists a v such that C = {u : (u, v) ∈ V }. Then by (11.13), we have

x ∈ A ↔ (∃a ∈ N ) (x, a) ∈ B ↔ (∃a ∈ N )h(x, a) /∈ C

↔ (∃a ∈ N ) (h(x, a), v) /∈ V ↔ (x, v) ∈ U.

Hence U is a universal Σ1
n set. ��

Corollary 11.9. For each n ≥ 1, there is a set A ⊂ N that is Σ1
n but

not Π1
n.

Proof. Let U ⊂ N 2 be a universal Σ1
n set and let

A = {x : (x, x) ∈ U} ��

The collection of all ∆1
1 sets in a Polish space is a σ-algebra and contains

all Borel sets. It turns out that ∆1
1 is exactly the collection of all Borel sets.

Theorem 11.10 (Suslin). Every analytic set whose complement is also an-
alytic is a Borel set. Thus ∆1

1 is the collection of all Borel sets.

Let X be a Polish space and let A and B be two disjoint analytic sets
in X . We say that A and B are separated by a Borel set if there exists a Borel
set D such that A ⊂ D and B ⊂ X − D.
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Lemma 11.11. Any two disjoint analytic sets are separated by a Borel set.

This lemma is often called “the Σ1
1-Separation Principle.” It clearly im-

plies Suslin’s Theorem since if A is an analytic set such that B = X − A is
also analytic, A and B are separated by a Borel set D and we clearly have
D = A.

Proof. First we make the following observation: If A =
⋃∞

n=0 An and B =⋃∞
m=0 Bm are such that for all n and m, An and Bm are separated, then A

and B are separated. This is proved as follows: For each n and each m, let
Dn,m be a Borel set such that An ⊂ Dn,m ⊂ X − Bm. Then A and B are
separated by the Borel set D =

⋃∞
n=0

⋂∞
m=0 Dn,m.

Let A and B be two disjoint analytic sets in X . Let f and g be continuous
functions such that A = f(N ) and B = g(N ). For each s ∈ Seq, let As =
f(O(s)) and Bs = g(O(s)); the sets As and Bs are all analytic sets. For each s
we have As =

⋃∞
n=0 As�n and Bs =

⋃∞
m=0 Bs�m. If a ∈ ωω, then

{f(a)} =
∞⋂

n=0
f(O(a�n)) =

∞⋂
n=0

Aa�n,

and similarly for the sets Bs.
Let a, b ∈ ωω be arbitrary. Since f(N ) and g(N ) are disjoint, we have

f(a) �= g(b). Let Ga and Gb be two disjoint open neighbourhoods of f(a)
and g(b), respectively. By the continuity of f and g there exists some n such
that Aa�n ⊂ Ga and Bb�n ⊂ Gb. It follows that the sets Aa�n and Bb�n are
separated by a Borel set.

We shall now show, by contradiction, that the sets A and B are separated
by a Borel set. If A and B are not separated, then because A =

⋃∞
n=0 A〈n〉 and

B =
⋃∞

m=0 B〈m〉, there exist n0 and m0 such that the sets A〈n0〉 and B〈m0〉
are not separated. Then similarly there exist n1 and m1 such that the sets
A〈n0,n1〉 and B〈m0,m1〉 are not separated, and so on. In other words, there
exist a = 〈n0, n1, n2, . . .〉 and b = 〈m0, m1, m2, . . .〉 such that for every k,
the sets A〈n0,...,nk〉 and B〈m0,...,mk〉 are not separated. This is a contradiction
since in the preceding paragraph we proved exactly the opposite: There is k
such that Aa�k and Bb�k are separated. ��

Lebesgue Measure

We shall now review basic properties of Lebesgue measure on the n-dimen-
sional Euclidean space.

The standard way of defining Lebesgue measure is to define first the
outer measure µ∗(X) of a set X ⊂ Rn as the infimum of all possible sums∑

{v(Ik) : k ∈ N} where {Ik : k ∈ N} is a collection of n-dimensional
intervals such that X ⊂

⋃∞
k=0 Ik, and v(I) denotes the volume of I. For

each X , µ∗(X) ≥ 0 and possibly = ∞. A set X is null if µ∗(X) = 0.
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A set A ⊂ Rn is Lebesgue measurable if for each X ⊂ Rn,

µ∗(X) = µ∗(X ∩ A) + µ∗(X − A).

For a measurable set A, we write µ(A) instead of µ∗(A) and call µ(A) the
Lebesgue measure of A.

The standard development of the theory of Lebesgue measure gives the
following facts:

(i) Every interval is Lebesgue measurable, and its measure is equal
to its volume.

(ii) The Lebesgue measurable sets form a σ-algebra; hence every
Borel set is measurable.

(iii) µ is σ-additive: If An, n < ω, are pairwise disjoint and mea-
surable, then

µ
( ∞⋃

n=0
An

)
=

∞∑
n=0

µ(An).

(iv) µ is σ-finite: If A is measurable, then there exist measurable
sets An, n < ω, such that A =

⋃∞
n=0 An, and µ(An) < ∞ for

each n.
(v) Every null set is measurable. The null sets form a σ-ideal and

contain all singletons.
(vi) If A is measurable, then

µ(A) = sup{µ(K) : K ⊂ A is compact}.

(vii) If A is measurable, then there is an Fσ set F and a Gδ set G
such that F ⊂ A ⊂ G and G − F is null.

(11.15)

This last property gives this characterization of Lebesgue measurable sets:
A set A ⊂ Rn is measurable if and only if there is a Borel set B such that
the symmetric difference A  B = (A − B) ∪ (B − A) is null.

One consequence of this is that if we denote by B the σ-algebra of Borel
sets and by M the σ-algebra of measurable sets, and if Iµ is the ideal of all
null sets, then B/Iµ = M/Iµ. The Boolean algebra B/Iµ is σ-complete; and
since a familiar argument shows that Iµ is (as an ideal in M) σ-saturated,
we conclude that B/Iµ is a complete Boolean algebra. We shall return to this
in Part II.

Assuming the Axiom of Choice one can show that there exists a set of reals
that is not Lebesgue measurable. One such example is the Vitali set in Exer-
cise 10.1. As another example there exists a set X ⊂ Rn such that neither X
nor its complement has a perfect subset (see Exercise 5.1 for a construc-
tion of such a set). The set X is not measurable: Otherwise, e.g., µ(X) > 0
and by (11.15)(vi) there is a closed K ⊂ X such that µ(K) > 0; thus K is
uncountable and hence contains a perfect subset, a contradiction.

However, we shall show in Part II that it is consistent (with ZF + DC)
that all sets or reals are Lebesgue measurable.
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We conclude this review of Lebesgue measurability with two lemmas.
One is the well-known Fubini Theorem, and we state it here, without proof,
for the sake of completeness. The other lemma will be used in the proof of
Theorem 11.18 below.

If A is a subset of the plane R2 and x ∈ R, let Ax denote the set {y :
(x, y) ∈ A}.

Lemma 11.12. Let A ⊂ R2 be a measurable set. Then A is null if and only
if for almost all x, Ax is null (i.e., the set {x : Ax is not null} is null). ��

Lemma 11.13. For any set X ⊂ Rn there exists a measurable set A ⊃ X
with the property that whenever Z ⊂ A − X is measurable, then Z is null.

Proof. If µ∗(X) < ∞, then because µ∗(X) = inf{µ(A) : A is measurable
and A ⊃ X}, there is a measurable A ⊃ X such that µ(A) = µ∗(X); clearly
such an A will do. If µ∗(X) = ∞, there exist pairwise disjoint Xn such that
X =

⋃∞
n=0 Xn and that for each n, µ∗(Xn) < ∞. Let An ⊃ Xn, n < ω, be

measurable sets such that µ(An) = µ∗(Xn), and let A =
⋃∞

n=0 An. ��

It should be mentioned that the main results of descriptive set theory on
Lebesgue measure can be proved in a more general context, namely for rea-
sonable σ-additive measures on Polish spaces. An example of such a measure
is the product measure in the Cantor space {0, 1}ω.

The Property of Baire

In Chapter 4 we proved the Baire Category Theorem (Theorem 4.8): The
intersection of countably many dense open sets of reals is nonempty. It is
fairly easy to see that the proof works not only for the real line R but for
any Polish space.

Let us consider a Polish space X . Let us call a set A ⊂ X nowhere dense
if the complement of A contains a dense open set. Note that A is nowhere
dense just in case for every nonempty open set G, there is a nonempty open
set H ⊂ G such that A ∩ H = ∅. A set A is nowhere dense if and only if its
closure A is nowhere dense.

A set A ⊂ X is meager (or of first category) if A is the union of countably
many nowhere dense sets. A nonmeager set is called a set of second category.

The Baire Category Theorem states in effect that in a Polish space every
nonempty open set is of second category.

The meager sets form a σ-ideal. Moreover, in case of Rn, N , or the Cantor
space, every singleton {x} is nowhere dense and so the ideal of meager sets
contains all countable sets.

Definition 11.14. A set A has the Baire property if there exists an open
set G such that A  G is meager.
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Clearly, every meager set has the Baire property. Note that if G is open,
then G − G is nowhere dense. Hence if A  G is meager then (X − A) 
(X −G) = AG is meager, and it follows that the complement of a set with
the Baire property also has the Baire property. It is also easy to see that the
union of countably many sets with the Baire property has the Baire property
and we have:

Lemma 11.15. The sets having the Baire property form a σ-algebra; hence
every Borel set has the Baire property. ��

If B denotes the σ-algebra of Borel sets, and if we denote by C the σ-
algebra of sets with the Baire property, and if I is the σ-ideal of meager
sets, we have B/I = C/I. Note that the algebra B/I is σ-saturated: Let O
be a countable topology base for X . For each nonmeager set X with the
Baire property there exists G ∈ O such that G − X is meager. Thus the set
D = {[G] : G ∈ O} of equivalence classes is a dense set in B/I. Hence B/I is
σ-saturated and is a complete Boolean algebra.

The Axiom of Choice implies that sets without the Baire property exist.
For instance, the Vitali set (Exercise 10.1) is such, see Exercise 11.7.

If X ⊂ Rn is such that neither X nor its complement has a perfect
subset, then X does not have the Baire property: Otherwise, e.g., X is of
second category and hence X contains a Gδ subset G of second category.
Now G is uncountable, and this is a contradiction since as we shall prove
in Theorem 11.18, every uncountable Borel set (even analytic) has a perfect
subset.

The following two lemmas are analogs of Lemmas 11.12 and 11.13. The
first one, although not very difficult to prove, is again stated without proof.

Lemma 11.16. Let A ⊂ R2 have the property of Baire. Then A is meager
if and only if Ax is meager for all x except a meager set. ��

Lemma 11.17. For any set S in a Polish space X , there exists a set A ⊃ S
that has the Baire property and such that whenever Z ⊂ A−S has the Baire
property, then Z is meager.

Proof. Let us consider a fixed countable topology basis O for X . Let S ⊂ X .
Let

D(S) = {x ∈ X : for every U ∈ O such that x ∈ U , U ∩ S is not meager}.

Note that the complement of D(S) is the union of open sets and hence open;
thus D(S) is closed.

The set S − D(S) is the union of all S ∩ U where U ∈ O and S ∩ U is
meager; since O is countable, X − D(S) is meager. Let

A = S ∪ D(S).

Since A = (S−D(S))∪D(S) is the union of a meager and a closed set, A has
the Baire property.
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Let Z ⊂ A − S have the Baire property; we shall show that Z is meager.
Otherwise there is U ∈ O such that U −Z is meager; hence U ∩S is meager.
Since U ∩ Z �= ∅ and Z ⊂ D(S), there is x ∈ U such that x ∈ D(S), and
hence U ∩ S is not meager, a contradiction. ��

Although both “null” and “meager” mean in a sense “negligible,” see
Exercise 11.8 that shows that the real line can be decomposed into a null set
and a meager set.

Analytic Sets: Measure, Category, and the Perfect Set
Property

Theorem 11.18.

(i) Every analytic set of reals is Lebesgue measurable.
(ii) Every analytic set has the Baire property.
(iii) Every uncountable analytic set contains a perfect subset.

Corollary 11.19. Every Π1
1 set of reals is Lebesgue measurable and has the

Baire property. ��

Corollary 11.20. Every analytic (and in particular every Borel) set is ei-
ther at most countable or has cardinality c. ��

We prove (ii) and (iii) for an arbitrary Polish space. The proof of (i) is
general enough to work for other measures (in Polish spaces) as well.

Proof. The proof of (i) and (ii) is exactly the same and uses either Lem-
ma 11.13 or Lemma 11.17 (and basic facts on Lebesgue measure and the
Baire property). We give the proof of (i) and leave (ii) to the reader.

Let A be an analytic set of reals (or a subset of Rn). Let f : N → R
be a continuous function such that A = f(N ). For each s ∈ Seq, let As =
f(O(s)). We have

(11.16) A = A{As : s ∈ Seq} = A{As : s ∈ Seq},

and for every s ∈ Seq,

(11.17) As =
∞⋃

n=0
As�n.

By Lemma 11.13, there exists for each s ∈ Seq a measurable set Bs ⊃ As

such that every measurable Z ⊂ Bs − As is null. Since As is measurable, we
may actually find Bs such that As ⊂ Bs ⊂ As.
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Let B = B∅. Since B is measurable, it suffices to show that B−A is a null
set. Notice that because As ⊂ Bs ⊂ As, and because (11.16) holds, we have

A = A{Bs : s ∈ Seq}.

Thus
B − A = B −

⋃
a∈ωω

∞⋂
n=0

Ba�n.

We claim that

(11.18) B −
⋃

a∈ωω

∞⋂
n=0

Ba�n ⊂
⋃

s∈Seq

(
Bs −

∞⋃
k=0

Bs�k

)
.

To prove (11.18), assume that x ∈ B is such that x is not a member of the
right-hand side. Then for every s, if x ∈ Bs, then x ∈ Bs�k for some k. Hence
there is k0 such that x ∈ B〈k0〉, then there is k1 such that x ∈ B〈k0,k1〉, etc.
Let a = 〈k0, k1, k2, . . .〉; we have x ∈

⋂∞
n=0 Ba�n and hence x is not a member

of the left-hand side.
Thus we have

B − A ⊂
⋃

s∈Seq

(
Bs −

∞⋃
k=0

Bs�k

)
.

Since Seq is a countable set, it suffices to show that each Bs −
⋃∞

k=0 Bs�k is
null. Let s ∈ Seq, and let Z = Bs −

⋃∞
k=0 Bs�k. We have

Z = Bs −
∞⋃

k=0

Bs�k ⊂ Bs −
∞⋃

k=0

As�k = Bs − As.

Now because Z ⊂ Bs −As and because Z is measurable, Z must be null.
(iii) The proof is a variant of the Cantor-Bendixson argument for closed

sets in the Baire space. Recall that every closed set F in N is of the form
F = [T ] = {a : ∀n a�n ∈ T }, where T is a tree, T ⊂ Seq. For each tree
T ⊂ Seq and each s ∈ Seq, let Ts denote the tree {t ∈ T : t ⊂ s or s ⊂ t};
note that [Ts] = [T ] ∩ O(s).

Let A be an analytic set (in a Polish space X), and let f be a continuous
function such that A = f(N ). For each tree T ⊂ Seq, we define

T ′ = {s ∈ T : f([Ts]) is uncountable}.

For each α < ω1, we define T (α) as follows:

T (0) = Seq, T (α+1) = (T (α))′,

T (α) =
⋂

β<α

T (β) if α is a limit ordinal.

Let α < ω1 be the least ordinal such that T (α+1) = T (α). If T (α) = ∅, then

A =
⋃

β<α

{f([T (β)
s ]) : s ∈ T (β) − T (β+1)},
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and hence A is countable. Thus if A is uncountable, T (α) is nonempty and for
every s ∈ T (α), f([T (α)

s ]) is uncountable. In this case, we shall find a perfect
subset of A.

Let s ∈ T (α) be arbitrary. Since f([T (α)
s ]) has at least two elements,

there exist s〈0〉 ⊃ s and s〈1〉 ⊃ s (in T (α)) such that f([T (α)
s〈0〉 ]) and f([T (α)

s〈1〉 ])
are disjoint. Then there are s〈0,0〉 ⊃ s〈0〉 and s〈0,1〉 ⊃ s〈0〉, and s〈1,0〉 ⊃ s〈1〉,
s〈1,1〉 ⊃ s〈1〉 such that the four sets f([T (α)

s〈i,j〉 ]), i, j = 0, 1 are pairwise disjoint.
In this fashion we construct st ∈ T (α) for each finite 0–1 sequence t. These
elements st generate a subtree U = {s : s ⊂ st for some t} of T (α) such
that (1) U is perfect, (2) every s has at most two immediate successors in U
(hence [U ] is a compact set in N ), and (3) f is one-to-one on [U ].

Let P be the image of [U ] under the function f . Since [U ] is compact and
f is continuous, P is also compact, and hence closed. Moreover, P has no
isolated points because [U ] is perfect and f is continuous. Thus P is a perfect
subset of A. ��

Exercises

11.1. The operations
S∞

n=0 and
T∞

n=0 are special cases of the operation A.

11.2. Let As, s ∈ Seq , be Borel sets satisfying (11.10) and the additional condition:
For each s ∈ Seq and all n �= m, As�n∩As�m = ∅. Then A{As : s ∈ Seq} is a Borel
set.

[
S

a∈ωω

T∞
n=0 Aa�n =

T∞
n=0

S{As : length(s) = n}.]

11.3. Let An, n = 0, 1, 2, . . . , be pairwise disjoint analytic sets. Then there exist
pairwise disjoint Borel sets Dn such that An ⊂ Dn for all n.

[Modify the proof of Lemma 11.11.]

11.4. If A is a null set and a0 ≥ a1 ≥ . . . ≥ an ≥ . . . is a sequence of positive
numbers with limn an = 0, then there exists a sequence Gn, n = 0, 1, . . . , of finite
unions of open intervals such that A ⊂ S∞

n=0 Gn and µ(Gn) < an for each n.
Moreover, the intervals can be required to have rational endpoints.

[First find a sequence of open intervals Ik such that A ⊂ S∞
k=0 Ik and

P∞
k=0 µ(Ik) ≤ a0.]

11.5. For every set A with the Baire property, there exist a Gδ set G and an
Fσ set F such that G ⊂ A ⊂ F and such that F −G is meager.

[Note that every meager set is included in a meager Fσ set.]

11.6. For every set A with the Baire property, there exists a unique regular open
set U such that A� U is meager.

[An open set U is regular if U = int(U).]

11.7. The Vitali set M from Exercise 10.1 does not have the Baire property.
[“Meager” and “Baire property” are invariant under translation. If M has the

Baire property, then there is an interval (a, b) such that (a, b)−M is meager. Then
(a, b)∩Mq is meager for all rational q �= 0, hence each M ∩ (a− q, b− q) is meager,
hence M is meager, hence each Mq is meager; a contradiction since R =

S

q∈Q Mq.]
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11.8. There is a null set of reals whose complement is meager.
[Let q1, q2, . . . be an enumeration of the rationals. For each n ≥ 1 and k ≥ 1, let

In,k be the open interval with center qn and length 1/(k · 2n). Let Dk =
S∞

n=1 In,k,
and A =

T∞
k=1 Dk. Each Dk is open and dense, and µ(Dk) ≤ 1/k. Hence A is null

and R − A is meager.]

Historical Notes

Borel sets were introduced by Borel in [1905]. Lebesgue in [1905] proved in effect
Lemma 11.2. Suslin’s discovery of an error in a proof in Lebesgue’s article led to
a construction of an analytic non-Borel set and introduction of the operation A.
The basic results on analytic sets as well as Theorem 11.10 appeared in Suslin’s
article [1917].

Projective sets were introduced by Luzin [1925] and [1927a], and Sierpiński
[1925] and [1927]. The present notation (Σ and Π) appeared first in the paper
[1959] of Addison who noticed the analogy between Luzin’s hierarchy of projective
sets and Kleene’s hierarchy of analytic predicates [1955].

Lemma 11.8: Luzin [1930].
Lemma 11.11: Luzin [1927b].
For detailed treatment of Lebesgue measure, we refer the reader to Halmos’

book [1950]; Lebesgue introduced his measure and integral in his thesis [1902]. Sets
of first and second category were introduced by Baire [1899].

Lemmas 11.13 and 11.17: Marczewski [1930a].
Lemma 11.16: Kuratowski and Ulam [1932].
Theorem 11.18(i) (measurability of analytic sets) is due to Luzin [1917]. The-

orem 11.18(ii) (Baire property) is due to Luzin and Sierpiński [1923] and Theo-
rem 11.18(iii) (perfect subsets) is due to Suslin; cf. Luzin [1930]. The present proof
of (i) and (ii) follows Marczewski [1930a]. Prior to Suslin (and following the Cantor-
Bendixson Theorem for closed sets) Young proved in [1906] the perfect subset result
for Gδ and Fσ sets; and Hausdorff [1916] and Aleksandrov [1916] proved the same
for Borel sets.


