
13. Constructible Sets

Constructible sets were introduced by Gödel in his proof of consistency of
the Axiom of Choice and of the Generalized Continuum Hypothesis. The
class L of all constructible sets (the constructible universe) is a transitive
model of ZFC, and is the smallest transitive model of ZF that contains all
ordinal numbers. In this chapter we study constructible sets and some related
concepts.

The Hierarchy of Constructible Sets

Recall that a set X is definable over a model (M,∈) (where M is a set) if
there exist a formula ϕ ∈ Form (the set of all formulas of the language {∈})
and some a1, . . . , an ∈ M such that X = {x ∈ M : (M,∈) � ϕ[x, a1, . . . , an]}.
Let

def(M) = {X ⊂ M : X is definable over (M,∈)}.

Clearly, M ∈ def(M) and M ⊂ def(M) ⊂ P (M).

Definition 13.1. We define by transfinite induction

(i) L0 = ∅, Lα+1 = def(Lα),
(ii) Lα =

⋃
β<α Lβ if α is a limit ordinal, and

(iii) L =
⋃

α∈Ord Lα.

The (definable) class L is the class of constructible sets. The statement V = L,
i.e., “every set is constructible,” is the Axiom of Constructibility.

It follows from Definition 13.1 that 〈Lα : α ∈ Ord〉 is a cumulative hier-
archy (see (12.30)); in particular, each Lα is transitive, Lα ⊂ Lβ if α < β,
and L is a transitive class.

Lemma 13.2. For every α, α ⊂ Lα (and Lα ∩ Ord = α).

Proof. By induction on α. At stage α + 1, we need to show that α ∈ Lα+1,
or that α is a definable subset of Lα. Since α = {x ∈ Lα : x is an ordinal},
and “x is an ordinal” is a ∆0 formula, we have α = {x ∈ Lα : Lα � x is an
ordinal}. ��
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Theorem 13.3. L is a model of ZF.

Proof. We show that σL holds for every axiom σ of ZF. Since L is a transitive
class, every ∆0 formula is absolute for L.
Extensionality. L is transitive and therefore extensional.
Pairing. Given a, b ∈ L, let c = {a, b}. Let α be such that a ∈ Lα and b ∈ Lα.
Since {a, b} is definable over Lα, we have c ∈ Lα+1, and since “c = {a, b}”
is ∆0, the Pairing Axiom holds in L.
Separation. Let ϕ be a formula. Given X, p ∈ L, we wish to show that the set
Y = {u ∈ X : ϕL(u, p)} is in L. By the Reflection Principle (applied to the
cumulative hierarchy Lα, cf. Exercise 12.6), there exists an α such that X, p ∈
Lα and Y = {u ∈ X : ϕLα(u, p)}. Thus Y = {u ∈ Lα : Lα � u ∈ X ∧ϕ(u, p)}
and so Y ∈ L.
Union. Given X ∈ L, let Y =

⋃
X . As L is transitive, we have Y ⊂ L; let α

be such that X ∈ Lα and Y ⊂ Lα. Y is definable over Lα by the ∆0 formula
“x ∈

⋃
X” and so Y ∈ L. Since “Y =

⋃
X” is ∆0, the Axiom of Union holds

in L.
Power Set. Given X ∈ L, let Y = P (X) ∩ L. Let α be such that Y ⊂ Lα.
Y is definable over Lα by the ∆0 formula “x ⊂ X” and so Y ∈ L. We
claim that Y = PL(X), i.e., that “Y is the power set of X” holds in L. But
“x ∈ Y ↔ x ⊂ X” is a ∆0 formula true for every x ∈ L.
Infinity. We can repeat the proof from Theorem 12.11 as ω ∈ L.
Replacement. The easiest way to verify these axioms is to refer to Exer-
cise 1.15, specifically to (1.10). If a class F is a function in L then for every
X ∈ L there exists an α such that {F (x) : x ∈ X} ⊂ Lα. Since Lα ∈ L, this
suffices.
Regularity. If S ∈ L is nonempty, let x ∈ S be such that x ∩ S = ∅. Then
x ∈ L and the ∆0 formula “x ∩ S = ∅” holds in L. ��

We will show that the model L satisfies both the Axiom of Choice and the
Generalized Continuum Hypothesis, thus establishing the consistency of AC
and GCH (relative to ZF). This will be done by showing that L is a model
of the Axiom of Constructibility (V = L), and that V = L implies both AC
and GCH.

It is rather clear that V = L implies AC: it is relatively straightforward to
define a well-ordering of L (by transfinite induction, using some enumeration
of the set Form of all formulas).

It may appear that L is trivially a model of “every set is constructible.”
However, to verify V = L in L, we have to prove first that the property
“x is constructible” is absolute for L, i.e., that for every x ∈ L we have
(x is constructible)L. We shall do this by analyzing the complexity of the
property “constructible.” While this can be done working directly with the
model-theoretic concepts involved, we prefer to use an alternative approach
(also due to Gödel).
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Gödel Operations

The Axiom Schema of Separation states that given a formula ϕ(x), for ev-
ery X there exists a set Y = {u ∈ X : ϕ(u)}. It turns out that for ∆0 for-
mulas, the construction of Y from X can be described by means of a finite
number of elementary operations.

Theorem 13.4 (Gödel’s Normal Form Theorem). There exist opera-
tions G1, . . . , G10 such that if ϕ(u1, . . . , un) is a ∆0 formula, then there is
a composition G of G1, . . . , G10 such that for all X1, . . . , Xn,
(13.1)
G(X1, . . . , Xn) = {(u1, . . . , un) : u1 ∈ X1, . . . , un ∈ Xn and ϕ(u1, . . . , un)}.

The operations G1, . . . , G10 will be defined below. Compositions of
G1, . . . , G10 are called Gödel operations.

We call the following sentence an instance of ∆0-Separation:

(13.2) ∀p1 . . . ∀pn ∀X ∃Y ∀u (u ∈ Y ↔ u ∈ X ∧ ϕ(u, p1, . . . , pn))

where ϕ is a ∆0 formula. We say that a transitive class M satisfies ∆0-
Separation if for every ∆0 formula ϕ, M satisfies (13.2).

A class C is closed under an operation F if F (x1, . . . , xn) ∈ C whenever
x1, . . . , xn ∈ C. If a class M is closed under the operations G1, . . . , G10 then
M is closed under all Gödel operations.

Corollary 13.5. If M is a transitive class closed under Gödel operations
then M satisfies ∆0-Separation.

Proof. Let ϕ(u, p1, . . . , pn) be a ∆0 formula, and let X, p1, . . . , pn ∈ M . Let

Y = {u ∈ X : ϕ(u, p1, . . . , pn)}.

By Lemma 12.9 it suffices to show that Y ∈ M , in order that M satisfy (13.2).
By Gödel’s Normal Form Theorem, there is a Gödel operation G such that

G(X, {p1}, . . . , {pn}) = {(u, p1, . . . , pn) : u ∈ X ∧ ϕ(u, p1, . . . , pn)}.

It follows that

Y = {u : ∃u1 . . . ∃un (u, u1, . . . , un) ∈ G(X, {p1}, . . . , {pn})}
= dom . . .dom︸ ︷︷ ︸

n times

G(X, {p1}, . . . , {pn}).

Since both {x, y} and dom(x) are Gödel operations (see below) and since
M is closed under Gödel operations, we have Y ∈ M . ��
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Definition 13.6 (Gödel Operations).

G1(X, Y ) = {X, Y },
G2(X, Y ) = X × Y,

G3(X, Y ) = ε(X, Y ) = {(u, v) : u ∈ X ∧ v ∈ Y ∧ u ∈ v},
G4(X, Y ) = X − Y,

G5(X, Y ) = X ∩ Y,

G6(X) =
⋃

X,

G7(X) = dom(X),
G8(X) = {(u, v) : (v, u) ∈ X},
G9(X) = {(u, v, w) : (u, w, v) ∈ X},

G10(X) = {(u, v, w) : (v, w, u) ∈ X}.

Proof of Theorem 13.4. The theorem is proved by induction on the complex-
ity of ∆0 formulas. To simplify matters, we consider only formulas of this
form:

(i) the only logical symbols in ϕ are ¬, ∧, and restricted ∃;
(ii) = does not occur;
(iii) the only occurrence of ∈ is ui ∈ uj where i �= j;
(iv) the only occurrence of ∃ is

(∃um+1 ∈ ui)ψ(u1, . . . , um+1)

where i ≤ m.

(13.3)

Every ∆0 formula can be rewritten in this form: The use of logical symbols
can be restricted to ¬, ∧, and ∃; x = y can be replaced by (∀u ∈ x)u ∈ y ∧
(∀v ∈ y) v ∈ x, x ∈ x can be replaced by (∃u ∈ x)u = x and the bound vari-
ables in ϕ(u1, . . . , un) can be renamed so that the variable with the highest
index is quantified.

Note that we allow dummy variables, so that for instance ϕ(u1, . . . , u5) =
u3 ∈ u2 and ϕ(u1, . . . , u6) = u3 ∈ u2 are considered separately.

Thus let ϕ(u1, . . . , un) be a formula in the form (13.3) and let us assume
that the theorem holds for all subformulas of ϕ.

Case I. ϕ(u1, . . . , un) is an atomic formula ui ∈ uj (i �= j). We prove this
case by induction on n.

Case Ia. n = 2. Here we have

{(u1, u2) : u1 ∈ X1 ∧ u2 ∈ X2 ∧ u1 ∈ u2} = ε(X1, X2)

and
{(u1, u2) : u1 ∈ X1 ∧ u2 ∈ X2 ∧ u2 ∈ u1} = G8(ε(X2, X1)).
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Case Ib. n > 2 and i, j �= n. By the induction hypothesis, there is a G such
that

{(u1, . . . , un−1) : u1 ∈ X1, . . . , un−1 ∈ Xn−1 ∧ ui ∈ uj} = G(X1, . . . , Xn−1).

Obviously

{(u1, . . . , un) : u1 ∈ X1, . . . , un ∈ Xn ∧ ui ∈ uj} = G(X1, . . . , Xn−1) × Xn.

Case Ic. n > 2 and i, j �= n− 1. By the induction hypothesis (Case Ib) there
is a G such that

{(u1, . . . , un−2, un, un−1) : u1 ∈ X1, . . . , un ∈ Xn and ui ∈ uj}
= G(X1, . . . , Xn).

Noting that

(u1, . . . , un−2, un, un−1) = ((u1, . . . , un−2), un, un−1)

we get

{(u1, . . . , un) : u1 ∈ X1, . . . , un ∈ Xn and ui ∈ uj} = G9(G(X1, . . . , Xn)).

Case Id. i = n − 1, j = n. By Ia, we have

{(un−1, un) : un−1 ∈ Xn−1 ∧ un ∈ Xn ∧ un−1 ∈ un} = ε(Xn−1, Xn)

and so

{((un−1, un), (u1, . . . , un−2)) : u1 ∈ X1, . . . , un ∈ Xn and un−1 ∈ un}
= ε(Xn−1, Xn) × (X1 × . . . × Xn−2) = G(X1, . . . , Xn).

Now we note that

((un−1, un), (u1, . . . , un−2)) = (un−1, un, (u1, . . . , un−2))

and
(u1, . . . , un) = ((u1, . . . , un−2), un−1, un)

and thus

{(u1, . . . , un) : u1 ∈ X1, . . . , un ∈ Xn andun−1 ∈ un} = G10(G(X1, . . . , Xn)).

Case Ie. i = n, j = n − 1. Similar to Case Id.
Case II. ϕ(u1, . . . , un) is a negation, ¬ψ(u1, . . . , un). By the induction hy-
pothesis, there is a G such that

{(u1, . . . , un) : u1 ∈ X1, . . . , un ∈ Xn and ψ(u1, . . . , un)} = G(X1, . . . , Xn).

Clearly,

{(u1, . . . , un) : u1 ∈ X1, . . . , un ∈ Xn and ϕ(u1, . . . , un)}
= X1 × . . . × Xn − G(X1, . . . , Xn).
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Case III. ϕ is a conjunction, ψ1 ∧ ψ2. By the induction hypothesis,

{(u1, . . . , un) : u1 ∈ X1, . . . , un ∈ Xn andψi(u1, . . . , un)} = G(i)(X1, . . . , Xn)

(i = 1, 2). Hence

{(u1, . . . , un) : u1 ∈ X1, . . . , un ∈ Xn and ϕ(u1, . . . , un)}
= G(1)(X1, . . . , Xn) ∩ G(2)(X1, . . . , Xn).

Case IV. ϕ(u1, . . . , un) is the formula (∃un+1 ∈ ui)ψ(u1, . . . , un+1). Let
χ(u1, . . . , un+1) be the formula ψ(u1, . . . , un+1)∧un+1 ∈ ui. By the induction
hypothesis (we consider χ less complex than ϕ), there is a G such that

{(u1, . . . , un+1) : u1 ∈ X1, . . . , un+1 ∈ Xn+1 and χ(u1, . . . , un+1)}
= G(X1, . . . , Xn+1)

for all X1, . . . , Xn+1. We claim that

(13.4) {(u1, . . . , un) : u1 ∈ X1, . . . , un ∈ Xn and ϕ(u1, . . . , un)}
= (X1 × . . . × Xn) ∩ dom(G(X1, . . . , Xn,

⋃
Xi)).

Let us denote u = (u1, . . . , un) and X = X1 × . . . × Xn. For all u ∈ X , we
have

ϕ(u) ↔ (∃v ∈ ui)ψ(ui, v)

↔ ∃v (v ∈ ui ∧ ψ(u, v) ∧ v ∈
⋃

Xi)

↔ u ∈ dom{(u, v) ∈ X ×
⋃

Xi : χ(u, v)}
and (13.4) follows. This completes the proof of Theorem 13.4. ��

The following lemma shows that Gödel operations are absolute for tran-
sitive models.

Lemma 13.7. If G is a Gödel operation then the property Z = G(X1, . . . ,
Xn) can be written as a ∆0 formula.

Proof. We show, by induction on the complexity of G (a composition of G1,
. . . , G10):

(i) u ∈ G(X, . . .) is ∆0.
(ii) If ϕ is ∆0, then so are ∀u ∈ G(X, . . .)ϕ and ∃u ∈ G(X, . . .)ϕ.
(iii) Z = G(X, . . .) is ∆0.
(iv) If ϕ is ∆0, then so is ϕ(G(X, . . .)).

(13.5)

We proved (iii) for most of the G1, . . . , G10 in Lemma 12.10; the rest of
the Gi are handled similarly, e.g.,

Z = G8(X)

↔ (∀z ∈ Z)(∃x ∈ X)(∃u ∈ ranX)(∃v ∈ dom X)(x = (v, u) ∧ z = (u, v))

∧ (∀x ∈ X)(∀u ∈ ranX)(∀v ∈ domX)(∃z ∈ Z)(x = (v, u) → z = (u, v)).
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We shall prove (i) and (ii) only for a typical example and leave the full proof
to the reader (see also (12.19)). In (i) consider the formula

u ∈ F (X, . . .) × G(X, . . .).

This can be written as

∃x ∈ F (X, . . .)∃y ∈ G(X, . . .)u = (x, y).

In (ii), consider the formula

∀u ∈ {F (X, . . .), G(X, . . .)}ϕ(u),

which can be written as

ϕ(F (X, . . .)) ∧ ϕ(G(X, . . .)).

(iii) follows from (i) and (ii):

Z = G(X, . . .) ↔ (∀u ∈ Z)u ∈ G(X, . . .) ∧ ∀u ∈ G(X, . . .)u ∈ Z.

To prove (iv), let ϕ be a ∆0 formula. Then G(X, . . .) occurs in ϕ(G(X, . . .))
in the form u ∈ G(X, . . .), G(X, . . .) ∈ u, Z = G(X, . . .), ∀u ∈ G(X, . . .),
or ∃u ∈ G(X, . . .). Since G(X, . . .) ∈ u can be replaced by (∃v ∈ u) v =
G(X, . . .), we use (i)–(iii) to show that ϕ(G(X, . . .)) is a ∆0 property. ��

If ϕ is a formula then ϕM is a ∆0 formula, and so by Theorem 13.4 there
is a Gödel operation G such that for every transitive set M and all a1, . . . , an,

{x ∈ M : M � ϕ[x, a1, . . . , an]} = {x ∈ M : ϕM (x, a1, . . . , an)}
= G(M, a1, . . . , an).

The same argument, by induction on the complexity of ϕ, shows that for
every ϕ ∈ Form, the set {x ∈ M : M � ϕ[x, a1, . . . , an]} is in the closure of
M ∪ {M} under G1, . . . , G10.

Conversely, if G is a composition of G1, . . . , G10 then by Lemma 13.7
there is a ∆0 formula ϕ such that for all M and all a1, . . . , an, if X =
G(M, a1, . . . , an) then X = {x : ϕ(M, x, a1, . . . , an)}. If, moreover, M is
transitive and X ⊂ M , then X = {x ∈ M : M � ψ[x, a1, . . . , an]} (where ψ is
an obvious modification of ϕ, e.g., replacing ∃u ∈ M by ∃u). Thus we have
the following description of def(M):

Corollary 13.8. For every transitive set M ,

def(M) = cl(M ∪ {M}) ∩ P (M),

where cl denotes the closure under G1, . . . , G10. ��
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Inner Models of ZF

An inner model of ZF is a transitive class that contains all ordinals and
satisfies the axioms of ZF. The constructible universe L is an inner model
of ZF, and as we show later in this chapter, L is the smallest inner model
of ZF.

In Chapter 12 we proved that ∆0 formulas are absolute for all transitive
models, i.e., ϕM is equivalent to ϕ, for every transitive class M . One can ex-
tend the use of superscripts to concepts other than formulas, namely classes,
operations and constants:

If C is a class {x : ϕ(x)} then CM denotes the class {x : ϕM (x)}. As
an example, OrdM is either Ord (if M contains all ordinals), or is the least
ordinal not in M .

If F is an operation then FM is the corresponding operation in M (if
x ∈ M then FM (x) is defined if M satisfies the statement that F (x) ex-
ists). If FM (x) = F (x) for all x for which FM (x) is defined, we say that
F is absolute for M . By Lemma 13.7, all Gödel operations are absolute for
transitive models. As an example, PM (X) = P (X) ∩M , and V M

α = Vα ∩ M
(Exercise 13.6).

Similarly, if c is a constant symbol then cM , if it exists, is the correspond-
ing constant in M . Thus ∅M = ∅ (if ∅ ∈ M), ωM = ω (if ω ∈ M), etc.

The following theorem gives a necessary and sufficient condition for a tran-
sitive class to be an inner model of ZF:

Theorem 13.9. A transitive class M is an inner model of ZF if and only if
it is closed under Gödel operations and is almost universal, i.e., every subset
X ⊂ M is included in some Y ∈ M .

Proof. As Gödel operations are absolute for transitive models, an inner model
is necessarily closed under G1, . . . , G10. If X is a subset of an inner model M ,
then X ⊂ Vα ∩ M for some α, and Vα ∩ M is in M because α ∈ M and
Vα ∩ M = V M

α . Thus the condition is necessary.
Now let M be a transitive almost universal class that is closed under Gödel

operations. Except for the Separation Schema, the verification of the axioms
of ZF in M follows closely the proof of Theorem 13.3 (or of Theorem 12.11),
but using almost universality. For example, if X ∈ M then P (X) ∩ M is
included in some Y ∈ M , verifying the weak version (1.9) of the Power Set
Axiom. We leave the details to the reader.

Separation. We will show that for every X ∈ M the set Y = {u ∈ X : ϕM (u)}
is in M . (For simplicity, we disregard the parameter in the formula ϕ.)

Let ϕ(u1, . . . , un) be a formula with k quantifiers. We let ϕ̄(u1, . . . , un,
Y1, . . . , Yk) be the ∆0 formula obtained by replacing each ∃x (or ∀x) in ϕ by
∃x ∈ Yj (or ∀x ∈ Yj) for j = 1, . . . , k. We shall prove, by induction on k,
that for every ϕ(u1, . . . , un) with k quantifiers, for every X ∈ M there exist



13. Constructible Sets 183

Y1, . . . , Yk ∈ M such that

ϕM (u1, . . . , un) if and only if ϕ̄(u1, . . . , un, Y1, . . . , Yk)

for all u1, . . . , un ∈ X . Then it follows that Y = {u ∈ X : ϕ̄(u, Y1, . . . , Yk)},
and since M satisfies ∆0-Separation (by Corollary 13.5), we have verified that
Y ∈ M , completing the proof.

If k = 0 then ϕ̄ = ϕ. For the induction step, let ϕ(u) be ∃v ψ(u, v) where
ψ has k quantifiers. Thus ϕ̄ is (∃v ∈ Yk+1) ψ̄(u, v, Y1, . . . , Yk).

Let X ∈ M . We look for Y1, . . . , Yk, Yk+1 ∈ M such that for every u ∈ X ,

(13.6) (∃v ψ(u, v))M if and only if (∃v ∈ Yk+1) ψ̄(u, v, Y1, . . . , Yk).

By the Collection Principle (6.5) (applied to the formula v ∈ M ∧
ψM (u, v)), there exists a set M1 such that X ⊂ M1 ⊂ M and that for
every u ∈ X ,

(13.7) (∃v ∈ M)ψM (u, v) if and only if (∃v ∈ M1)ψM (u, v).

Since M is almost universal, there exists a set Y ∈ M such that M1 ⊂ Y . It
follows from (13.7) that for every u ∈ X ,

(∃v ∈ M)ψM (u, v) if and only if (∃v ∈ Y )ψM (u, v).

By the induction hypothesis, given Y ∈ M , there exist Y1, . . . , Yk ∈ M such
that for all u, v ∈ Y ,

ψM (u, v) if and only if ψ̄(u, v, Y1, . . . , Yk).

Thus we let Yk+1 = Y , and since X ⊂ Y , we have for all u ∈ X ,

(∃v ψ(u, v))M if and only if (∃v ∈ M)ψM (u, v)

if and only if (∃v ∈ Y )ψM (u, v)

if and only if (∃v ∈ Y ) ψ̄(u, v, Y1, . . . , Yk). ��

The Lévy Hierarchy

Definable concepts can be classified by means of the following hierarchy of
formulas, introduced by Azriel Lévy:

A formula is Σ0 and Π0 if its only quantifiers are bounded, i.e., a ∆0 for-
mula. Inductively, a formula is Σn+1 if it is of the form ∃xϕ where ϕ is Πn,
and Πn+1 if its is of the form ∀xϕ where ϕ is Σn.

We say that a property (class, relation) is Σn (or Πn) if it can be expressed
by a Σn (or Πn) formula. A function F is Σn (Πn) if the relation y = F (x)
is Σn (Πn).
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This classification of definable concepts is not syntactical: To verify that
a concept can be expressed in a certain way may need a proof (in ZF). To
illustrate this, consider the proof of Lemma 13.10 bellow: To contract two
like quantifiers into one uses an application of the Pairing Axiom.

Whenever we say that a property P is Σn we always mean P can be
expressed by a Σn formula in ZF, unless we specifically state which axioms
of ZF are assumed. Since every proof uses only finitely many axioms, every
specific property requires a finite set Σ of axioms of ZF for its classification
in the hierarchy. This finite set is implicit in the use of the defining formula.
When M is a transitive model of Σ then the relativization PM is unambigu-
ous, namely the formula ϕM . We call such transitive models adequate for P .
A property is ∆n if it is both Σn and Πn.

Lemma 13.10. Let n ≥ 1.

(i) If P , Q are Σn properties, then so are ∃xP , P ∧Q, P ∨Q, (∃u ∈ x)P ,
(∀u ∈ x)P .

(ii) If P , Q are Πn properties, then so are ∀xP , P ∧Q, P ∨Q, (∀u ∈ x)P ,
(∃u ∈ x)P .

(iii) If P is Σn, then ¬P is Πn; if P is Πn, then ¬P is Σn.
(iv) If P is Πn and Q is Σn, then P → Q is Σn; if P is Σn and Q is Πn,

then P → Q is Πn

(v) If P and Q are ∆n, then so are ¬P , P ∧ Q, P ∨ Q, P → Q, P ↔ Q,
(∀u ∈ x)P , (∃u ∈ x)P .

(vi) If F is a Σn function, then dom(F ) is a Σn class.
(vii) If F is a Σn function and dom(F ) is ∆n, then F is ∆n.
(viii) If F and G are Σn functions, then so is F ◦ G.
(ix) If F is a Σn function and if P is a Σn property, then P (F (x)) is Σn.

Proof. Let us prove the lemma for n = 1. The general case follows easily by
induction.

(i) Let
P (x, . . .) ↔ ∃z ϕ(z, x, . . .),

Q(x, . . .) ↔ ∃u ψ(u, x, . . .)

where ϕ and ψ are ∆0 formulas. We have

(13.8) ∃xP (x, . . .) ↔ ∃x∃z ϕ(z, x, . . .)

↔ ∃v ∃w ∈ v ∃x ∈ w ∃z ∈ w (v = (x, z) ∧ ϕ(z, x, . . .)).

The right-hand side of (13.8) is a Σ1 formula. Furthermore,

P (x, . . .) ∧ Q(x, . . .) ↔ ∃z ∃u (ϕ(z, x, . . .) ∧ ψ(u, x, . . .)),

P (x, . . .) ∨ Q(x, . . .) ↔ ∃z ∃u (ϕ(z, x, . . .) ∨ ψ(u, x, . . .)),

(∃u ∈ x)P (u, . . .) ↔ ∃z ∃u (u ∈ x ∧ ϕ(z, u, . . .)).
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To show that (∀u ∈ x)P is a Σ1 property, we use the Collection Principle:

(∀u ∈ x)P (u, . . .) ↔ (∀u ∈ x)∃z ϕ(z, u, . . .)

↔ ∃y (∀u ∈ x)(∃z ∈ y)ϕ(z, u, . . .).

(ii) follows from (i) and (iii).
(iii)

¬∃z ϕ(z, x, . . .) ↔ ∀z ¬ϕ(z, x, . . .),

¬∀z ϕ(z, x, . . .) ↔ ∃z ¬ϕ(z, x, . . .).

(iv)
(P → Q) ↔ (¬P ∨ Q).

(v) follows from (i)–(iv).
(vi)

x ∈ dom(F ) ↔ ∃y y = F (x).

(vii) Since F is a function, we have

(13.9) y = F (x) ↔ x ∈ dom(F ) ∧ ∀z (z = F (x) → y = z).

If z = F (x) is Σn and x ∈ dom(F ) is Πn, then the right-hand side of (13.9)
is Πn.

(viii)
y = F (G(x)) ↔ ∃z (z = G(x) ∧ y = F (z)).

(ix)
P (F (x)) ↔ ∃y (y = F (x) ∧ P (y)). ��

Since ∆0 properties are absolute for all transitive models, it is clear that
Σ1 properties are upward absolute: If P (x) is Σ1 and if M is a transitive
model (adequate for P ) then for all x ∈ M , PM (x) implies P (x). Similarly,
Π1 properties are downward absolute, and consequently, ∆1 properties are
absolute for transitive models.

As an example of a ∆1 property we show

Lemma 13.11. “E is a well-founded relation on P” is a ∆1 property.

Proof. The following is a Π1 formula: E is a relation on P and ∀X ϕ(E, P, X),
where ϕ(E, P, X) is the formula

∅ �= X ⊂ P → (∃a ∈ X) a is E-minimal in X .

(Both “E is a relation on P” and ϕ(E, P, X) are ∆0 formulas.)
On the other hand, E is well-founded if and only if there exists a function f

from P into Ord such that f(x) < f(y) whenever x E y. Thus we have an
equivalent Σ1 formula: E is a relation on P and ∃f (f is a function ∧ (∀u ∈
ran(f))u is an ordinal ∧ (∀x, y ∈ P )(x E y → f(x) < f(y))). ��
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Other examples of ∆1 concepts are given in the Exercises.

Lemma 13.12. Let n ≥ 1, let G be a Σn function (on V ), and let F be
defined by induction:

F (α) = G(F �α).

Then F is a Σn function on Ord.

Proof. Since Ord is a Σ0 class, it is enough to verify that the following ex-
pression is Σn:

(13.10) y = F (α) if and only if ∃f (f is a function ∧ dom(f) = α

∧ (∀ξ < α) f(ξ) = G(f�ξ) ∧ y = G(f)).

All the properties and operations in (13.10) are Σ0 and G is Σn, and hence
y = F (α) is Σn. ��

The power set operation P (X) is obviously Π1; since it is not absolute as
we shall see in Chapter 14, it is not Σ1. Similarly, cardinal concepts are Π1

but not Σ1:

Lemma 13.13. “α is a cardinal,” “α is a regular cardinal,” and “α is a limit
cardinal” are Π1.

Proof. (a) ¬∃f (f is a function and dom(f) ∈ α and ran(f) = α).
(b) α > 0 is a limit ordinal and

¬∃f (f is a function and dom(f) ∈ α and
⋃

ran(f) = α).
(c) (∀β < α)(∃γ < α)(β < γ and γ is a cardinal). ��

Consequently, if M is an inner model of ZF, then every cardinal (regular
cardinal, limit cardinal) is a cardinal (regular cardinal, limit cardinal) in M ,
and if |X |M = |Y |M then |X | = |Y |.

In Chapter 12 we pointed out that the satisfaction relation (V,∈) �
ϕ[a1, . . . , an] (for ϕ ∈ Form) is not formalizable in ZF; this follows from
Theorem 12.7. For any particular n, the satisfaction relation �n restricted
to Σn formulas is formalizable: For n = 0, we can use the absoluteness of
∆0 formulas for transitive models,

�0 ϕ[a1, . . . , ak] if and only if

ϕ ∈ Form , ϕ is ∆0, and ∃M (M is transitive and (M,∈) � ϕ[a1, . . . , ak]);

then inductively

�n+1 (∃xϕ)[a1, . . . , ak] if and only if

ϕ ∈ Form , ϕ is Πn, and ∃a¬ �n (¬ϕ)[a, a1, . . . , ak].

Similarly, we can define �M
n for any particular n and any transitive class M .

Even more generally, we can define �(M,∈)
n for any class M (transitive or not).
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If M ⊂ N , we say that (M,∈) is a Σn-elementary submodel of (N,∈),

(M,∈) ≺Σn (N,∈),

if for every Σn formula ϕ ∈ Form and all a1, . . . , ak ∈ M , �M
n ϕ[a1, . . . , ak] ↔

�N
n ϕ[a1, . . . , ak].

Absoluteness of Constructibility

We prove in this section that the property “x is constructible” is absolute for
inner models of ZF.

Lemma 13.14. The function α �→ Lα is ∆1.

Proof. The function Lα is defined by transfinite induction and so by Lem-
ma 13.12 it suffices to show that the induction step is Σ1. In view of Corol-
lary 13.8 it suffices to verify that

(13.11) Y = cl(M)

(where cl denotes closure under Gödel operations) is Σ1. But (13.11) is equiv-
alent to

∃W [W is a function ∧ dom(W ) = ω ∧ Y =
⋃

ran(W ) ∧ W (0) = M

∧ (∀n ∈ dom(W ))(W (n + 1) = W (n) ∪ {Gi(x, y) : x ∈ W (n), y ∈ W (n),

i = 1, . . . , 10})].
��

Corollary 13.15. The property “x is constructible” is absolute for inner
models of ZF.

Proof. Let M be an inner model of ZF. Since M ⊃ Ord , we have for all
x ∈ M

(x is constructible)M ↔ ∃α ∈ M x ∈ LM
α ↔ ∃α x ∈ Lα ↔ x is constructible.

��

As an immediate consequence we have.

Theorem 13.16 (Gödel).

(i) L satisfies the Axiom of Constructibility (V = L).
(ii) L is the smallest inner model of ZF.

Proof. (i) For every x ∈ L, (x is constructible)L if and only if x is con-
structible, and hence “every set is constructible” holds in L.

(ii) If M is an inner model then LM (the class of all constructible sets
in M) is L and so L ⊂ M . ��
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A detailed analysis of absoluteness of Lα for transitive models reveals
that the following concept of adequacy suffices: Let us call a transitive set M
adequate if

(i) M is closed under G1, . . . , G10,
(ii) for all U ∈ M , {Gi(x, y) : x, y ∈ U and i = 1, . . . , 10} ∈ M ,
(iii) if α ∈ M then 〈Lβ : β < α〉 ∈ M .

(13.12)

It follows that the ∆1 function α �→ Lα is absolute for every adequate tran-
sitive set M . Also, we can verify that for every limit ordinal δ, the transitive
set Lδ is adequate. Moreover, adequacy can by formulated as follows: There
is a sentence σ such that for every transitive set M , M is adequate if and
only if (M,∈) � σ. Therefore there exists a sentence σ (which is Π2) such
that for every transitive set M

(13.13) (M,∈) � σ if and only if M = Lδ for some limit ordinal δ.

This leads to the following:

Lemma 13.17 (Gödel’s Condensation Lemma). For every limit ordi-
nal δ, if M ≺ (Lδ,∈) then the transitive collapse of M is Lγ for some γ ≤ δ.

��

We wish to make two remarks at this point. First, it is enough to assume
only M ≺Σ1 Lδ for the Condensation Lemma to hold (as the sentence σ
in (13.13)) is Π2. Secondly, the careful analysis of the definition of Lα makes
it possible to find a Π2 sentence σ such that (13.13) holds even for (infinite)
successor ordinals δ. Thus Gödel’s Condensation Lemma holds for all infinite
ordinals δ, a fact that is useful in some applications of L.

Consistency of the Axiom of Choice

Theorem 13.18 (Gödel). There exists a well-ordering of the class L. Thus
V = L implies the Axiom of Choice.

Combining Theorems 13.16 and 13.18, we conclude that the Axiom of
Choice holds in the model L, and so it is consistent with ZF.

Proof. We will show that L has a definable well-ordering.
By induction, we construct for each α a well-ordering <α of Lα. We do it

in such a way that if α < β, then <β is an end-extension of <α, i.e.,

(i) if x <α y, then x <β y;
(ii) if x ∈ Lα and y ∈ Lβ − Lα, then x <β y.

(13.14)

Notice that (13.14) implies that if x ∈ y ∈ Lα, then x <α y.
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First let us assume that α is a limit ordinal and that we have con-
structed <β for all β < α and that if β1 < β2 < α, then <β2 is an end-
extension of <β1 . In this case we simply let

<α =
⋃

β<α

<β,

i.e., if x, y ∈ Lα, we let

x <α y if and only if (∃β < α)x <β y.

Thus assume that we have defined <α and let us construct <α+1, a well-
ordering of Lα+1. We recall the definition of Lα+1:

Lα+1 = P (Lα) ∩ cl(Lα ∪ {Lα}) = P (Lα) ∩
∞⋃

n=0
Wα

n ,

where
Wα

0 = Lα ∪ {Lα},
Wα

n+1 = {Gi(X, Y ) : X, Y ∈ Wα
n , i = 1, . . . , 10}.

The idea of the construction of <α+1 is now as follows: First we take the ele-
ments of Lα, then Lα, then the remaining elements of Wα

1 , then the remaining
elements of Wα

2 , etc. To order the elements of Wα
n+1, we use the already de-

fined well-ordering of Wα
n since every x ∈ Wα

n+1 is equal to Gi(u, v) for some
i = 1, . . . , 10 and some u, v ∈ Wα

n . We let

(i) <0
α+1 is the well-ordering of Lα ∪ {Lα} that extends <α and

such that Lα is the last element.
(ii) <n+1

α+1 is the following well-ordering of Wα
n+1:

x <n+1
α+1 y if and only if either: x <n

α+1 y,
or: x ∈ Wα

n and y /∈ Wα
n ,

or: x /∈ Wα
n and y /∈ Wα

n and
(a) the least i such that ∃u, v ∈ Wα

n (x = Gi(u, v)) < the
least j such that ∃s, t ∈ Wα

n (x = Gi(s, t)), or
(b) the least i = the least j and

[the <n
α+1-least u ∈ Wα

n such that ∃v ∈ Wα
n (x = Gi(u, v))]

<n
α+1 [the <n

α+1-least s ∈ Wα
n such that ∃t ∈ Wα

n (x =
Gi(s, t))], or

(c) the least i = the least j and the least u = the least s and
[the <n

α+1-least v ∈ Wα
n such that x = Gi(u, v)] <n

α+1

[the <n
α+1-least t ∈ Wα

n such that x = Gi(u, t)].

(13.15)

Now we let

(13.16) <α+1 =
∞⋃

n=0
<n

α+1 ∩ (P (Lα) × P (Lα)),

and it is clear that <α+1 is an end-extension of <α and is a well-ordering
of Lα+1.
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Having defined <α for all α, we let

x <L y if and only if ∃α x <α y.

The relation <L is a well-ordering of L. ��

We call <L the canonical well-ordering of L.
The proof of Theorem 13.18 gives additional information about the com-

plexity of the canonical well-ordering of L.

Lemma 13.19. The relation <L is Σ1 and moreover, for every limit ordi-
nal δ and every y ∈ Lδ, x <L y if and only if x ∈ Lδ and (Lδ,∈) � x <L y.

Proof. It suffices to prove that the function, α �→ <α which assigns to each α
the canonical well-ordering of Lα is Σ1.

The function α �→ <α is defined by induction and thus it suffices to show
that the induction step is Σ1. In fact, <α+1 is defined by induction from <α

(see (13.15) and (13.16)). It suffices to verify that <α+1 is obtained from <α

by means of a ∆1 operation (similar to the way in which Lα+1 is obtained
from Lα by Lα+1 = def(Lα)). The operation that yields <α+1 when applied
to <α is described in detail in (13.15). It can be written in a Σ1 fashion in
very much the same way as (13.11). The only potential difficulty might be
the use of the words “the <-least,” and that can be overcome as follows: For
example, in (13.15)(ii)(c)

the <n
α+1-least v ∈ Wα

n such that x = Gi(u, v)

<n
α+1 the <n

α+1-least t ∈ Wα
n such that y = Gi(u, t)

can be written as

(∃v ∈ Wα
n )[x = Gi(u, v) ∧ (∀t ∈ Wα

n )(y = Gi(u, t) → v <n
α+1 t)].

The function α �→<α is absolute for every adequate M (see (13.12)) and
therefore for every Lδ where δ is a limit ordinal. ��

Consistency of the Generalized Continuum Hypothesis

Theorem 13.20 (Gödel). If V = L then 2ℵα = ℵα+1 for every α.

Proof. We shall prove that if X is a constructible subset of ωα then there
exists a γ < ωα+1 such that X ∈ Lγ . Therefore PL(ωα) ⊂ Lωα+1, and
since |Lωα+1| = ℵα+1 (this is easy to show; see Exercise 13.19), we have
|PL(ωα)| ≤ ℵα+1.

Thus let X ⊂ ωα. There exists a limit ordinal δ > ωα such that X ∈ Lδ.
Let M be an elementary submodel of Lδ such that ωα ⊂ M and X ∈ M , and
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that |M | = ℵα. (As we can construct M within L which satisfies AC, this
can be done even if AC does not hold in the universe.)

By the Condensation Lemma 13.17, the transitive collapse N of M is Lγ

for some γ ≤ δ. Clearly, γ is a limit ordinal, and γ < ωα+1 because |N | =
|γ| = ℵα. As ωα ⊂ M , the collapsing map π is the identity on ωα and so
π(X) = X . Hence X ∈ Lγ . ��

The next theorem illustrates further the significance of Gödel’s Conden-
sation Lemma. The combinatorial principle ♦ was formulated by Ronald
Jensen.

Theorem 13.21 (Jensen). V = L implies the Diamond Principle:

(♦) There exists a sequence of sets 〈Sα : α < ω1〉 with Sα ⊂ α, such that
for every X ⊂ ω1, the set {α < ω1 : X∩α = Sα} is a stationary subset
of ω1.

The sequence 〈Sα : α < ω1〉 is called a ♦-sequence.

Proof. Assume V = L. By induction on α < ω1, we define a sequence of pairs
(Sα, Cα), α < ω1, such that Sα ⊂ α and Cα is a closed unbounded subset
of α. We let S0 = C0 = ∅ and Sα+1 = Cα+1 = α + 1 for all α. If α is a limit
ordinal, we define:

(13.17) (Sα, Cα) is the <L-least pair such that Sα ⊂ α, Cα is a closed
unbounded subset of α, and Sα ∩ ξ �= Sξ for all ξ ∈ Cα; if no such
pair exists, let Sα = Cα = α.

We are going to show that the sequence 〈Sα : α < ω1〉 is a ♦-sequence. Thus
assume the contrary; then for some X ⊂ ω1, there exists a closed unbounded
set C such that

(13.18) X ∩ α �= Sα for all α ∈ C.

Let (X, C) be the <L-least pair such that X ⊂ ω1, C is a closed unbounded
subset of ω1, and such that (13.18) holds.

Since 〈(Sα, Cα) : α < ω1〉 is a ω1-sequence of pairs of subsets of ω1, it
belongs to Lω2 , and moreover, it satisfies the same definition (13.17) in the
model (Lω2 ,∈). Also, (X, C) ∈ Lω2 , and (X, C) is, in (Lω2 ,∈), the <L-least
pair such that X ⊂ ω1, C is a closed unbounded subset of ω1, and such
that (13.18) holds.

Let N be a countable elementary submodel of (Lω2 ,∈). Since (X, C) and
〈(Sα, Cα) : α < ω1〉 are definable in (Lω2 ,∈), they belong to N . The set
ω1 ∩ N is an initial segment of ω1 (see Exercise 13.18), thus let δ = ω1 ∩ N .

The transitive collapse of N is Lγ , for some γ < ω1, and let π : N → Lγ

be the isomorphism. We have π(ω1) = δ, π(X) = X ∩ δ, π(C) = C ∩ δ and
π(〈(Sα, Cα) : α < ω1〉) = 〈(Sα, Cα) : α < δ〉.
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Therefore (Lδ,∈) satisfies

(13.19) (X ∩ δ, C ∩ δ) is the <L-least pair (Z, D) such that Z ⊂ δ, D ⊂ δ is
closed unbounded and Z ∩ ξ �= Sξ for all ξ ∈ D.

By absoluteness, (13.19) holds (in L, and L = V ) and therefore, by (13.17),
X ∩ δ = Sδ. Since C ∩ δ is unbounded in δ, and C is closed, it follows that
δ ∈ C. This contradicts (13.18). ��

Relative Constructibility

Constructibility can be generalized by considering sets constructible relative
to a given set A, resulting in an inner model L[A]. The idea is to relativize
the hierarchy Lα by using the generalization

(13.20) defA(M) = {X ⊂ M : X is definable over (M,∈, A ∩ M)}

where A ∩ M is considered a unary predicate. A generalization of Corol-
lary 13.8 provides an alternative description of defA: For every transitive
set M ,

(13.21) defA(M) = cl(M ∪ {M} ∪ {A ∩ M}) ∩ P (M).

The class of all sets constructible from A is defined as follows:

(13.22) L0[A] = ∅, Lα+1[A] = defA(Lα[A]),

Lα[A] =
⋃

β<α

Lβ[A] if α is a limit ordinal,

L[A] =
⋃

α∈Ord

Lα[A].

The following theorem is the generalization of the relevant theorem on con-
structible sets:

Theorem 13.22. Let A be an arbitrary set.

(i) L[A] is a model of ZFC.
(ii) L[A] satisfies the axiom ∃X (V = L[X ]).
(iii) If M is an inner model of ZF such that A∩M ∈ M , then L[A] ⊂ M .
(iv) There exists α0 such that for all α ≥ α0,

L[A] � 2ℵα = ℵα+1.

Proof. The proof follows closely the corresponding proofs for L, but some
additional arguments are needed.

Lemma 13.23. Let Ā = A ∩ L[A]. Then L[Ā] = L[A] and moreover Ā ∈
L[Ā].
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Proof. We show by induction on α that Lα[Ā] = Lα[A]. The induction step
is obvious if α is a limit ordinal; thus assume that Lα[Ā] = Lα[A] and let us
prove Lα+1[Ā] = Lα+1[A].

If we denote U = Lα[A], then we have

A ∩ U = A ∩ U ∩ L[A] = Ā ∩ U,

and since defA(U) = defA∩U (U), we have

Lα+1[A] = defA(U) = defA∩U (U) = defĀ(U) = Lα+1[Ā].

Thus L[Ā] = L[A]. Moreover, there is α such that A∩L[A] = A∩Lα[A] and
thus Ā ∈ Lα+1[A]. ��

By Lemma 13.23 we may assume that A ∈ L[A]. In this case, L[A] can
be well-ordered by a relation that is definable from A.

In analogy with (13.13) there exists a Π2 sentence (in the language {∈, A}
where A is a unary predicate) such that for every transitive set M

(13.23) (M,∈, A ∩ M) � σ if and only if M = Lδ for some limit ordinal δ.

The Condensation Lemma is generalized as follows:

Lemma 13.24. If M ≺ (Lδ[A],∈, A∩Lδ[A]) where δ is a limit ordinal, then
the transitive collapse of M is Lγ [A] for some γ ≤ δ. ��

Consequently, if A ⊂ Lωα [A] then for every X ⊂ ωα in L[A] there exists
a γ < ωα+1 such that X ∈ Lγ [A], completing the proof of Theorem 13.22. ��

A consequence of Theorem 13.22(iv) is that if V = L[A] and A ⊂ ω, then
the Generalized Continuum Hypothesis holds. For a slightly better result, see
Exercise 13.26.

A different generalization yields for every set A the smallest inner model
L(A) that contains A. (As an example, L(R) is the smallest inner model that
contains all reals.) The model L(A) need not, however, satisfy the Axiom of
Choice.

We define L(A) as follows: Let T = TC({A}) be transitive closure of A
(to ensure that the resulting class L(A) is transitive), and let

(13.24) L0(A) = T, Lα+1(A) = def(Lα(A)),

Lα(A) =
⋃

β<α

Lβ(A) if α is a limit ordinal, and

L(A) =
⋃

α∈Ord

Lα(A).

The transitive class L(A) is an inner model of ZF, contains A, and is the
smallest such inner model.
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Ordinal-Definable Sets

A set X is ordinal-definable if there is a formula ϕ such that

(13.25) X = {u : ϕ(u, α1, . . . , αn)}

for some ordinal numbers α1, . . . , αn.
It is not immediate clear that the property “ordinal-definable” is express-

ible in the language of set theory. Thus we give a different definition of ordinal
definable sets and show that it is equivalent to (13.25).

We recall that cl(M) denotes the closure of a set M under Gödel opera-
tions. The class OD of all ordinal-definable sets is define as follows:

(13.26) OD =
⋃

α∈Ord

cl{Vβ : β < α}.

In other words, OD is the Gödel closure of {Vα : α ∈ Ord}, that is, ordinal
definable sets are obtained from the Vα by applications of Gödel operations.
We shall show that the elements of the class OD are exactly the sets satisfy-
ing (13.25).

Lemma 13.25. There exists a definable well-ordering of the class OD (and
a one-to-one definable mapping F of Ord onto OD).

Proof. Earlier we described how to construct from a given well-ordering of
a set M , a well-ordering of the set cl(M). For every α, the set {Vβ : β < α}
has an obvious well-ordering, which induces a well-ordering of cl{Vβ : β < α}.
Thus we get a well-ordering of the class OD , and denote F the corresponding
(definable) one-to-one mapping of Ord onto OD . ��

Now it follows that every X ∈ OD has the form (13.25). There exists α
such that X = {u : ϕ(u, α)} where ϕ(u, α) is the formula u ∈ F (α).

We shall show that on the other hand, if ϕ is a formula and X is the set
in (13.25), then X ∈ OD . By the Reflection Principle, let β be such that
X ⊂ Vβ , α1, . . . , αn < β and that Vβ reflects ϕ. Then we have

X = {u ∈ Vβ : ϕVβ (u, α1, . . . , αn)}.

Since ϕVβ is a ∆0 formula, we apply the normal form theorem and find a Gödel
operation G such that X = G(Vβ , α1, . . . , αn). Since every α is obtained (uni-
formly) from Vα by a Gödel operation (because α = {x ∈ Vα : x is an ordi-
nal}), there exists a Gödel operation H such that X = H(Vα1 , . . . , Vαn , Vβ)
and therefore X ∈ OD .

Thus let HOD denote the class of hereditarily ordinal-definable sets

HOD = {x : TC({x}) ⊂ OD}.

The class HOD is transitive and contains all ordinals.
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Theorem 13.26. The class HOD is a transitive model of ZFC.

Proof. The class HOD is transitive, and it is easy to see that it is closed
under Gödel operations. Thus to show that HOD is a model of ZF, it suffices
to show that HOD is almost universal. For that, it is enough to verify that
Vα∩HOD ∈ HOD , for all α. For any α, the set Vα∩HOD is a subset of HOD ,
and so it is sufficient to prove that Vα ∩ HOD is ordinal-definable. This is
indeed true because Vα ∩ HOD is the set of all u satisfying the formula

u ∈ Vα ∧ (∀z ∈ TC({u}))∃β [z ∈ cl{Vγ : γ < β}]

and thus Vα ∩HOD ∈ OD .
It remains to prove that HOD satisfies the Axiom of Choice. We shall show

that for each α there exists a one-to-one function g ∈ HOD of Vα∩HOD into
the ordinals. Since every such function is a subset of HOD , it suffices to find
g ∈ OD .

By Lemma 13.25, there is a definable one-to-one mapping G of the
class OD onto the ordinals. If we let g be the restriction of G to the or-
dinal-definable set Vα ∩ HOD , then g is ordinal-definable. ��

A set X is ordinal-definable from A, X ∈ OD [A], if there is a formula ϕ
such that

(13.27) X = {u : ϕ(u, α1, . . . , αn, A)}

for some ordinal numbers α1, . . . , αn.
As above, this notion is expressible in the language of set theory:

(13.28) OD [A] = cl({Vα : α ∈ Ord} ∪ {A}).

The class OD [A] has a well-ordering definable from A and thus every set
in OD [A] is of the form (13.27). Conversely (using the Reflection Principle),
every set X in (13.27) belongs to OD [A].

The proof of Theorem 13.26 generalizes easily to the case of HOD [A].
Thus HOD [A], the class of all sets hereditarily ordinal-definable from A, is
a transitive model of ZFC.

As a further generalization, we call X ordinal-definable over A, X ∈
OD(A), if it belongs to the Gödel closure of {Vα : α ∈ Ord} ∪ {A} ∪ A. If
X ∈ OD(A), then X ∈ cl({Vα : α ∈ Ord}∪{A}∪E), where E = {x0, . . . , xk}
is a finite subset of A. Hence there is a finite sequence s = 〈x0, . . . , xk〉 in A
such that X is ordinal-definable from A and s. On the other hand, if s is
a finite sequence in A, then obviously s ∈ OD(A) and thus we have

OD(A) = {X : X ∈ OD [A, s] for some finite sequence s in A}.

In other words, X ∈ OD(A) if and only if there is a formula ϕ such that

X = {u : ϕ(u, α1, . . . , αn, A, 〈x0, . . . , xk〉)}

for some ordinal numbers α1, . . . , αn and a finite sequence 〈x0, . . . , xk〉 in A.
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The class HOD(A) of all sets hereditarily ordinal-definable over A is
a transitive model of ZF. To show that HOD(A) is almost universal, it
suffices to verify that Vα ∩ HOD(A) ∈ OD(A). In fact, Vα ∩ HOD(A) is
ordinal-definable from A: It is the set

{u ∈ Vα : (∀z ∈ TC({u})) z ∈ cl({Vβ : β ∈ Ord} ∪ {A} ∪ A)}.

More on Inner Models

We conclude this chapter with some comments on inner models of ZF.
As we remarked earlier, cardinal concepts are generally not absolute. The

following theorem summarizes the relations between some of the concepts
and their relativizations (see also Lemma 13.13):

Theorem 13.27. Let M be an inner model of ZF. Then

(i) PM (X) = P (X) ∩ M , V M
α = Vα ∩ M .

(ii) If |X |M = |Y |M then |X | = |Y |.
(iii) If α is a cardinal then α is a cardinal in M ; if α is a limit cardinal,

then α is a limit cardinal in M .
(iv) |α| ≤ |α|M , cf(α) ≤ cfM (α).
(v) If α is a regular cardinal, then α is a regular cardinal in M ; if α is

weakly inaccessible, then α is weakly inaccessible in M .
(vi) If M is a model of ZFC and κ is inaccessible, then κ is inaccessible

in M . ��

Concerning (vi), if α < κ, then since M � AC, we must have either
(2α)M < κ or (2α)M ≥ κ and the latter is impossible since 2α < κ.

If M is a transitive model of ZFC, then the Axiom of Choice in M enables
us to code all sets in M by sets of ordinals and the model is determined by
its sets or ordinals. The precise statement of this fact is: If M and N are
two transitive models of ZFC with the same sets of ordinals, then M = N .
In fact, a slightly stronger assertion is true. (On the other hand, one cannot
prove that M = N if neither model satisfies AC.)

Theorem 13.28. Let M and N be transitive models of ZF and assume that
the Axiom of Choice holds in M . If M and N have the same sets of ordinals,
i.e., PM (OrdM ) = PN(OrdN ), then M = N .

Proof. We start with a rather trivial remark: M and N have the same sets of
pairs of ordinals. To see this, use the absolute canonical one-to-one function
Γ : Ord × Ord → Ord . If X ⊂ Ord2 and X ∈ M , then Γ(X) is both in M
and in N , and we have X = Γ−1(Γ(X)) ∈ N .
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First we prove that M ⊂ N . Let X ∈ M . Since M satisfies AC, there is
a one-to-one mapping f ∈ M of some ordinal θ onto TC({X}). Let E ∈ M
be the following relation on θ:

α E β if and only if f(α) ∈ f(β).

E is a set of pairs of ordinals and thus we have E ∈ N . In M , E is well-founded
and extensional. However, these properties are absolute and so E is well-
founded and extensional in N . Applying the Collapsing Theorem (in N), we
get a transitive set T ∈ N such that (T,∈) is isomorphic to (θ, E). Hence T is
isomorphic to TC({X}) and since both are transitive, we have T = TC({X}).
It follows that TC({X}) ∈ N and so X ∈ N .

Now we prove M = N by ∈-induction. Let X ∈ N and assume that
X ⊂ M ; we prove that X ∈ M . Let Y ∈ M be such that X ⊂ Y (for instance
let Y = V M

α where α = rank(X); the rank function is absolute). Let f ∈ M
be a one-to-one function of Y into the ordinals. Since M ⊂ N , f is in N and
so f(X) ∈ N . Since M ⊂ N , f is in N and so f(X) ∈ N . However, f(X) is
a set of ordinals and so f(X) ∈ M , and we have X = f−1(f(X)) ∈ M . ��

Exercises

13.1. If M is a transitive set then its closure under Gödel operations is transitive.

13.2. If M is closed under Gödel operations and extensional and if X ∈M is finite,
then X ⊂M . In particular, if (x, y) ∈M , then x ∈M and y ∈M .

13.3. If M is closed under Gödel operations and extensional, and π is the transitive
collapse of M , then π(Gi(X, Y )) = Gi(πX, πY ), (i = 1, . . . , 10) for all X, Y ∈M .

[Use the Normal Form Theorem.]

13.4. The operations G5 and G8 are compositions of the remaining Gi.
[G8(X) = dom(G10(G10(G9(G10(X ×X))))).]

13.5. The Axioms of Comprehension in the Bernays-Gödel set theory can be
proved from a finite number of axioms of the form

∀X ∀Y ∃Z Z = G(X, Y )

where the G’s are operations analogous to G1, . . . , G10. Thus the theory BG is
finitely axiomatizable.

[Formulate and prove an analog of the Normal Form Theorem.]

13.6. Prove that for every transitive M , V M
α = Vα ∩M (for all α ∈M).

13.7. Show that “X is finite” is ∆1.
[To get a Π1 formulation, use T -finiteness from Chapter 1.]

13.8. The functions α + β and α · β are ∆1.

13.9. The canonical well-ordering of Ord × Ord is a ∆0 relation. The function Γ
is ∆1.
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13.10. The function S �→ TC(S) is ∆1.

13.11. The function x �→ rank(x) is ∆1.

13.12. “X is countable” is Σ1.

13.13. |X| ≤ |Y |, |X| = |Y | are Σ1.

13.14. The relation �0 is Σ1; for each n ≥ 1, �n is Σn.

13.15. M ≺Σ0 V holds for every transitive set M .

13.16. Let n be a natural number. For every M0 there exists a set M ⊃ M0 such
that M ≺Σn V .

[Use the Reflection Principle.]

13.17. If M ≺ (Lω1 ,∈), then M = Lα for some α.
[Show that M is transitive. Let X ∈ M . Let f be the <-least mapping of ω

onto X. Since f is definable in (Lω1 ,∈) from X, f is in M . Hence f(n) ∈ M for
each n and we get X ⊂M .]

13.18. If M ≺ (Lω2 ,∈), then ω1 ∩M = α for some α ≤ ω1.
[Same argument as in Exercise 13.17: If γ < ω1 and γ ∈M , then γ ⊂M .]

13.19. For all α ≥ ω, |Lα| = |α|.

13.20. If α ≥ ω and X is a constructible subset of α, then X ∈ Lβ , where β is the
least cardinal in L greater than α.

13.21. The canonical well-ordering of L, restricted to the set RL = R ∩ L of all
constructible reals, has order-type ωL

1 .
[R ∩ L ⊂ LωL

1
.]

13.22. If κ is a regular uncountable cardinal in L, then Lκ is a model of ZF−

(Zermelo-Fraenkel without the Power Set Axiom).
[Prove it in L. Replacement: (i) If X ∈ Lκ, then |X| < κ; (ii) if Y ⊂ Lκ and

|Y | < κ, then Y ∈ Lκ.]

13.23. If κ is inaccessible in L, then Lκ = V L
κ = Vκ ∩ L and Lκ is a model of

ZFC + (V = L).

13.24. If δ is a limit ordinal, then the model (Lδ,∈) has definable Skolem functions.
Therefore, for every X ⊂ Lδ, there exists a smallest M ≺ (Lδ ,∈) such that X ⊂ M .

[The well-ordering <δ is definable in (Lδ ,∈). Let hϕ(x) = the <δ-least y such
that (Lδ,∈) � ϕ[x, y].]

13.25. If ♦ holds, then there exists a family F of stationary subsets of ω1 such
that |F| = 2ℵ1 and |S1 ∩ S2| ≤ ℵ0 whenever S1 and S2 are distinct elements of F .

[Let F = {SX : X ⊂ ω1}, where SX = {α : X ∩ α = Sα}.]

13.26. If V = L[A] where A ⊂ ω1, then 2ℵ0 = ℵ1. (Consequently, GCH holds.)
[Show that if X ⊂ ω, then X ∈ Lα[A∩ξ] for some α < ω1 and ξ < ω1. It follows

that |P (ω)| = ℵ1.]
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13.27. For every X there is a set of ordinals A such that L[X] = L[A].
[Let X̄ = X ∩ L[X], and let (θ, E) be isomorphic to TC({X̄}) (in L[X]). Let

A = Γ(E) where Γ is the canonical mapping of Ord2 onto Ord . Then A ∈ L[X]
and X ∈ L[A], and hence L[A] = L[X].]

13.28. Let α ≥ ω be a countable ordinal. There exists A ⊂ ω such that α is
countable in L[A].

[Let W ⊂ ω×ω be a well-ordering of ω of order-type α; let A ⊂ ω be such that
L[A] = L[W ].]

13.29. If ω1 (in V ) is not a limit cardinal in L, then there exists A ⊂ ω such that
ω1 = ωL[A]

1 .
[There exists α < ω1 such that in L, ω1 is the successor of α. Let A be such

that α is countable in L[A].]

13.30 (ZFC). There exists A ⊂ ω1 such that ω1 = ωL[A]
1 .

[For each α < ω1, choose Aα ⊂ ω such that α is countable in L[Aα]. Let
A ⊂ ω1 × ω1 be such that Aα = {ξ : (α, ξ) ∈ A} for all α; then ωL[A]

1 = ω1.]

13.31 (ZFC). If ω2 is not inaccessible in L, then there exists A ⊂ ω1 such that
ωL[A]

1 = ω1 and ωL[A]
2 = ω2.

If A is a class, let us define L[A] as in (13.22) where defA(M) is defined as
in (13.20).

13.32. L[A] = L[Ā], where Ā = A ∩ L[A], and L[A] is a model of ZFC. Moreover,
L[A] is the smallest inner model M such that V M

α ∩A ∈M for all α.

13.33. Assume that there exists a choice function F on V . Then there is a class
A ⊂ Ord such that V = L[A].

13.34. Let M be a transitive model of ZF, M ⊃ Ord , and let X be a subset of M .
Then there is a least model M [X] of ZF such that M ⊂ M [X] and X ∈ M [X]. If
M � AC, then M [x] � AC.

[Modify the construction in (13.24).]

13.35. If X ∈ OD, then there exists γ such that X is a definable subset of (Vγ ,∈)
(without parameters). Hence OD is the class of all X definable in some Vγ .

[If X = {u ∈ Vβ : ϕVβ (u, α)}, consider γ = Γ(α, β).]

13.36. If F is a definable function on Ord , then ran(F ) ⊂ OD. Thus: OD is the
largest class for which there exists a definable one-to-one correspondence with the
class of all ordinals.

13.37. HOD is the largest transitive model of ZF for which there exists a definable
one-to-one correspondence with the class of all ordinals.

Historical Notes

The main results, namely consistency of the Axiom of Choice and the General-
ized Continuum Hypothesis, are due to Kurt Gödel, as is the concept of con-
structible sets. The results were announced in [1938], and an outline of proof ap-
peared in [1939]. Gödel’s monograph [1940] contains a detailed construction of L,
and the proof that L satisfies AC and GCH.
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In [1939] Gödel defined constructible sets using Lα+1 = the set of all subsets
of Lα definable over Lα; in [1940] he used finitely many operations (and worked in
the system BG).

The investigation of transitive models of set theory was of course motivated by
Gödel’s construction of the model L. The first systematic study of transitive models
was done by Shepherdson in [1951, 1952, 1953]. Bernays in [1937], employed a finite
number of operations on classes to give a finite axiomatization of BG. Theorem 13.9
is explicitly stated by Hajnal in [1956].

The Σn hierarchy was introduced by Lévy in [1965a]. Another result of Lévy
[1965b] is that the truth predicate �n+1 is Σn+1

Karp’s paper [1967] investigates Σ1 relations and gives a detailed computation
verifying that constructibility is Σ1. The characterization of the sets Lα as transitive
models of a single sentence σ is a result of Boolos [1970].

The Diamond Principle was introduced by Jensen in [1972].
Relative constructibility was investigated by Hajnal [1956], Shoenfield [1959]

and most generally by Lévy [1957] and [1960a].
The concept of ordinal definability was suggested by Gödel in his talk in 1946,

cf. [1965]; the theory was developed independently by Myhill and Scott in [1971]
and by Vopěnka, Balcar, and Hájek in [1968].

Theorem 13.28 is due to Vopěnka and Balcar [1967].


