
15. Applications of Forcing

In this chapter we present some important applications of the method of
forcing. These applications establish several major consistency results and
illustrate the techniques involved in use of forcing. Throughout we use V to
denote the ground model, and V [G] for the generic extension.

Cohen Reals

In (14.23) we described a notion of forcing that adjoins ℵ2 real numbers to
the ground model. In general, let κ be an infinite cardinal. The following
notion of forcing adjoins κ real numbers, called Cohen reals.

Let P be the set of all functions p such that

(i) dom(p) is a finite subset of κ × ω,
(ii) ran(p) ⊂ {0, 1},

(15.1)

and let p be stronger than q if and only if p ⊃ q.
Let G be a generic set of conditions and let f =

⋃
G. By a genericity

argument, f is a function from κ × ω into {0, 1}. For each α < κ, we let
fα be the function on ω defined by fα(n) = f(α, n) and let aα = {n ∈ ω :
fα(n) = 1}. Each aα is a real (a subset of ω), aα /∈ V and if α �= β, then
aα �= aβ . This is proved as in Theorem 14.32.

Also as in Theorem 14.32 one shows that P satisfies the countable chain
condition. It follows that cardinals and cofinalities are preserved in the generic
extension.

Since P adds κ distinct Cohen reals, the size of the continuum in V [G] is
at least κ. In fact, it is at least (κℵ0)V :

(2ℵ0)V [G] = ((2ℵ0)ℵ0)V [G] ≥ (κℵ0)V [G] ≥ (κℵ0)V .

It turns out that there are precisely (κℵ0)V reals in V [G]. The following is
a general estimate of the number of new sets in a generic extension:

Lemma 15.1. Let λ be a cardinal in V . If G is a V -generic ultrafilter on B,
then

(2λ)V [G] ≤ (|B|λ)V .
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Proof. Every subset A ⊂ λ in V [G] has a name Ȧ ∈ V B; every such Ȧ deter-
mines a function α �→ ‖α̌ ∈ Ȧ‖ from λ into B. Different subsets correspond
to different functions, and thus the number of all subsets of λ in V [G] is not
greater than the number of all functions from λ into B in V . ��

When P is the forcing (15.1) that adds κ Cohen reals, P satisfies c.c.c. and
so every element of B = B(P ) is the Boolean sum of a countable antichain
in P ; hence |B| ≤ |P |ℵ0 = κℵ0 . By Exercise 7.32, |B| = |B|ℵ0 and it follows
that |B| = κℵ0 , and consequently, (2ℵ0)V [G] = (κℵ0)V .

If we start with a ground model that satisfies GCH, and if κ is (in V ) a car-
dinal of uncountable cofinality, then κℵ0 = κ in V , and we get a model V [G]
in which 2ℵ0 = κ.

Adding Subsets of Regular Cardinals

The forcing that adds a Cohen real generalizes easily from ω to any regular
cardinal κ. Let κ be, in V , a regular cardinal and assume that 2<κ = κ.

Let P be the set of all functions p such that

(i) dom(p) ⊂ κ and | dom(p)| < κ;
(ii) ran(p) ⊂ {0, 1}.

(15.2)

A condition p be stronger than q if and only if p ⊃ q.
Let G be a set of conditions generic over V and let f =

⋃
G. As before,

f is a function from κ into {0, 1}, and X = {α < κ : f(α) = 1} is a subset
of κ and X /∈ V .

In order to add more new subsets of κ, we use a generalization of (15.1):
Let κ be as above, and let λ be a cardinal greater than κ such that λκ = λ.
Let P be the set of all functions p such that:

(i) dom(p) ⊂ λ × κ and | dom(p)| < κ,
(ii) ran(p) ⊂ {0, 1},

(15.3)

and let p be stronger than q if and only if p ⊃ q.
Let G be a generic set of conditions and let f =

⋃
G. For each α < λ, we

let

aα = {ξ < κ : f(α, ξ) = 1}.

Each aα is a subset of κ, each aα /∈ V and aα �= aβ whenever α �= β.
We claim that in the generic extension, all cardinals are preserved, and

2κ = λ. But to show this, we need additional results in the theory of forcing,
proved in the next two sections.
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The κ-Chain Condition

Definition 15.2. A forcing notion P satisfies the κ-chain condition (κ-c.c.)
if every antichain in P has cardinality less than κ.

The ℵ1-chain condition is the c.c.c. Note that P satisfies the κ-c.c. if and
only if B(P ) satisfies the κ-c.c.

Theorem 14.34 generalizes as follows:

Theorem 15.3. If κ is a regular cardinal and if P satisfies the κ-chain con-
dition then κ remains a regular cardinal in the generic extension by P .

Proof. The proof is exactly as the proof of Theorem 14.34. The only difference
is that the set Aα is not necessarily countable but has cardinality less than κ.

��
Consequently, all regular cardinals κ ≥ sat(B(P )), and in particular all

regular κ ≥ |P |+ are preserved in V [G].
The following lemma generalizes Lemma 14.35, and implies that the forc-

ing notion (15.3) satisfies the κ+-chain condition. We remark that Lemma 15.4
is related to (a generalization of) Theorem 9.18 on ∆-systems.

Lemma 15.4. Let κ be a regular cardinal such that 2<κ = κ. Let S be an
arbitrary set and let |C| ≤ κ. Let P be the set of all functions p whose
domains are subsets of S of size < κ, with values in C. Let p < q if and only
if q ⊃ q. Then P satisfies the κ+-chain condition.

Proof. Let W ⊂ P be an antichain. We construct sequences A0 ⊂ A1 ⊂
. . . ⊂ Aα ⊂ . . . (α < κ) of subsets of S, and W0 ⊂ W1 ⊂ . . . ⊂ Wα ⊂ . . .
(α < κ) of subsets of W . If α is a limit ordinal, we let Wα =

⋃
β<α Wβ

and Aα =
⋃

β<α Aβ . Given Aα and Wα, we choose for each p ∈ P with
dom(p) ⊂ Aα some q ∈ W (if there is one) such that p = q�Aα. Then we let
Wα+1 = Wα ∪ {the chosen q’s} and Aα+1 =

⋃
{dom(q) : q ∈ Wα+1}; finally,

A =
⋃

α<κ Aα.
Next we show that W =

⋃
α<κ Wα: If q ∈ W , then there is an α < κ

such that dom(q) ∩ A = dom(q) ∩ Aα. Thus if p = q�Aα, there exists some
q′ ∈ Wα+1 such that q′�Aα = p. Since dom(q′) ⊂ A, it follows that q and q′

are compatible; however, both are elements of W and thus q = q′. Hence
q ∈ Wα+1.

The proof is completed by showing that |Aα| ≤ κ and |Wα| ≤ κ for each
α < κ. This is proved by induction on α. If |Wα| ≤ κ, then |Aα| ≤ κ because
Aα =

⋃
{dom(q) : q ∈ Wα}. If α is a limit ordinal and |Wβ | ≤ κ for all

β < α, then |Wα| = |
⋃

β<α Wβ | ≤ κ. Thus let us assume that |Wα| ≤ κ and
let us show that |Wα+1| ≤ κ. The set Wα+1 is obtained by adding to Wα

at most one q ∈ W for each p ∈ P with dom(p) ⊂ Aα. There are at most
κ<κ subsets X of Aα of size < κ, and since κ is regular and 2<κ = κ, we
have κ<κ = κ. On each X there are |C||X| functions with values in C, and
therefore there are at most κ elements p of P with dom(p) ⊂ Aα. Hence
|Wα+1| ≤ κ. Then it follows that |W | ≤ κ. ��
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Distributivity

In (7.28) we defined κ-distributivity of complete Boolean algebras. We now
show that this concept plays a crucial role in the theory of forcing.

Definition 15.5. A forcing notion P is κ-distributive if the intersection of
κ open dense sets is open dense. P is <κ-distributive if it is λ-distributive for
all λ < κ.

Note that if P is dense in B then P is κ-distributive if and only if B is.

Theorem 15.6. Let κ be an infinite cardinal and assume that (P, <) is κ-
distributive. Then if f ∈ V [G] is a function from κ into V , then f ∈ V . In
particular, κ has no new subsets in V [G].

Proof. Let f : κ → V and f ∈ V [G], let ḟ be a name for f . There exist some
A ∈ V and a condition p0 ∈ G such that p0 forces

ḟ is a function from κ̌ into Ǎ.

For each α < κ, the set

Dα = {p ≤ p0 : (∃x ∈ A) p � ḟ(α̌) = x̌}

is open dense below p0. Thus D =
⋂

α<κ Dα is dense below p0 and therefore
there is some p ∈ D∩G. Now we argue in V : For each α < κ there is some xα

such that p � ḟ(α̌) = x̌α; let g : κ → A be the function defined by g(α) = xα.
However, it is easy to see that f(α) = xα = g(α), for every α < κ, and thus
f ∈ V . ��

See Exercise 15.5 for the converse.
The following property, stronger than distributivity, is often easy to verify:

Definition 15.7. P is κ-closed if for every λ ≤ κ, every descending sequence
p0 ≥ p1 ≥ . . . ≥ pα ≥ . . . (α < λ) has a lower bound. P is <κ-closed if it is
λ-closed for all λ < κ.

Lemma 15.8. If P is κ-closed then it is κ-distributive.

Proof. Let {Dα : α < κ} be a collection of open dense sets. The intersection
D =

⋂
α<κ Dα is clearly open; to show that D is dense, let p ∈ P be arbitrary.

By induction on α < κ, we construct a descending κ-sequence of conditions
p ≥ p0 ≥ p1 ≥ . . .. We let pα be a condition stronger than all pξ, ξ < α,
and such that pα ∈ Dα. Finally, we let q be a condition stronger than all pα,
α < κ. Clearly, q ∈ D. ��

Now we can prove the claim about the generic extension by the forcing
in (15.3). The forcing P is <κ-closed, and therefore κ has no new bounded
subsets; hence κ is preserved. The cardinals above κ are preserved because
P satisfies the κ+-chain condition, by Lemma 15.4. We have |P | = λ and
therefore |B| = |P |κ = λ, and so, by Lemma 15.1, (2κ)V [G] = λκ = λ.
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Product Forcing

Let P and Q be two notions of forcing. The product P ×Q is the coordinate-
wise partially ordered set product of P and Q:

(15.4) (p1, q1) ≤ (p2, q2) if and only if p1 ≤ p2 and q1 ≤ q2.

If G is a generic filter on P × Q, let

(15.5) G1 = {p ∈ P : ∃q (p, q) ∈ G}, G2 = {q ∈ Q : ∃p (p, q) ∈ G}.

The sets G1 and G2 are generic on P and Q respectively, and G = G1 × G2.
The following lemma describes genericity on products:

Lemma 15.9 (The Product Lemma). Let P and Q be two notions of
forcing in M . In order that G ⊂ P × Q be generic over M , it is necessary
and sufficient that G = G1×G2 where G1 ⊂ P is generic over M and G2 ⊂ Q
is generic over M [G1]. Moreover, M [G] = M [G1][G2].

As a corollary, if G1 is generic over M and G2 is generic over M [G1], then
G1 is generic over M [G2], and M [G1][G2] = M [G2][G1].

Proof. First let G be an M -generic filter on P × Q. We define G1 and G2

by (15.5). Clearly, G1 and G2 are filters, and G ⊂ G1 × G2. If (p1, p2) ∈
G1 × G2, then there are p′1 ∈ G1 and p′2 ∈ G2 such that (p′1, p2) ∈ G and
(p1, p

′
2) ∈ G. Since G is a filter, there exist q1 ≤ p1, p

′
1 and q2 ≤ p2, p

′
2 such

(q1, q2) ∈ G. Hence (p1, p2) ∈ G and we have G = G1 × G2.
It is easy to see that G1 is generic over M : If D1 ∈ M is dense in P , then

D1×Q is dense in P×Q; and since (D1×Q)∩G �= ∅, we have D1∩G1 �= ∅. To
show that G2 is generic over M [G1], let D2 ∈ M [G1] be dense in Q. Let � be
the forcing relation corresponding to P . Let Ḋ2 be a name for D2 and let
p1 ∈ G1 be such that p1 forces “Ḋ2 is dense in Q.” Let p2 ∈ G2 be arbitrary.
For every q1 ≤ p1 and every q2 ≤ p2 there exist r1 ≤ q1 and r2 ≤ q2 such
that r1 � r2 ∈ Ḋ2; thus

D = {(r1, r2) : r1 ≤ p1 and r1 � r2 ∈ Ḋ2}

is dense in P × Q below (p1, p2) and so there exist r1, r2 such that r1 ∈ G1

and r1 � r2 ∈ Ḋ2. Hence r2 ∈ D2 ∩ G2.
Conversely, let G1 ⊂ P be M -generic and let G2 ⊂ Q be M [G1]-generic.

We let G = G1 × G2. Clearly G is a filter on P × Q. To show that G is
M -generic, let D ∈ M be dense in P × Q. We let

D2 = {p2 : (p1, p2) ∈ D for some p1 ∈ G1}.

The set D2 is in M [G1]; we shall show that D2 is dense in Q and thus
D ∩ (G1 × G2) �= ∅.



230 Part II. Advanced Set Theory

Let q2 ∈ Q be arbitrary. Since D is dense in P ×Q, it follows that the set

D1 = {p1 : (∃p2 ≤ q2) (p1, p2) ∈ D}

is dense in P . Hence there is p1 ∈ G1 ∩ D1 and so D2 is dense in Q. Since
G1 × G2 ∈ M [G1][G2], it is obvious that M [G1 × G2] = M [G1][G2]. ��

We shall now define products of infinitely many notions of forcing. In
order to simplify the notation, we will assume that every notion of forcing
has a greatest element, denoted 1. In practice, the empty condition ∅ is often
the greatest element of (P, <).

Definition 15.10. Let {Pi : i ∈ I} be a collection of partially ordered sets,
each having a greatest element 1. The product P =

∏
i∈I Pi consists of all

functions p on I with values p(i) ∈ Pi, such that p(i) = 1 for all but finitely
many i ∈ I. P is partially ordered by

(15.6) p ≤ q if and only if p(i) ≤ q(i) for all i ∈ I.

For each p ∈
∏

i Pi, the finite set s(p) = {i ∈ I : p(i) �= 1} is called the
support of p.

If G is a generic filter on
∏

i Pi, then for each i ∈ I, the set Gi = {p(i) :
p ∈ G}, the projection of G on Pi, is a generic filter on Pi.

A natural generalization of a product is κ-product:

Definition 15.11. Let κ be a regular cardinal. The κ-product (the product
with <κ-support) of Pi is the set of all functions p on I with p(i) ∈ Pi such
that |s(p)| < κ; the ordering is coordinatewise (15.6).

As usual, λ-support means <λ+-support, countable support means <ℵ1-
support, etc.

The following lemma is immediate:

Lemma 15.12. If P and Q are λ-closed then P × Q is λ-closed. More gen-
erally, if each Pi is λ-closed and P is the κ-product of the Pi, with λ < κ,
then P is λ-closed.

Proof. Let α ≤ λ and let pξ = 〈pξ
i : i ∈ I〉, ξ < α, be a descending α-sequence

of conditions in P . If we let s =
⋃

ξ<α s(pξ), then |s| < κ, and since each Pi is
λ-closed, it is easy to find p = 〈pi : i ∈ I〉 such that s(p) = s and that pi ≤ pξ

i

for each i ∈ I and each ξ < α. ��

Chain conditions are generally not preserved by products. While it is con-
sistent that c.c.c. is preserved by products (we return to this in Chapter 16),
it is also consistent to have a forcing P that satisfies c.c.c. but P × P does
not (see Exercise 15.28).

The following property (K for Knaster) is stronger than the countable
chain condition:
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Definition 15.13. A notion of forcing has property (K) if every uncountable
set of conditions has an uncountable subset of pairwise compatible elements.

Lemma 15.14. If P and Q both have property (K) then so does P × Q.

Proof. Let W ⊂ P ×Q be uncountable. If there exists a p ∈ P such that the
set X = {q : (p, q) ∈ W} is uncountable, then since Q has property (K) there
exists an uncountable Y ⊂ X of pairwise compatible elements, and {p} × Y
is such a subset of W in P × Q.

The proof is similar if for some q ∈ Q, the set {p : (p, q) ∈ W} is uncount-
able. In the remaining case, there is an uncountable set of pairs F ⊂ W that
is a one-to-one function. Applying successively property (K) to P and Q, we
get an uncountable G ⊂ F such that for any two elements (p1, q1) and (p2, q2)
of G, p1 is compatible with p2 in P and q1 is compatible with q2 in Q, hence
(p1, q1) and (p2, q2) are compatible. ��

Theorem 15.15. If for every i ∈ I, Pi has property (K) then
∏

i∈I Pi has
property (K).

Proof. Let X be an uncountable subset of P , and let W = {s(p) : p ∈ X}.
If W is countable, then there is a finite set J ⊂ I such that s(p) = J
for uncountably many p. By Lemma 15.14,

∏
i∈J Pi has property (K) and

the theorem follows. If W is uncountable, there exist, by Theorem 9.18, an
uncountable Z ⊂ X and a finite set J ⊂ I such that s(p)∩s(q) = J whenever
p, q ∈ Z, p �= q. Since

∏
i∈I Pi has property (K), Z has an uncountable

subset Y such that for any p, q ∈ Y , p�J and q�J are compatible. But such p
and q are compatible in

∏
i∈I Pi. ��

Corollary 15.16. The product of any collection of countable forcing notions
has property (K) and so it satisfies the countable chain condition. ��

The best one can say about the chain condition in products is this:

Theorem 15.17. (i) If each Pi has size λ (infinite) then the product of the Pi

satisfies the λ+-chain condition.
(ii) If κ is regular, λ ≥ κ, λ<κ = λ and |Pi| ≤ λ for all i ∈ I, then the

κ-product of the Pi satisfies the λ+-chain condition.
(iii) If λ is inaccessible, κ < λ is regular, and |Pi| < λ for each i, then

the κ-product satisfies the λ-chain condition.

Proof. (i) is a special case of (ii); thus consider κ-products. Let P be the
κ-product, and let W be an antichain in P . If p = 〈pi : i ∈ I〉 and q = 〈qi :
i ∈ I〉 are incompatible in P , then for some i ∈ s(p) ∩ s(p), pi and qi are
incompatible in Pi, and in particular pi �= qi. Thus we can regard elements
of W as functions whose domain is a subset s(p) of I of size < κ, with values
in the Pi, and show that if W consists of pairwise incompatible functions
then |W | has the required bound.
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We follow the proof of Lemma 15.4. As there we construct κ-sequences
A0 ⊂ A1 ⊂ . . . ⊂ Aα ⊂ . . . (α < κ) of subsets of I and W0 ⊂ W1 ⊂ . . . ⊂
Wα ⊂ . . . (α < κ) of subsets of W such that Aα =

⋃
{s(p) : p ∈ Wα} for

each α. And as there we show that W =
⋃

α<κ Wα. Thus it remains to show,
by induction on α, that |Wα| ≤ λ (in (ii)) or that |Wα| < λ (in (iii)). Let us
prove (ii); (iii) is similar.

If |Wα| ≤ λ, then |Aα| ≤ κ · λ = λ. If α < κ is limit and if |Wβ | ≤ λ for
each β < α, then |Wα| ≤ |α| · λ = λ. Thus let us assume that |Wα| ≤ λ and
let us show that |Wα+1| ≤ λ. The set Wα+1 is obtained by adding to Wα at
most one q for each p ∈ P with s(p) ⊂ Aα. However, since |Aα| ≤ λ, there
are at most λ<κ functions p with s(p) ⊂ Aα, |s(p)| < κ, and λ possible values
for each i ∈ s(p). Thus |Wα+1| ≤ λ<κ = λ. ��

Easton’s Theorem

The theorem that we are about to prove shows that in ZFC alone the contin-
uum function 2κ can behave in any prescribed way consistent with König’s
Theorem, for regular cardinals κ. As we have seen in Chapter 8 (Silver’s The-
orem) and shall see again in Chapter 24, this is not the case with singular
cardinals.

Theorem 15.18 (Easton). Let M be a transitive model of ZFC and as-
sume that the Generalized Continuum Hypothesis holds in M . Let F be a func-
tion (in M) whose arguments are regular cardinals and whose values are
cardinals, such that for all regular κ and λ:

(i) F (κ) > κ;
(ii) F (κ) ≤ F (λ) whenever κ ≤ λ;
(iii) cf F (κ) > κ.

(15.7)

Then there is a generic extension M [G] of M such that M and M [G] have
the same cardinals and cofinalities, and for every regular κ,

M [G] � 2κ = F (κ).

We have to point out that the generic extension is obtained by forcing with
a class of conditions. By Lemma 15.1, a notion of forcing can only increase
the size of 2κ for κ < |B(P )|; thus we have to use a class of conditions. We
shall describe the appropriate generalization of the forcing method.

Since the proof of Easton’s Theorem involves forcing with a class of con-
ditions, we shall first give a proof of the special case, when the “continuum
function” F is prescribed for only a set of regular cardinals. Thus let us work
in a ground model M that satisfies the GCH and let F be a function defined
on a set A of regular cardinals and having the properties (15.7)(i)–(iii).
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For each κ ∈ dom(F ), let (Pκ,⊃) be the notion of forcing that adjoins
F (κ) subsets of κ (cf. (15.3)):

(15.8) dom(p) ⊂ κ × F (κ), | dom(p)| < κ, and ran(p) ⊂ {0, 1}.
We let (P, <) be the Easton product of Pκ, κ ∈ A: A condition p is

a function p = 〈pκ : κ ∈ A〉 ∈
∏

κ∈A Pκ such that if we denote s(p) =
{κ ∈ A : pκ �= ∅}, the support of p, then

(15.9) for every regular cardinal γ, |s(p) ∩ γ| < γ.

We can regard the conditions as functions with values 0 and 1, whose domain
consists of triples (κ, α, β) where κ ∈ A, α < κ, and β < F (κ), and such that
for every regular cardinal γ,

(15.10) |{(κ, α, β) ∈ dom(p) : κ ≤ γ}| < γ

(and p is stronger than q if and only if p ⊃ q). Note that (15.10) implies that
for each κ ∈ A, | dom(pκ)| < κ, where pκ is defined by

pκ(α, β) = p(κ, α, β).

Let G be a generic set of conditions, and let for each κ ∈ A, Gκ be the
projection of G on Pκ. Each Gκ is a generic filter on Pκ and thus produces
F (κ) new subsets of κ:

aκ
β = {α < κ : (∃p ∈ G) p(κ, α, β) = 1} (β < F (κ)).

We shall show that (P, <) preserves cardinals and cofinalities, and that each
κ ∈ A has exactly F (κ) subsets in M [G]. The condition (15.10) is instrumen-
tal in the proof.

Given a regular cardinal λ, we can decompose each condition p ∈ P into
two parts:

(15.11) p≤λ = p�{(κ, α, β) : κ ≤ λ}, p>λ = p�{(κ, α, β) : κ > λ}.

Clearly p = p≤λ ∪ p>λ. We let

(15.12) P≤λ = {p≤λ : p ∈ P}, P>λ = {p>λ : p ∈ P}.
Obviously, P≤λ is the Easton product of Pκ, κ ∈ A and κ ≤ λ, and P>λ is
the Easton product of Pκ, κ ∈ A and κ > λ. Moreover, P is (isomorphic to)
the product P≤λ × P>λ.

First we notice that P>λ is λ-closed: If C ⊂ P>λ consists of pairwise
compatible conditions and |C| ≤ λ, then p =

⋃
C is a condition in P>λ;

(15.10) holds for all regular γ > λ, and holds trivially for γ ≤ λ because if
(κ, α, β) ∈ dom(p), then κ > λ.

Furthermore, P≤λ satisfies the λ+-chain condition: If W ⊂ P≤λ is an
antichain, then |W | ≤ λ. The proof given in Theorem 15.17 works in this case
as well because | dom(p)| < λ for each p ∈ P≤λ (and because GCH holds).
Thus P = P>λ ×P≤λ where P>λ is λ-closed and P≤λ satisfies the λ+-chain
condition.
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Lemma 15.19. Let G × H be an M -generic filter on P × Q, where P is λ-
closed and Q satisfies the λ+-chain condition. Then every function f : λ → M
in M [G × H ] is in M [H ]. In particular,

PM [G×H](λ) = PM [H](λ).

Proof. Let ḟ be a name for f ; let us assume, without loss of generality, that
for some A, every condition forces that ḟ is a function from λ into A. For
each α < λ, let Dα ⊂ P be defined as follows:

p ∈ Dα if and only if there exist a maximal antichain W ⊂ Q

and a family {a(α)
p,q : q ∈ W} such that for each q ∈ W ,

(p, q) � ḟ(α) = a
(α)
p,q .(15.13)

We claim that each Dα is open dense in P . Clearly, Dα is open; thus
let p0 ∈ P be arbitrary and let us find p ∈ Dα such that p ≤ p0. There
exist p1 ≤ p0, q1 ∈ Q and a1 ∈ A such that (p1, q1) � ḟ(α) = a1. By
induction on γ < λ+, we construct pγ ∈ P , qγ ∈ Q, and aγ ∈ A such that
p0 ≥ p1 ≥ . . . ≥ pγ ≥ . . ., that the qγ are pairwise incompatible and that
(pγ , qγ) forces ḟ(α) = aγ . If {qξ : ξ < γ} is not maximal, we can find such
pγ , qγ , and aγ since P is λ-closed. By the λ+-chain condition, there is some
β < λ+ such that W = {qγ : γ < β} is a maximal antichain; then we find
p ∈ P stronger than all pγ , γ < β. Thus Dα is open dense in P .

Since P is λ-closed, it follows that
⋂

α<λ Dα is open dense, and so there
exists some p ∈ G such that p ∈ Dα for all α < λ. We pick (in M) for each
α < λ a maximal antichain Wα ⊂ Q and a family {a(α)

p,q : q ∈ Wα} such
that (15.13) holds for each q ∈ Wα. By the genericity of H , for every α there
is a unique q ∈ Wα such that q ∈ H , and we have, for every α < λ,

(15.14) f(α) = a(α)
p,q , where q is the unique q ∈ Wα ∩ H .

However, (15.14) defines the function f in M [H ]. ��
Now we can finish the proof of Easton’s Theorem, that is, at least in the

case when F is defined on a set A of regular cardinals.
Let κ be a regular cardinal in M ; we shall show that κ is a regular cardi-

nal in M [G]. If κ fails to be a regular cardinal, then there exists a func-
tion f that maps some λ < κ, regular in M , cofinally into κ. We con-
sider P as the product: P = P>λ × P≤λ. Then G = G>λ × G≤λ and
M [G] = M [G>λ][G≤λ] = M [G≤λ][G>λ]. By Lemma 15.19, f is in M [G≤λ]
and so κ is not a regular cardinal in M [G≤λ]. However, this is a contradiction
since P≤λ satisfies the κ-chain condition and hence κ is regular in M [G≤λ].

It remains to prove that (2λ)M [G] = F (λ), for each λ ∈ A. Again, we
regard P as the product P>λ ×P≤λ and G = G>λ ×G≤λ. By Lemma 15.19,
every subset of λ in M [G] is in M [G≤λ] and we have (2λ)M [G] = (2λ)M [G≤λ].
However, an easy computation shows that |P≤λ| = F (λ) and |B(P≤λ)| =
F (λ), and hence (2λ)M [G] ≤ F (λ). On the other hand, we have exhibited
F (λ) subsets of λ for each λ ∈ A, and so M [G] � 2λ = F (λ). ��
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Forcing with a Class of Conditions

We shall now show how to generalize the preceding construction to prove
Easton’s Theorem in full generality, when the function F is defined for all
regular cardinals. This generalization involves forcing with a proper class of
conditions. Although it is possible to give a general method of forcing with
a class, we shall concentrate only on the particular example.

Thus let M be a transitive model of ZFC + GCH. Moreover, we assume
that M has a well-ordering of the universe (e.g., if M satisfies V = L).
Let F be a function (in M) defined on all regular cardinals and having the
properties (15.7)(i)–(iii). We define a class P of forcing conditions as follows:
P is the class of all functions p with values 0 and 1, whose domain consists
of triples (κ, α, β) where κ is a regular cardinal, α < κ and β < F (κ), and
such that for every regular cardinal γ, (15.10) holds, i.e.,

|{(κ, α, β) ∈ dom(p) : κ ≤ γ}| < γ

(and p is stronger than q if and only if p ⊃ q).
As before, we define P≤λ and P>λ for every regular cardinal λ. Note that

P≤λ is a set. To define the Boolean-valued model MB and the forcing relation,
we use the fact that P is the Easton product of Pκ, κ a regular cardinal. For
each regular λ, we let Bλ = B(P≤λ). If λ < µ then the inclusion P≤λ ⊂ P≤µ

defines an obvious embedding of Bλ into Bµ; thus we arrange the definition
of the Bλ so that Bλ is a complete subalgebra of Bµ whenever λ < µ. Then
we let B =

⋃
λ Bλ. B is a proper class; otherwise it has all the features of

a complete Boolean algebra. In particular,
∑

X exists for every set X ⊂ B.
Also, P is dense in B.

To define MB, we cannot quite use the inductive definition (14.15)
since B is not a set. However, we simply let MB =

⋃
λ MBλ ; the for-

mal definition of MB does not present any problem. Similarly, to define
‖x ∈ y‖ and ‖x = y‖, we first notice that if x, y ∈ MBλ and λ ≤ µ, then
‖x ∈ y‖Bλ = ‖x ∈ y‖Bµ and so we let ‖x ∈ y‖ = ‖x ∈ y‖Bλ

where λ is such
that x, y ∈ MBλ . The same for ‖x = y‖.

As for the forcing relation in general, we cannot define ‖ϕ‖ unless ϕ is ∆0;
this is because

∑
X does not generally exist if X ⊂ B is a class. However,

we can still define p � ϕ using the formulas from Theorem 14.7.
Now, we call G ⊂ P generic over M if (i) p ⊃ q and p ∈ G implies q ∈ G,

(ii) p, q ∈ G implies p ∪ q ∈ G, and (iii) if D is a class in M and D is dense
in P , then D ∩ G �= ∅.

The question of existence of a generic filter can be settled in a more or less
the same way as in the case when P is a set. One possible way is to assume
that M is a countable transitive model. Then there are only countably many
classes in M and G exists. Another possible way is to use the canonical generic
ultrafilter. It is the class Ġ in MB defined by Ġ(p̌) = p for all p ∈ P (here
we need the assumption that M is a class in MB).
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Thus let G be an M -generic filter on P . For every regular λ, Gλ = G∩P≤λ

is generic on P≤λ. If ẋ ∈ MBλ and λ ≤ µ, then ẋGλ = ẋGµ , and so we define
ẋG = ẋGλ where λ is such that ẋ ∈ MBλ . Then we define M [G] =

⋃
λ M [Gλ].

Using the genericity of G and properties of the forcing relation, we get
the Forcing Theorem,

(15.15) M [G] � ϕ(x1, . . . , xn) if and only if (∃p ∈ G) p � ϕ(ẋ1, . . . , ẋn)

where ẋ1, . . . , ẋn ∈ MB are names for x1, . . . , xn.
The formula (15.15) is proved first for atomic formulas and then by in-

duction on ϕ; in the induction step involving the quantifiers, we use the fact
that G intersects every dense class of M .

We shall now show that M [G] is a model of ZFC. The proofs of all axioms
of ZFC except Power Set and Replacement go through as when we forced with
a set. (Separation also needs some extra work which we leave to the reader.) It
is no surprise that the Power Set and Replacement Axioms present problems.
It is easy to construct either a class of forcing conditions adding a proper
class of Cohen reals, or a class of conditions collapsing Ord onto ω (as in
the following section). The present proof of the Power Set and Replacement
Axioms uses the fact that for every regular λ (or at least for arbitrarily large
regular λ), P = P>λ × P≤λ where P>λ is λ-closed and P≤λ is a set and
satisfies the λ+-chain condition.

Power Set. Let λ be a regular cardinal. Lemma 15.19 remains true even
when applied to P>λ ×P≤λ. It does not matter that each Dα is a class. The
“sequence” of classes 〈Dα : α < λ〉 can be defined (e.g., as a class of pairs
{(p, α) : p ∈ Dα}) and since P>λ is λ-closed, the intersection

⋂
α<λ Dα is

dense, and there exists p ∈ G∩P>λ such that p ∈ Dα for all α < λ. The rest
of the proof of Lemma 15.19 remains unchanged, and thus we have proved
that every subset of λ in M [G] is in M [G]. Since P≤λ is a set, it follows that
the Power Set Axiom holds in M [G].

Replacement. To show that the Axioms of Replacement hold in M [G], we
combine the proof for ordinary generic extension with Lemma 15.19. It suf-
fices to prove that if in M [G], ϕ(α, v) defines a function K : Ord → M [G],
then {K(α) : α < λ} is a set in M [G] for every regular cardinal λ. Without
less of generality, let us assume that for every p ∈ P

(15.16) p � for every α there is a unique v such that ϕ(α, v).

Let λ be a regular cardinal, and let us consider again P = P>λ × P≤λ,
and G = (G ∩ P>λ)× Gλ. As in Lemma 15.19, let us define, for each α < λ,
a class Dα ⊂ P>λ:

p ∈ Dα if and only if there is a maximal antichain W ⊂ P≤λ

and a family {ȧ(α)
p,q : q ∈ W} such that for each q ∈ W ,

p ∪ q � ϕ(α, ȧ
(α)
p,q ).(15.17)
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As in Lemma 15.19, each Dα, α < λ, is open dense; since P>λ is λ-closed,⋂
α<λ Dα is dense and there exists p ∈ G ∩ P>λ such that p ∈ Dα for all

α < λ. We pick (in M) for each α < λ a maximal antichain Wα ⊂ P≤λ and
a family {ȧ(α)

p,q : q ∈ Wα} such that (15.17) holds for each q ∈ Wα. Now, if we
let S = {ȧ(α)

p,q : α < λ and q ∈ Wα}, then it follows that {K(α) : α < λ} ⊂
{ȧG : ȧ ∈ S}. However, the latter is a set in M [G]: There is a γ such that
S ⊂ MBγ , and we have {ȧG : ȧ ∈ S} = {ȧGγ : ȧ ∈ S} ∈ M [Gγ ].

Thus M [G] is a model of ZFC and it remains to show that M [G] has the
same cardinals and cofinalities as M , and that in M [G], 2κ = F (κ) for every
regular cardinal κ. However, this is proved exactly the same way as when we
forced with a set of Easton conditions. ��

We conclude the section with a remark on the Bernays-Gödel axiomatic
set theory. If a sentence involving only set variables is provable in BGC =
BG + Axiom E, then it is provable in BG + AC. This is a consequence of
the following: If M is a transitive model of BG + AC, then there is a generic
extension M [G] that has the same sets and has a choice function F defined
for all nonempty sets. The forcing conditions p ∈ P used in the proof are
choice functions whose domain is a set of nonempty sets (and p < q means
p ⊃ q). The proof that M [G] is a model of BG is rather easy since no new sets
are added (P is κ-closed for all κ). The generic filter on P defines a choice
function F =

⋃
G, and F is defined for all nonempty sets X ∈ M [G].

The Lévy Collapse

One of the most useful techniques provided by forcing is collapsing cardinals.
We start with the simplest example:

Example 15.20. Let λ be an uncountable cardinal. Let P be the set of
all finite sequences 〈p(0), . . . , p(n − 1)〉 of ordinals less than λ; p is stronger
than q if p ⊃ q.

Let G be a generic filter on P and let f =
⋃

G; f is a function with
domain ω and range λ. Thus P collapses λ: Its cardinality in V [G] is ℵ0.

As |P | = λ, P satisfies the λ+-chain condition and so all cardinals greater
than λ are preserved (as are all cofinalities greater than λ). ��

This construction generalizes to collapsing λ to κ:

Lemma 15.21. Let κ be a regular cardinal and let λ > κ be a cardinal. There
is a notion of forcing (P, <) that collapses λ onto κ, i.e., λ has cardinality κ
in the generic extension. Moreover,

(i) every cardinal α ≤ κ in V remains a cardinal in V [G]; and
(ii) if λ<κ = λ, then every cardinal α > λ remains a cardinal in the

extension.
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[The condition in (ii) is satisfied if GCH holds and cf λ ≥ κ.]

Proof. Let P be the set of all functions p such that:

(i) dom(p) ⊂ κ and | dom(p)| < κ,
(ii) ran(p) ⊂ λ,

(15.18)

and let p < q if and only if p ⊃ q.
Let G be a generic set of conditions and let f =

⋃
G. Clearly, f is a func-

tion, and it maps κ onto λ.
(P, <) is <κ-closed and therefore all cardinals ≤ κ are preserved. If λ<κ =

λ, then |P | = λ and it follows that all cardinals ≥ λ+ are preserved. ��

The following technique collapses all cardinals below an inaccessible car-
dinal λ while preserving λ, thus making λ a successor cardinal in the generic
extension. The forcing notion P defined in (15.19) is called the Lévy collapse;
we denote B(P ) = Col(κ, <λ).

Theorem 15.22 (Lévy). Let κ be a regular cardinal and let λ > κ be an
inaccessible cardinal. There is a notion of forcing (P, <) such that :

(i) every α such that κ ≤ α < λ has cardinality κ in V [G]; and
(ii) every cardinal ≤ κ and every cardinal ≥ λ remains a cardinal in V [G].

Hence V [G] � λ = κ+.

Proof. For each α < λ, let Pα be the set of all functions pα such that
dom(pα) ⊂ κ, | dom(pα)| < κ, and ran(pα) ⊂ α; let pα < qα if and only
if pα ⊃ qα.

Let (P, <) be the κ-product of the Pα, α < λ. Equivalently, the conditions
p ∈ P are functions on subsets of λ × κ such that

(i) | dom(p)| < κ;
(ii) p(α, ξ) < α for each (α, ξ) ∈ dom(p).

(15.19)

Let G be a generic set of conditions; for each α < λ, let Gα be the projec-
tion of G on Pα. Then Gα is a generic filter on Pα; and as in Lemma 15.21,
the set fα =

⋃
Gα is a function that maps κ onto α. Thus V [G] � |α| ≤ |κ|,

for every α < λ.
The notion of forcing (P, <) is <κ-closed and hence it preserves all car-

dinals and cofinalities ≤ κ. In particular, κ is a cardinal in V [G].
By Theorem 15.17(iii), (P, <) satisfies the λ-chain condition. Hence λ re-

mains a cardinal in V [G], and so do all cardinals greater than λ. It follows
that in V [G], λ is the cardinal successor of κ. ��
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Suslin Trees

One of the earliest applications of forcing was the solution of Suslin’s Problem:
The existence of a Suslin line is independent of ZFC. In this section we show
how to construct a Suslin tree by forcing and in L; in Chapter 16 we will
construct a generic model in which there are no Suslin trees.

Theorem 15.23. There is a generic extension in which there exists a Suslin
tree.

Proof. Let P be the collection of all countable normal trees, i.e., all T such
that for some α < ω1,

(i) each t ∈ T is a function t : β → ω for some β < α;
(ii) if t ∈ T and s is an initial segment of t then s ∈ T ;
(iii) if β + 1 < α and t : β → ω is in T , then t�n ∈ T for all n ∈ ω;
(iv) if β < α and t : β → ω is in T , then for every γ such that

β ≤ γ < α there exists an s : γ → ω in T such that t ⊂ s;
(v) T ∩ ωβ is at most countable for all β < α.

(15.20)

(See (9.9) and Exercise 9.6.) T1 is stronger than T2 if T1 is an extension of T2,
i.e.,

(15.21) T1 < T2 if and only if ∃α < height(T1) T2 = {t�α : t ∈ T1}.

Let G be a generic set of conditions and let T =
⋃
{T : T ∈ G}. We shall

show that in V [G], T is a normal Suslin tree.
First we note that if T1 and T2 are two conditions, then either one is an

extension of the other, or T1 and T2 are incompatible. Thus G consists of
pairwise comparable trees and one can easily verify that T is a normal tree
(of height ≤ ω1).

If T0, T1, . . . , Tn, . . . is a sequence of conditions such that for each n,
Tn+1 is an extension of Tn, then

⋃∞
n=0 Tn is a normal countable tree (and

extends each Tn). Hence P is ℵ0-closed, and consequently, the cardinal ℵ1 is
preserved (and V [G] has the same countable sequences in V as V ).

To show that the height of T is ω1, we verify that for every α < ω1,
G contains a condition T of height at least α. We show that the set {T ∈ P :
height(T ) ≥ α} is dense in P , for any α < ω1. In other words, we show that
for each T0 ∈ P and each α < ω1, there is an extension T ∈ P of T0, of height
at least α. It suffices to show that each T0 ∈ P has an extension T ∈ P that
has one more level; for then we can proceed by induction and take unions at
limit steps.

If height(T0) is a successor ordinal, then an extension of T0 is easily ob-
tained. If height(T0) is a limit ordinal, then we first observe that for each
t ∈ T0 there exists a branch b of length α in T0 such that t ∈ b: Using an in-
creasing sequence α0 < α1 < . . . < αn . . . with limit α, we use the normality
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condition (15.20)(iv) to obtain such a branch. Now we construct an exten-
sion T of T0, of height α + 1, as follows: For each t ∈ T0, we pick a branch bt

of length α in T0 such that t ∈ bt, and let T = T0 ∪ {s : s =
⋃

bt for some
t ∈ T } (we extend all the branches bt, t ∈ T0, of T0). Since T0 is countable
the added level is countable, and one can verify that T ∈ P .

It remains to show that T has no uncountable antichain. If T is a tree
and A is an antichain in T , then A is called a maximal antichain if there is
no antichain A′ in T such that A′ ⊃ A: Each t ∈ T is comparable with some
a ∈ A. If A is a maximal antichain in T and if T ′ is an extension of T , then
A is not necessarily maximal in T . Let us call a set S ⊂ T bounded in T if
there is some α < height(T ) such that all elements of S are at levels ≤ α. (If
the height of T is a successor ordinal, then every S ⊂ T is bounded.)

Lemma 15.24. If A is a maximal antichain in a normal tree T and if A is
bounded in T (in particular, if the height of T is a successor ordinal), then
A is maximal in every extension of T .

Proof. Let T ′ be an extension of T . Let α < height(T ) be such that each
a ∈ A is at level ≤ α. If t′ ∈ T ′ − T , then there exists t ∈ T at level α such
that t ⊂ t′; in turn, there exists a ∈ A such that a ⊂ t. Hence t′ is comparable
with some a ∈ A. ��
Lemma 15.25. Let α be a countable limit ordinal, let T ∈ P be a normal
α-tree and let A be a maximal antichain in T . Then there exists an extension
T ′ ∈ P of T of height α + 1 such that A is a maximal antichain in T ′ (and
hence A is a bounded maximal antichain in T ′).

Proof. For each t ∈ T there exists a ∈ A such that either t ⊂ a or a ⊂ t. In
either case, there exists a branch b = bt of length α in T such that t ∈ b and
a ∈ b. Let T ′ be the extension of T obtained by extending the branches bt,
for all t ∈ T : T ′ = T ∪ {

⋃
bt : t ∈ T }. The tree T ′ is a normal (α + 1)-tree

and extends T ; moreover, since every s ∈ T ′ is comparable with some a ∈ A,
A is maximal in T ′. ��

Now we finish the proof of Theorem 15.23 by showing that in V [G], every
antichain in T is countable. Since every antichain can be extended to a max-
imal antichain, it suffices to show that every maximal antichain is countable.
Thus let A be a maximal antichain in T . There is a name Ȧ for A and
a condition T ∈ G such that

T � Ȧ is a maximal antichain in T .

We will show that the following set of conditions is dense below T :

D = {T ′ ≤ T : there is a bounded maximal antichain A′ in T ′

such that T ′ � A′ ⊂ Ȧ}.
Then some T ′ ∈ D is in G and there is a bounded maximal antichain A′ in T ′

such that A′ ⊂ A. However, T is an extension of T ′, and by Lemma 15.24,
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A′ is maximal in T . Consequently, A = A′, and since A′ is countable, we are
done.

To show that D is dense below T let T0 ≤ T be arbitrary. We shall
construct a tree T ′ ≤ T0 such that T ′ ∈ D. Since T0 � (Ȧ is a maximal
antichain in T and T is an extension of T0), there exist for each s ∈ T0 an
extension T ′

0 of T0 and some ts ∈ T ′
0 such that

(15.22) s and ts are comparable and T ′
0 � ts ∈ Ȧ.

Since T0 is countable, we repeat this countably many times and obtain an
extension T ′

0 < T0 such that (15.22) holds for every s ∈ T0. Let T1 = T ′
0.

Then we proceed by induction and construct a sequence of trees T0 ≥ T1 ≥
. . . ≥ Tn ≥ . . . such that for each n, Tn+1 extends Tn and

(15.23) (∀s ∈ Tn)(∃ts ∈ Tn+1) s and ts are comparable and Tn+1 � ts ∈ Ȧ.

We let T∞ =
⋃∞

n=0 Tn, and A′ = {ts : s ∈ T∞}. By (15.23), A′ is a maximal
antichain in T∞, and T∞ � A′ ⊂ Ȧ. Now we apply Lemma 15.25 and get an
extension T ′ of T such that A′ is a bounded maximal antichain in T ′. Clearly,
T ′ � A′ ⊂ Ȧ, and hence T ′ ∈ D. ��

In the Exercises (15.21 and 15.22) we present another forcing notion (with
finite conditions) that produces a Suslin tree. Later in the book we show that
the forcing that adds a Cohen real also adds a Suslin tree.

The following theorem shows that a Suslin tree exists in L.

Theorem 15.26 (Jensen). If V = L then there exists a Suslin tree.

Proof. We shall prove that the Diamond Principle ♦ implies that a Suslin
tree exists. First we make the following observation. If T is a normal ω1-tree,
let Tα = {x ∈ T : o(x) < α}.

Lemma 15.27. If A is a maximal antichain in T , then the set

C = {α : A ∩ Tα is a maximal antichain in Tα}

is closed unbounded.

Proof. It is easy to see that C is closed. To show that C is unbounded, let
α0 < ω1 be arbitrary. Since Tα0 is countable, there exists a countable ordinal
α1 > α0 such that every t ∈ Tα0 is compatible with some a ∈ A ∩ Tα1 . Then
there is α2 > α1 such that each t ∈ Tα1 is comparable with some a ∈ A∩Tα2 ,
etc. If α0 < α1 < α2 < . . . < αn < . . . is constructed in this way and if
α = limn αn, then A ∩ Tα is a maximal antichain in Tα. ��

We now use ♦ to construct a normal Suslin tree (T, <T ). We proceed by
induction on levels. To facilitate the use of ♦, we let points of T be countable
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ordinals, T = ω1, and in fact each Tα (the first α levels of T ) is an initial
segment of ω1.

We construct Tα, α < ω1, such that each Tα is a normal α-tree and such
that Tβ extends Tα whenever β > α. T1 consists of one point. If α is a limit
ordinal, then (Tα, <T ) is the union of the trees (Tβ , <T ), β < α. If α is
a successor ordinal, then (Tα+1, <T ) is an extension of (Tα, <T ) obtained by
adjoining infinitely immediate successors to each x at the top level of Tα.

It remains to describe the construction of Tα+1 if α is a limit ordinal. Let
〈Sα : α < ω1〉 be a ♦-sequence. If Sα is a maximal antichain in (Tα, <T ),
then we use Lemma 15.25 and find an extension (Tα+1, <T ) of Tα such that
Sα is maximal in Tα+1. Otherwise, we let Tα+1 be any extension of Tα that
is a normal (α + 1)-tree. (In either case, we let the set Tα+1 be an initial
segment of countable ordinals.)

We shall now show that the tree T =
⋃

α<ω1
Tα is a normal Suslin tree.

It suffices to verify that T has no uncountable antichain. If A ⊂ T (= ω1)
is a maximal antichain in T , then by Lemma 15.27, A ∩ Tα is a maximal
antichain in Tα, for a closed unbounded set of α’s. It follows that easily from
the construction that for a closed unbounded set of α’s, Tα = α. Thus using
the Diamond Principle, we find a limit ordinal α such that A ∩ α = Sα and
A ∩ α is a maximal antichain in Tα. However, we constructed Tα+1 in such
a way that A ∩ α is maximal in Tα+1, and therefore in T . It follows that
A = A ∩ α and so A is countable. ��

Suslin trees are a fruitful source of counterexamples in set-theoretic topol-
ogy as well as in the theory of Boolean algebras. As an example, let (T, <)
be a Suslin tree, and consider the partial ordering (PT , <) = (T, >). Any
two elements of T are incomparable in T if and only if they are incompatible
in PT . Thus PT satisfies the countable chain condition.

Lemma 15.28. If T is a normal Suslin tree, then PT is ℵ0-distributive.

Proof. Let Dn, n = 0, 1, 2 . . . , be open dense subsets of PT . We shall prove
that

⋂∞
n=0 Dn is dense in PT . First we claim that if D ⊂ PT is open dense,

then there is an α < ω1 such that D contains all levels of T above α. To prove
this, let A be a maximal antichain in D. A is an antichain in T and hence
countable. Thus let α < ω1 be such that all a ∈ A are below level α. Now
if x ∈ T is at level ≥ α, x is comparable with some a ∈ A (by maximality
of A), and hence a ≤T x. Since D is open, we have x ∈ D.

Now if Dn, n = 0, 1, . . . , are open dense, we pick countable ordinals αn

such that Dn contains all levels of T above αn; and since T is normal, this
implies that

⋂∞
n=0 Dn is dense in PT . ��

Corollary 15.29. If T is a normal Suslin tree, then B = B(PT ) is an ℵ0-
distributive, c.c.c., atomless, complete Boolean algebra. ��
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Random Reals

Consider the notion of forcing where forcing conditions are Borel sets of reals
of positive Lebesgue measure; a condition p is stronger than q if p ⊂ q. The
corresponding complete Boolean algebra is B/Iµ where B is the σ-algebra of
all Borel sets of reals and Iµ is the σ-ideal of all null sets. As Iµ is σ-saturated,
B/Iµ satisfies the countable chain condition, and hence the forcing preserves
cardinals.

The generic extension V [G] is determined by a single real, called a random
real. Let a ∈ RV [G] be the unique member of each rational interval [r1, r2]V [G]

such that [r1, r2]V ∈ G. Conversely, G can be defined from a, and so V [G] =
V [a]. (see Exercise 13.34 for the meaning of V [a].)

The following lemma illustrates one of the differences between random and
generic reals. If f and g are functions from ω to ω we say that g dominates f
if f(n) < g(n) for all n.

Lemma 15.30. (i) In the random real extension V [G], every f : ω → ω is
dominated by some g ∈ V .

(ii) In the Cohen real extension V [G], there exists a function f : ω → ω
that is not dominated by any g ∈ V .

Proof. (i) Forcing conditions are Borel sets of positive measure, and we freely
confuse them with their equivalence classes in B/Iµ.

Let p � ḟ : ω → ω; we shall find a q < p and some g : ω → ω such that
q forces that g dominates ḟ . For each n, let g(n) be sufficiently large, so that

µ(p − ‖ḟ(n) < g(n)‖) <
1
2n

· 1
4
· µ(p).

The Borel set q = p ∩
⋂∞

n=0 ‖ḟ(n) < g(n)‖ has measure at least µ(p)/2, and
forces ∀n ḟ(n) < g(n).

(ii) We use the following variant of Cohen forcing: Forcing conditions are
finite sequences 〈p(0), . . . , p(n − 1)〉 of natural numbers, and p < q if and
only if p ⊃ q. (This forcing produces the same generic extension—and has
the same B(P )—as the forcing from Example 14.2).

Let ḟ be the name for the function f =
⋃

G. If p is any condition and
g : ω → ω is in V , then there exist a stronger q ⊃ p and some n ∈ dom(q)
such that q(n) > g(n). It follows that q forces g(n) > ḟ(n) (because q �
ḟ(n) = q(n)). ��

To add a large number of random reals, we use product measure:

Example 15.31. Let κ be an infinite cardinal and let I = κ × ω. Let Ω =
{0, 1}I. Let T be the set of all finite 0–1 functions with dom(t) ⊂ I. Let S be
the σ-algebra generated by the sets St, t ∈ T , where St = {f ∈ Ω : t ⊂ f}.
The product measure on S is the unique σ-additive measure such that each St

has measure 1/2|t|. Let B = S/I where I is the ideal of measure 0 sets.
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If G is a generic ultrafilter on B then f =
⋃
{t : St ∈ G} is a 0–1 function

on I, and for each α < κ, we define fα(n) = f(α, n), for all n < ω. The fα,
α < κ, are κ-distinct random reals, and the continuum in V [G] has size at
least κ. But since |B|ℵ0 = κℵ0 , we have (2ℵ0)V [G] = κℵ0 . ��

Forcing with Perfect Trees

This section describes forcing with perfect trees (due to Gerald Sacks) that
produces a real of minimal degree of constructibility. If forced over L, the
generic filter yields a real a such that a /∈ L and such that for every real
x ∈ L[a], either x ∈ L or a ∈ L[x].

Let Seq({0, 1}) denote the set of all finite 0–1 sequences. A tree is a set
T ⊂ Seq({0, 1}) that satisfies

(15.24) if t ∈ T and s = t�n for some n, then s ∈ T .

A nonempty tree T is perfect if for every t ∈ T there exists an s ⊃ t such that
both s�0 and s�1 are in T . (Compare with (4.4) and Lemma 4.11.) The set
of all paths in a perfect tree is a perfect set in the Cantor space {0, 1}ω.

Definition 15.32 (Forcing with Perfect Trees). Let P be the set of all
perfect trees p ⊂ Seq({0, 1}); p is stronger than q if and only if p ⊂ q.

If G is a generic set of perfect trees, let

(15.25) f =
⋃
{s : (∀p ∈ G) s ∈ p}.

The function f : ω → {0, 1} is called a Sacks real. Note that V [G] = V [f ].
Since |P | = 2ℵ0 , if we assume CH in the ground model, P satisfies the ℵ2-
chain condition and all cardinals ≥ ℵ2 are preserved. We prove below that
ℵ1 is preserved as well.

Definition 15.33. A generic filter G is minimal over the ground model M
if for every set of ordinals X in M [G], either X ∈ M or G ∈ M [X ].

Theorem 15.34 (Sacks). When forcing with perfect trees, the generic filter
is minimal over the ground model.

The proof uses the technique of fusion. Let p be a perfect tree. A node
s ∈ p is a splitting node if both s�0 ∈ p and s�1 ∈ p; a splitting node s is
an nth splitting node if there are exactly n splitting nodes t such that t ⊂ s.
(A perfect tree has 2n−1 nth splitting nodes.) For each n ≥ 1, let

(15.26) p ≤n q if and only if p ≤ q and every nth splitting node of q is an
nth splitting node of p.

A fusion sequence is a sequence of conditions {pn}∞n=0 such that pn ≤n pn−1

for all n ≥ 1. The following is the key property of fusion sequences:
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Lemma 15.35. If {pn}∞n=0 is a fusion sequence then
⋂∞

n=0 pn is a perfect
tree. ��

If s is a node in p, let p�s denote the tree {t ∈ p : t ⊂ s or t ⊃ s}. If A is
a set of incompatible nodes of p and for each s ∈ A, qs is a perfect tree such
that qs ⊂ p�s, then the amalgamation of {qs : s ∈ A} into p is the perfect
tree

(15.27) {t ∈ p : if t ⊃ s for some s ∈ A then t ∈ qs}.

(Replace in p each p�s by qs.)

Proof of Theorem 15.34. Let Ẋ be a name for a set of ordinals and let p ∈ P
be a condition that forces Ẋ /∈ V ; no stronger condition forces Ẋ = A, for
any A ∈ V . We shall find a condition q ≤ p and a set of ordinals {γs : s is
a splitting node of q} such that qs�0 and qs�1 decide γs ∈ Ẋ, but in opposite
ways. Then the generic branch (15.25) can be recovered from ẊG, and so
V [ẊG] = V [G].

To construct q and {γs}s we build a fusion sequence {pn}∞n=0 as follows:
Let p0 = p. For each n ≥ 1, let Sn be the set of all nth splitting nodes of pn−1.
For each s ∈ Sn, let γs be an ordinal such that pn−1�s does not decide γs ∈ Ẋ,
and let qs�0 ≤ pn−1�s�0 and qs�1 ≤ pn−1�s�1 be conditions that decide
γs ∈ Ẋ in opposite ways. Then let pn be the amalgamation of {qs�i : s ∈ Sn

and i = 0, 1} into pn−1. Clearly, pn ≤n pn−1, and so {pn}∞n=0 is a fusion
sequence. Then we set q =

⋂∞
n=0 pn. ��

A similar argument shows that forcing with perfect trees preserves ℵ1:

Lemma 15.36. If X is a countable set of ordinals in V [G] then there exists
a set A ∈ V , countable in V , such that X ⊂ A.

Proof. Let Ḟ be a name and let p ∈ P be such that p forces “Ḟ is a function
from ω into the ordinals.” We build a fusion sequence {pn}∞n=0 with p0 = p
as follows: For each n ≥ 1, let Sn be the set of all nth splitting nodes of pn−1.
For each s ∈ Sn, let qs�0, qs�1, as�0, as�1 be such that (for i = 0, 1)
qs�i ≤ pn−1�s�i and qs�i � Ḟ (n − 1) = as�i. Let pn be the amalgamation
of {qs�i : s ∈ Sn and i = 0, 1}. Then let q =

⋂∞
n=0 pn, and

A =
∞⋃

n=0
{as�i : s ∈ Sn and i = 0, 1}.

It follows that q � ran(Ḟ ) ⊂ A. ��

More on Generic Extensions

Properties of a generic extensions are determined by properties of the forcing
notion that constructs it. For instance, if P satisfies the countable chain con-
dition then V [G] preserves cardinals. Or, if P is ω-distributive then V [G] has



246 Part II. Advanced Set Theory

no new countable sets of ordinals. But since the model V [G] is determined
by the complete Boolean algebra B(P ), its properties depend on properties
of the algebra. Below we illustrate the correspondence between properties of
a complete Boolean algebra B and truth in the model V B.

The first example shows the importance of distributivity.
Let κ and λ be cardinals. A complete Boolean algebra B is (κ, λ)-dis-

tributive if

(15.28)
∏

α<κ

∑
β<λ

uα,β =
∑

f :κ→λ

∏
α<κ

uα,f(α).

Note that (15.28) is a special case of (7.28); B is κ-distributive if and only
if it is (κ, λ)-distributive for all λ. As in Lemma 7.16 we can reformulate
(κ, λ)-distributivity as follows:

Lemma 15.37. B is (κ, λ)-distributive if and only if every collection of
κ partitions of B of size at most λ has a common refinement. ��

Theorem 15.6 and Exercise 15.5 yield the following equivalence:

Theorem 15.38. B is (κ, λ)-distributive if and only if every f : κ → λ in
the generic extension by B is in the ground model.

Proof. If ‖ḟ is a function from κ to λ‖ = 1, then {‖ḟ(α) = β‖ : β < λ} is
a partition of B of size ≤ λ. ��

Exercises 15.31 and 15.32 give short proofs of Boolean algebraic results
using generic extensions.

A related concept is weak distributivity: B is called weakly (κ, λ)-distribu-
tive, if

(15.29)
∏

α<κ

∑
β<λ

uα,β =
∑

g:κ→λ

∏
α<κ

∑
β<g(α)

uα,β .

A modification of Theorem 15.38 gives this:

Lemma 15.39. B is weakly (κ, λ)-distributive if and only if every f : κ → λ
in V [G] is dominated by some g : κ → λ that is in V (i.e., f(α) < g(α) for
all α < κ). ��

Consequently, by Lemma 15.30(i), the measure algebra B/Iµ is weakly
(ω, ω)-distributive.

Let B be a complete Boolean algebra and let D be a complete subalgebra
of B. If G is generic on B, then it is easy to see that G ∩ D is generic on D,
and so V [G ∩ D] is a model of ZFC, and V ⊂ V [G ∩ D] ⊂ V [G]. We shall
prove that every model of ZFC between V and V [G] is obtained this way,
and that for every subset A of V in V [G] there is a complete subalgebra D
of B such that V [G ∩ D] = V [A].
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We recall (cf. Chapter 7) that a complete subalgebra B of a complete
Boolean algebra D is (completely) generated by a set X ⊂ D if B is the
smallest complete subalgebra of D such that X ⊂ B. Let κ be a cardinal. We
say that a complete Boolean algebra B is κ-generated if there exists some
X ⊂ B of size at most κ such that the complete subalgebra of B generated
by X is equal to B.

Lemma 15.40. Let X be a subset of a complete Boolean algebra B such that
B is completely generated by X. Then for every generic G on B, V [G] =
V [X ∩ G].

Proof. We want to show that V [G] is the least model such that the set A =
X ∩ G is in V [G]. It suffices to show that G can be defined in terms of A.

Since B is generated by X , every element of B can be obtained from
the elements of X by successive (transfinite) application of the operation −
and

∑
. Thus let Xα be subsets of B defined recursively as follows:

X0 = X, Xα = {−a : a ∈ Xα}, and

Xα = {a : a =
∑

Z where Z ⊂
⋃

β<α(Xβ ∪ Xβ)}.

Then B =
⋃

α<θ Xα for some θ ≤ |B|+. If we denote Gα = G ∩ Xα, Gα =
G ∩ Xα, we have

(15.30) G0 = A, Gα = {−a : a ∈ Xα − Gα}, and

Gα = {a ∈ Xα : a =
∑

Z where Z contains at least one b
in some Gβ or Gβ , β < α},

and G =
⋃

α<θ Gα. Thus given A, we define Gα and Gα inductively us-
ing (15.30) and let G =

⋃
α<θ Gα. ��

Corollary 15.41. If B is κ-generated, then V [G] = V [A] for some A ⊂ κ.
��

Corollary 15.42. If G is generic on B and A ∈ V [G] is a subset of κ, then
there exists a κ-generated complete subalgebra D of B such that V [D ∩ G] =
V [A] for some A ⊂ κ.

Proof. Let Ȧ be a name for A. We let X = {uα : α < κ}, where uα =
‖α̌ ∈ A‖. Now let D be the complete subalgebra completely generated by X ;
by Lemma 15.40 we have V [X ∩ G] = V [D ∩ G]. It remains to show that
V [X ∩ G] = V [A].

On the one hand, we have A = {α : uα ∈ X ∩ G}. On the other hand,
X ∩ G = {uα : α ∈ A}. ��

Lemma 15.43. Let G be generic on B. If M is a model of ZFC such that
V ⊂ M ⊂ V [G], then there exists a complete subalgebra D ⊂ B such that
M = V [D ∩ G].
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Proof. We show that M = V [A], where A is a set of ordinals. Then the
lemma follows from Corollary 15.42. First we note that since M satisfies the
Axiom of Choice, there exists for every X ∈ M a set of ordinals AX ∈ M
such that X ∈ V [AX ]. We let Z = P (B)∩M , and let A = AZ ; we claim that
M = V [A].

If X ∈ M , consider the set of ordinals AX ; by Corollary 15.42 there exists
a subalgebra DX ⊂ B such that V [AX ] = V [DX ∩ G]. Hence DX ∩ G ∈ M ,
and we have DX ∩ G ∈ Z. Since Z ∈ V [A], it follows that DX ∩ G ∈ V [A]
and hence X ∈ V [A]. Thus M = V [A]. ��

Let us now address the question under what conditions one generic ex-
tension embeds (as a submodel) into another generic extension. Of course, if
B(P ) = B(Q), then V P = V Q and if B(P ) is a complete subalgebra of B(Q)
then V P ⊂ V Q. But if B1 is a complete subalgebra of B2, we can have
V [G∩B1] = V [G] even if B1 �= B2. For every a ∈ B+

2 (not necessarily in B1),
let B1�a = {x·a : x ∈ B1}. Now assume that the set {a ∈ B+

2 : B1�a = B2�a}
is dense in B2. Then it is easy to see that V [G ∩ B1] = V [G], for every
generic G on B2. (One can show that this condition is also necessarily for B1

to give the same generic extension as B2.)
By V P ⊂ V Q we mean the following: Whenever G is a generic filter on Q

then there is some H ∈ V [G] that is a generic filter on P . In practice there
are several ways how to verify V P ⊂ V Q. The following two lemmas are
sometimes useful:

Lemma 15.44. Let i : P → Q be such that

(i) if p1 ≤ p2 then i(p1) ≤ i(p2),
(ii) if p1 and p2 are incompatible then i(p1) and i(p2) are incompatible,
(iii) for every q ∈ Q there is a p ∈ P such that for all p′ ≤ p, i(p′) is

comparable with q.

Then V P ⊂ V Q.

Proof. If G is generic on Q then i−1(G) is generic on P . ��

Lemma 15.45. Let h : Q → P be such that

(i) if q1 ≤ q2 then h(q1) ≤ h(q2).
(ii) for every q ∈ Q and every p ≤ h(q) there exists a q′ compatible with q

such that h(q′) ≤ p.

Then V P ⊂ V Q.

Proof. If D ⊂ P is open dense then h−1(D) is predense in Q. It follows that
if G is generic on Q then {p ∈ P : p ≥ h(q) for some q ∈ G} is generic
on P . ��

We conclude this section with the following result that shows that for
every set A of ordinals, the model L[A] is a generic extension of HOD :



15. Applications of Forcing 249

Theorem 15.46 (Vopěnka). Let V = L[A] where A is a set of ordinals.
Then V is a generic extension of the model HOD. There is a Boolean algebra
B ∈ HOD complete in HOD , and there is an ultrafilter G ⊂ B, generic
over HOD , such that V = HOD[G].

Proof. Let κ be such that A ⊂ κ. We let C = OD ∩P (P (κ)) be the family of
all ordinal definable sets of subsets of κ. Let us consider the partial ordering
(C,⊂).

First we claim that there is a hereditarily ordinal definable partially or-
dered set (B,≤) and an ordinal definable isomorphism π between (C,⊂) and
(B,≤): There is a definable one-to-one mapping F of OD into the ordinals.
The set C is an ordinal definable set of ordinal definable sets and so F �C is
an OD one-to-one mapping of C onto F (C). We let B = F (C), and define
the partial ordering of B so that (B,≤) is isomorphic to (C,⊂). Since ⊂∩C2

is an OD relation, we have (B,≤) ∈ HOD .
Now (C,⊂) is clearly a Boolean algebra. Moreover, if X ⊂ C is ordinal

definable, then
⋃

X is ordinal definable and so
⋃

X =
∑C X. Hence the

algebra C is OD-complete; and using the OD isomorphism π, we can conclude
that (B,≤) is a complete Boolean algebra in HOD .

Now we let H = {u ∈ C : A ∈ u}. Clearly, H is an ultrafilter on C,
and if X ⊂ H is OD , then

⋂
X ∈ H . Hence G = π(H) is an HOD-generic

ultrafilter on B.
It remains to show that V = HOD [G]. Let f : κ → B be the function

defined by f(α) = π({Z ⊂ κ : α ∈ Z}). Clearly, f is OD , and so f ∈ HOD .
Now we note that for every α < κ, α ∈ A if and only if f(α) ∈ G and
therefore A ∈ HOD [G]. It follows that V = L[A] = HOD [G]. ��

Symmetric Submodels of Generic Models

In Chapter 14 we constructed a model of set theory in which the reals cannot
be well-ordered, thus showing that the Axiom of Choice is independent of the
axioms of ZF. What follows is a more systematic study of models in which the
Axiom of Choice fails. We shall present a general method of construction of
submodels of generic extensions. The construction uses symmetry arguments
similar to those used in Theorem 14.36, and the models obtained are generally
models of ZF and do not satisfy the Axiom of Choice. This method has been
used to obtain a number of results about the relative strength of various
weaker versions and consequences of the Axiom of Choice.

The main idea of the construction of symmetric models is the use of auto-
morphisms of the Boolean-valued model V B and the Symmetry Lemma 14.37.
In fact, the idea of using automorphisms of the universe to show that the Ax-
iom of Choice is unprovable dates back into the preforcing era of set theory.
We shall describe this older construction first.
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In order to describe this method, we introduce the theory ZFA, set theory
with atoms. In addition to sets, ZFA has additional objects called atoms.
These atoms do not have any elements themselves but can be collected into
sets. Obviously, we have to modify the Axiom of Extensionality, for any two
atoms have the same elements—none.

The language of ZFA has, in addition to the predicate ∈, a constant A.
The elements of A are called atoms ; all other objects are sets. The axioms
of ZFA are the axioms 1.1–1.8 of ZF plus (15.31) and (15.32):

(15.31) If a ∈ A, then there is no x such that x ∈ a.

The Axiom of Extensionality takes this form:

(15.32) If two sets X and Y have the same elements, then X = Y .

Other axioms of ZF remain unchanged. In particular, the Axiom of Regularity
states that every nonempty set has an ∈-minimal element. This minimal
element may be an atom.

The effect of atoms is that the universe is no longer obtained by iterated
power set operation from the empty set. In ZFA, the universe is built up from
atoms.

Ordinal numbers are defined as usual except that one has to add that an
ordinal does not contain any atom. For any set S, let us define the following
cumulative hierarchy:

(15.33) P 0(S) = S,

Pα(S) =
⋃

β<α

P β(S) if α is limit,

Pα+1(S) = Pα(S) ∪ P (Pα(S)),

P∞(S) =
⋃

α∈Ord

Pα(S).

It follows that V = P∞(A), and that the kernel, the class P∞(∅) of
“hereditary” sets, is a model of ZF. If A is empty, then we have just ZF.

Lemma 15.47. The theory ZFA+AC+“A is infinite” is consistent relative
to ZFC.

Proof. Construct a model of ZFA. Let C be an infinite set of sets of the same
rank (so that X /∈ TC(Y ) for any X, Y ∈ C). Consider one X0 ∈ C as the
empty set, and all other X ∈ C as atoms. Build up the model from C by
iterating the operation P ∗(Z) = P (Z) − {∅}. ��

While in ZF, the universe does not admit nontrivial automorphisms, the
important feature of ZFA is that every permutation of atoms induces an
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automorphism of V : If π is a one-to-one mapping of A onto A (a permutation
of A), then we define for every x (by ∈-induction)

π(x) = {π(t) : t ∈ x}.

Clearly, π is an ∈-automorphism, and we have π(x) = x for every x in the
kernel P∞(∅).

We use these automorphisms to construct transitive models of ZFA. First
we point out that the analog of Theorem 13.9 is true in ZFA: If M is a tran-
sitive, almost universal class closed under Gödel operations, and if A ∈ M ,
then M is a model of ZFA.

Let G be a group of permutations of a set S. A set F of subgroups of G
is a filter on G, if for all subgroups H , K of G:

(i) G ∈ F ;
(ii) if H ∈ F and H ⊂ K, then K ∈ F ;
(iii) if H ∈ F and K ∈ F , then H ∩ K ∈ F ;
(iv) if π ∈ G and H ∈ F , then πHπ−1 ∈ F .

(15.34)

For a given group of permutations G of the set A of atoms and a given filter F
on G, we say that x is symmetric if the group

sym(x) = {π ∈ G : π(x) = x}

belongs to F .
Let us further assume that sym(a) ∈ F for all a ∈ A, that is, that all

atoms are symmetric and let U be the class of all hereditarily symmetric
objects:

(15.35) U = {x : every z ∈ TC({x}) is symmetric}.

The class U is called a permutation model. It is a transitive class and includes
the kernel (because sym(x) = G for all x ∈ P∞(∅)), moreover, all atoms are
in U , and A ∈ U .

Lemma 15.48. U is a transitive model of ZFA.

Proof. We show that U is closed under Gödel operations and almost univer-
sal. It is easy to see that Gi(πx, πy) = π(Gi(x, y)) for all i = 1, . . ., 10, and
therefore

sym(Gi(x, y)) ⊃ sym(x) ∩ sym(y) (i = 1, . . . , 10).

It follows that if x and y are hereditarily symmetric, then so is Gi(x, y).
To show that U is almost universal, it suffices to verify that for each α,

U ∩Pα(A) is symmetric. For all x and all π ∈ G we have rank(πx) = rankx.
Also, sym(πx) = π · sym(x) · π−1, and hence, by property (iv) in (15.34), if
x is symmetric and π ∈ G, then π(x) is symmetric. Thus for all π ∈ G we
have π(U ∩ Pα(A)) = U ∩ Pα(A) and therefore, sym(U ∩ Pα(A)) = G. ��
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In the following examples we construct permutation models as follows:
For every finite E ⊂ A, we let

(15.36) fix(E) = {π ∈ G : πa = a for all a ∈ E}

and let F be the filter on G generated by {fix(E) : E ⊂ A is finite}. F is
a filter since π · fix(E) · π−1 = fix(π(E)). Thus x is symmetric if and only
if there exists a finite set of atoms E, a support for x, such that π(x) = x
whenever π ∈ G and π(a) = a for all a ∈ E.

We shall now give two examples of permutation models.

Example 15.49. Let A be infinite, and let G be the group of all permuta-
tions of A. Let F be generated by {fix(E) : E ⊂ A is finite}, and let U be
the permutation model. In the model U the set A, although infinite, has no
countable subset. Hence the Axiom of Choice fails in U .

Proof. Assume that there exists an f ∈ U that is a one-to-one mapping of ω
into A. Let E be a finite subset of A such that πf = f for every π ∈ fix(E).
Since E is finite, there exists an a ∈ A − E such that a = f(n) for some n;
also, let b ∈ A−E be arbitrary such that b �= a. Now, let π be a permutation
of A such that πa = b but πx = x for all x ∈ E. Then πf = f , and since n is
in the kernel, we have πn = n. It follows that π(f(n)) = (πf)(πn) = f(n);
however, f(n) = a while π(f(n)) = π(a) �= a. A contradiction. ��

Example 15.50. Let A be a disjoint countable union of pairs: A =
⋃∞

n=0 Pn,
Pn = {an, bn}, and let G be the group of all permutations of A such that
π({an, bn}) = {an, bn}, for all n. Let F be generated by {fix(E) : E ⊂ A is
finite}, and let U be the permutation model. In the model U , {Pn : n ∈ ω}
is a countable set of pairs and has no choice function.

Proof. Each Pn is a symmetric set since π(Pn) = Pn for all π ∈ G. For the
same reason, π〈Pn : n ∈ ω〉 = π({(n, Pn) : n ∈ ω}) = 〈Pn : n ∈ ω〉, for all
π ∈ G, and so 〈Pn : n ∈ ω〉 ∈ U . Hence S = {Pn : n ∈ ω} is a countable set
in U .

We show that there is no function f ∈ U such that dom(f) = S and
f(Pn) ∈ Pn for all n. Assume that f is such a function and let E be a support
of f . There exists n such that neither an nor bn is in E, and we let π ∈ G be
such that π(an) = bn but πx = x for all x ∈ E. Then πf = f , πPn = Pn,
and so π(f(Pn)) = (πf)(πPn) = f(Pn) but π(f(Pn)) = bn while f(Pn) = an;
a contradiction. ��

The method of permutation models gives numerous examples of violation
of the Axiom of Choice. One usually uses the set of atoms to produce a coun-
terexample (in the permutation model) to some consequence of the Axiom of
Choice, thus showing the limitations of proofs not using the Axiom of Choice.
(A typical example is a vector space that has no basis, a set that cannot be
linearly ordered, etc.) However, these examples do not give any information
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about the “true” sets, like real numbers, sets of real numbers, etc., since those
sets are in the kernel. It is clear that a different method has to be used to
investigate the role of the Axiom of Choice in ZF. We shall now describe such
a method and exploit the similarities between it and permutation models.

We shall use automorphisms (symmetries) to construct submodels of
generic extensions. As shown in (14.36), every automorphism π of a com-
plete Boolean algebra B induces an automorphism of the Boolean-valued
model V B . The important property of such an automorphism is (14.36) in
the Symmetry Lemma 14.37:

‖ϕ(πẋ1, . . . , πẋn)‖ = π(‖ϕ(ẋ1, . . . , ẋn)‖).

for all names ẋ1, . . . , ẋn.
Let G be a group of automorphisms of B, and let F be a filter on G,

i.e., a set of subgroups that satisfies (15.34). For each ẋ ∈ V B we define its
symmetry group

sym(ẋ) = {π ∈ G : π(ẋ) = ẋ}.
If π is an automorphism of B, then

(15.37) sym(πẋ) = π · sym(ẋ) · π−1.

This is because σ(πẋ) = πẋ if and only if (π−1σπ)(ẋ) = ẋ. Given a fil-
ter F on G, we call ẋ symmetric if sym(ẋ) ∈ F . The class HS of hereditarily
symmetric names is defined by induction on ρ(ẋ):

if dom(ẋ) ⊂ HS and if ẋ is symmetric, then ẋ ∈ HS .

Note that π(x̌) = x̌ for all x and all π, and so all x̌ are in HS . If a name ẋ
is symmetric, and if π ∈ G, then by (15.37) and (15.34)(iv), π(ẋ) is also
symmetric. It follows that πẋ ∈ HS whenever ẋ ∈ HS and π ∈ G.

The class HS is a submodel of the Boolean-valued model V B, and can be
shown to satisfy all axioms of ZF. Instead, we prove that its interpretation
is a transitive model of ZF.

Thus let M be the ground model, let B be a complete Boolean algebra
in M , and let G and F be respectively (in M), a group of automorphisms
of B and a filter on G. Let G be an M -generic ultrafilter on B. We let

(15.38) N = {ẋG : ẋ ∈ HS}

be the class of all elements of M [G] that have a hereditarily symmetric name.
N is called a symmetric submodel of M [G]. We will prove that N is a tran-
sitive model of ZF. Before we do so, we notice that HS is a Boolean-valued
model (with the same ‖x ∈ y‖ and ‖x = y‖ as MB). Thus we can define
‖ϕ‖HS for every formula ϕ. Note that

(15.39) ‖∃xϕ(x)‖HS =
∑

ẋ∈HS

‖ϕ(ẋ)‖
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and that ‖ϕ‖HS = ‖ϕ‖ whenever ϕ is a ∆0 formula. We also have a forcing
theorem for the model N :

(15.40) N � ϕ(x1, . . . , xn) if and only if ‖ϕ(ẋ1, . . . , ẋn)‖HS ∈ G

where ẋ1, . . . , ẋn ∈ HS are names for x1, . . . , xn. Finally, since π(HS ) = HS
for all π ∈ G, we have the Symmetry Lemma for ‖ ‖HS : If π ∈ G and
ẋ1, . . . , ẋn ∈ HS , then

(15.41) ‖ϕ(πẋ1, . . . , πẋn)‖HS = π(‖ϕ(ẋ1, . . . , ẋn)‖HS ).

Lemma 15.51. A symmetric submodel N of M [G] is a transitive model
of ZF, and M ⊂ N ⊂ M [G].

Proof. Since x̌ ∈ HS for every x ∈ M , we have M ⊂ N . The heredity of HS
implies that N is transitive. To verify that the axioms of ZF hold in N , we
follow closely the proof of the Generic Model Theorem. As there, we have to
show that certain sets exist in the model by exhibiting names for the sets;
here we have to find such names in HS .

A. Extensionality, Regularity, Infinity. These axioms hold in N since N is
transitive and N ⊃ M .

B. Separation. Let ϕ be a formula and let

Y = {x ∈ X : N � ϕ(x, p)}

where X, p ∈ N . Let Ẋ, ṗ ∈ HS be names for X , p. We let Ẏ ∈ MB as
follows:

dom(Ẏ ) = dom(Ẋ), Ẏ (ṫ) = Ẋ(ṫ) · ‖ϕ(ṫ, ṗ)‖HS .

A routine argument shows that Ẏ is a name for Y ; it remains to show that
Ẏ is symmetric.

We shall show that sym(Ẏ ) ⊃ sym(Ẋ) ∩ sym(ṗ). Thus let π ∈ G be
such that πẊ = Ẋ and πṗ = ṗ. For every ṫ ∈ dom(Ẋ) we have πṫ ∈
dom(πẊ) = dom(Ẋ) and Ẋ(πṫ) = (πẊ)(πṫ) = π(Ẋ(ṫ)), and ‖ϕ(πṫ, ṗ)‖HS =
π‖ϕ(ṫ, ṗ)‖HS , and so Ẏ (πṫ) = π(Ẏ (ṫ)). Therefore, πẎ = Ẏ .

C. Pairing, Union, Power Set. Let X ∈ N and let Ẋ ∈ HS be a name for X .
For the union, we let S =

⋃
{dom(ẏ) : ẏ ∈ dom(Ẋ)}. If π ∈ sym(Ẋ) then

π(S) = S and so the set Y = {tG : t ∈ S} has a hereditarily symmetric name
Ẏ : Ẏ (ṫ) = 1 for all ṫ ∈ S. Moreover, Y ⊃

⋃
X .

Pairing and Power Set are handled similarly.

D. Replacement. We show that if X ∈ N , then there exists a Y ∈ N such
that for all u ∈ X , N satisfies

∃v ϕ(u, v) → (∃v ∈ Y )ϕ(u, v).

We proceed as in (14.15) except that (we deal with ‖ ‖HS instead of ‖ ‖
and that) we look for S ⊂ HS such that π(S) = S for all π ∈ G (for then



15. Applications of Forcing 255

Y = {tG : t ∈ S} has a name in HS ). This is accomplished by taking for S
the set HS ∩ MB

α for large enough α. Since every π preserves the rank and
since each π ∈ G preserves HS , we have π(S) = S for all π ∈ G. ��

In general, the set G is not a member of N , and N does not satisfy the
Axiom of Choice.

The model in Example 15.52 is due to Cohen. It is an analog of the
permutation model in Example 15.49, and in fact, it is the same model that
was used in Theorem 14.36.

Example 15.52. Let V [G] be the generic extension adjoining countably
many Cohen reals: P is the set of all finite 0–1 functions p with domain
dom(p) ⊂ ω ×ω. We define an, n ∈ ω, and A = {an : n ∈ ω}, as well as their
canonical names as in (14.40) and (14.41).

Every permutation π of ω induces an automorphism of P (and in turn
an automorphism of B) by (14.44). We can view such permutations as per-
mutations of the set {ȧn : n ∈ ω}. Let G be the group of all automorphisms
of B that are induced by such permutations. For every finite E ⊂ ω, let

fix(E) = {π ∈ G : πn = n for each n ∈ E},

and let F be the filter on G generated by the {fix(E) : E ⊂ ω is finite}.
Now let HS be the class of all hereditarily symmetric names, and let N be

the corresponding symmetric submodel of V [G]. It is easy to see that all ȧn

are in HS and so is Ȧ. Moreover, the an are distinct subsets of ω and so A is
an infinite set of reals in N .

We claim that in N , A has no countable subset. Thus assume that some
f ∈ N is a one-to-one function from ω into A. Let ḟ ∈ HS and let p0 ∈ G be
such that

p0 � ḟ maps ω̌ one-to-one into Ȧ.

The contradiction is obtained as in Lemma 14.39. We let E be a support
of ḟ , i.e., a finite subset of ω such that sym(ḟ) ⊃ fix(E). We pick i ∈ ω such
that i /∈ E, and find p ≤ p0 and n ∈ ω such that

p � ḟ(ň) = ȧi.

Then we find a permutation π ∈ G such that:

(i) πp and p are compatible;
(ii) π ∈ fix(E);
(iii) πi = j �= i.

Then πḟ = ḟ , π(ň) = ň, and we have p∪πp � ḟ(ň) = ȧi and p∪πp � ḟ(ň) =
ȧj , a contradiction. ��

The set A in Example 15.52 is a set of reals and is therefore linearly
ordered. Lévy proved that in the model N in Example 15.52, every set can
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be linearly ordered. In fact, Halpern and Lévy proved that the model even
satisfies the Prime Ideal Theorem, thus establishing the independence of the
Axiom of Choice from the Prime Ideal Theorem. We note that numerous
consequences of the Axiom of Choice in mathematics can be proved using
the Prime Ideal Theorem instead—among others the Hahn-Banach Theo-
rem, Compactification Theorems, the Completeness Theorem, the Tikhonov
Theorem for Hausdorff spaces, etc.

Another construction of Cohen yields a model that has similar properties
as the permutation model in Example 15.50. The atoms are replaced not by
reals, but by sets of reals.

The similarity between permutation models and symmetric submodels is
made precise by the following result that shows that every permutation model
can be embedded in a symmetric model of ZF, “with a prescribed degree of
accuracy.”

Theorem 15.53 (Jech-Sochor). Let U be a permutation model, let A be
its set of atoms, and let α be an ordinal. There exist a symmetric model N
of ZF and an embedding x �→ x̃ of U into N such that

(Pα(A))U is ∈-isomorphic to
(
Pα(Ã)

)N .

Proof. We work in the theory ZFA, plus the Axiom of Choice. We denote A
the set of all atoms, and let M be the kernel, M = P∞(∅). We consider
a group G of permutations of A, and a filter F on G, and let U be the
permutation model given by G and F . Let α be an ordinal number.

We shall construct a generic extension M [G] of the kernel, and then the
model N as a symmetric submodel of M [G]. We construct M [G] by adjoining
to M a number of subsets of a regular cardinal κ, κ of them for each a ∈ A.
We use these to embed U in M [G].

Let κ be a regular cardinal such that κ > |Pα(A)|. The set P of forcing
conditions consists of 0–1 functions p such that | dom(p)| < κ and dom(p) ⊂
(A × κ) × κ; as usual, p < q if and only if p ⊃ q.

Let G be an M -generic filter on P . For each a ∈ A and each ξ < κ, we let

xa,ξ = {η ∈ κ : p(a, ξ, η) = 1 for some p ∈ G}.

Each xa,ξ has a canonical name ẋa,ξ:

ẋa,ξ(η̌) =
∑

{p ∈ P : p(a, ξ, η) = 1} (η ∈ κ).

Then we define, for every a ∈ A,

ã = {xa,ξ : ξ < κ}

and let Ã = {ã : a ∈ A}. The sets ã and Ã have obvious canonical names.
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Having defined ã for each a ∈ A, we can define x̃ (and its canonical
name ˙̃x) for each x be ∈-induction:

(15.42) x̃ = {ỹ : y ∈ x}.

We shall show that the function x �→ x̃ is an ∈-isomorphism.

Lemma 15.54. For all x and y, x ∈ y if and only if x̃ ∈ ỹ, and x = y if and
only if x̃ = ỹ.

Proof. First we note that ‖ẋa,ξ = ẋa′,ξ′‖ = 0 whenever (a, ξ) �= (a′, ξ′), and
that ‖ẋa,ξ = ž‖ = 0 for all z ∈ M . Consequently, we have ã �= b̃ whenever
a �= b are atoms. We claim that for all x, x̃ �= xa,ξ for any a, ξ. If x ∈ M ,
then x̃ = x and so x̃ �= xa,ξ. If x /∈ M , then x̃ is of higher rank than any
xa,ξ: xa,ξ is a subset of κ, while the transitive closure of x̃ contains some of
the xa,ξ.

Now we can prove the lemma, simultaneously for ∈ and =, by induction
on rank:

(a) If x ∈ y, then x̃ ∈ ỹ follows from the definition (15.42). If x̃ ∈ ỹ, then
y cannot be an atom because then we would have x̃ = xa,ξ for some a, ξ,
which is impossible. Hence x̃ = z̃ for some z ∈ y and we have x = z by the
induction hypothesis; thus x ∈ y.

(b) If x = y, then x̃ = ỹ. Conversely, if x �= y, then either both x and y
are atoms and then x̃ �= ỹ; or, e.g., x contains some z that is not in y, and
then, by the induction hypothesis, z̃ ∈ x̃ and z̃ /∈ ỹ; thus x̃ �= ỹ. ��

Note that the proof of Lemma 15.54 does not depend on the particular G
and so in fact we have proved

(15.43) x = y if and only if ‖ ˙̃x = ˙̃y‖ �= 0 if and only if ‖ ˙̃x = ˙̃y‖ = 1

and similarly for ∈.
Now we shall construct a symmetric submodel N of M [G]. We construct N

so that for every x ∈ U , x̃ is in N and that (Pα(A))U is isomorphic to
(Pα(Ã))N . For every permutation σ of A, let σ̄ be the group of all permuta-
tions π of A × κ such that for all a, ξ,

π(a, ξ) = (σa, ξ′) for some ξ′.

We let H̄ =
⋃
{σ̄ : σ ∈ H} for every subgroup H of G. Since every permuta-

tion π of A × κ induces an automorphism of P by

(πp)(π(a, ξ), η) = p(a, ξ, η) (all a, ξ, η)

we consider Ḡ as a group of automorphisms of B = B(P ). For every finite
A ⊂ A × κ we let

fix(E) = {π ∈ Ḡ : π(a, ξ) = (a, ξ) for all (a, ξ) ∈ E},
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and we let F̄ be the filter on Ḡ generated by the set

(15.44) {H̄ : H ∈ F} ∪ {fix(E) : E ⊂ A × κ finite}.

Let HS be the class of all hereditarily symmetric names and let N be the
corresponding symmetric submodel of M [G]. It is an immediate consequence
of (15.44) that all ẋa,ξ, all ȧ (a ∈ A), and ˙̃A are symmetric, and so Ã is in N .
The following two lemmas show that for any x, x̃ is in N if and only if x ∈ U .

Lemma 15.55. For all x, x ∈ U if and only if ˙̃x ∈ HS.

Proof. It suffices to show that x is symmetric if and only if ˙̃x is symmetric. If
σ ∈ G and π ∈ σ̄, then π ˙̃x is the canonical name for (σx)̃, and so symḠ( ˙̃x) =
symG(x); thus if sym(x) ∈ F , then symḠ( ˙̃x) ∈ F̄ . On the other hand, if
symḠ( ˙̃x) ∈ F̄ , then sym(x) ⊃ H̄ ∩ fix(E) for some H ∈ F and a finite
E ⊂ A× κ. If e = {a ∈ A : (a, ξ) ∈ E for some ξ}, then sym(x) ⊃ H ∩ fix(e),
and since fix(e) ∈ F , we have sym(x) ∈ F . ��

Lemma 15.56. For all x, x ∈ U if and only if x̃ ∈ N .

Proof. By Lemma 15.55, it suffices to show that if x̃ ∈ N , then x ∈ U .
Assume otherwise, and let x be of least rank such that x̃ ∈ N and x /∈ U .
Thus x ⊂ U , and since x̃ ∈ N , there exist a name ż ∈ HS and some p ∈ G
such that p � ż = ˙̃x. Since symḠ(ż) ∈ F̄ , we have symḠ(ż) ⊃ H̄ ∩ fix(E) for
some H ∈ F and a finite E ⊂ A × κ. We shall find σ ∈ G and π ∈ σ̄ such
that:

(i) πp and p are compatible;
(ii) π ∈ H̄ ∩ fix(E);
(iii) σx �= x.

Then we have πż = ż by (ii), ‖π ˙̃x = ˙̃x‖ = 0 by (iii) and (15.43); and since
πp � πż = π ˙̃x, we have

πp ∪ p � ż = ˙̃x, πp ∪ p � ż = π ˙̃x,

a contradiction.
To find π, note that x is not symmetric, so that there is a σ ∈ G such

that σx �= x and σ ∈ H ∩ fix(e), where e = {a ∈ A : (a, ξ) ∈ E for some ξ}.
Since |p| < κ, there exists a γ < κ such that (a, ξ) /∈ dom(p) for all a ∈ A
and all ξ > γ. Thus we define π ∈ σ̄ as follows:

if a ∈ e, then π(a, ξ) = (a, ξ) for all ξ;

if a /∈ e, then

{
π(a, ξ) = π(σa, γ + ξ) and π(a, γ + ξ) = π(σa, ξ) if ξ < γ;

π(a, ξ) = (σa, ξ) if ξ > γ · 2.

It follows that π ∈ H̄ ∩ fix(E) and that p and πp are compatible. ��
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We complete the proof of Theorem 15.53 by showing that(
(Pα(A))U

)̃
=

(
Pα(Ã)

)N
.

The left-hand side is clearly included in the right-hand side; we prove the
converse by induction. Thus let x ∈ Pα(A) ∩ U and let y ∈ N be a subset
of x; we shall show that y = z̃ for some z ∈ U . Let ẏ be a name for y.
The notion of forcing that we are using here is <κ-closed; and since we have
chosen κ large, it follows that there is a p ∈ G that decides ˙̃t ∈ ẏ for all t ∈ x.
Hence y = z̃, where z = {t ∈ x : p � ˙̃t ∈ ẏ}, and by Lemma 15.56 we have
z ∈ U . ��

As for applications of Theorem 15.53, consider a formula ϕ(X, γ) such
that the only quantifiers in ϕ are ∃u ∈ P γ(X) and ∀u ∈ P γ(X). Let U be
a permutation model such that

U � ∃X ϕ(X, γ).

Let X ∈ U be such that U � ϕ(X, γ); let α be such that P γ(X) ⊂ Pα(A). By
the theorem, U can be embedded in a model N of ZF such that (Pα(A))U is
isomorphic to (Pα(Ã))N . Since the quantifiers in ϕ are restricted to P γ(X),
it follows that N � ϕ(X̃, γ), and so

N � ∃X ϕ(X, γ).

Therefore, if we wish to prove consistency (with ZF) of an existential state-
ment of the kind just described, it suffices to construct a permutation model
(of ZFA).

Note that “X cannot be well ordered,” “X cannot be linearly ordered”
are formulas of the above type and so is “X is a countable set of pairs without
a choice function.”

Theorem 15.53, in conjunction with the construction of permutation mod-
els, has interesting applications in algebra. One can construct various abstract
counterexamples to theorems whose proofs use the Axiom of Choice. For ex-
ample, one can construct a vector space that has no basis, etc.

We conclude this section by sketching two examples of models of ZF in
which the Axiom of Choice fails. The first model was constructed by Feferman
and Lévy, the other by Feferman.

Example 15.57. Let M be a transitive model of ZFC. There is a model
N ⊃ M such that (ℵ1)N = (ℵω)M ; hence ℵ1 is singular in N .

Proof. First we construct a generic extension M [G] by adjoining collapsing
maps fn : ω → ωn, for all n ∈ ω: We let (P,⊃) consist of finite functions
with domain ⊂ ω × ω, such that p(n, i) < ωn for all (n, i) ∈ dom(p). If G is
a generic filter on P , then f =

⋃
G is a function on ω × ω, and for every n,
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the function fn defined on ω by fn(i) = f(n, i) maps ω onto ωn. We shall
construct a symmetric model N ⊂ M [G] such that each fn is in N but ℵω is
a cardinal in N .

Let G be the group of all permutations π of ω × ω such that for every n,
π(n, i) = (n, j), for some j. Every π induces an automorphism of P by

dom(πp) = {π(n, i) : (n, i) ∈ dom(p)}, (πp)(π(n, i)) = p(n, i).

Let F be the filter on G generated by {Hn : n ∈ ω}, where Hn consists of
all π such that π(k, i) = (k, i) for all k ≤ n, all i ∈ ω. Let HS be the class of
all hereditarily symmetric names and let N be the symmetric model.

It is easy to verify that for each n, the canonical name ḟn of fn is sym-
metric and so fn ∈ N . To show that ℵω remains a cardinal in N , we use the
following lemma:

Lemma 15.58. If sym(ẋ) ⊃ Hn and p � ϕ(ẋ), then p�n � ϕ(ẋ), where p�n
is the restriction of p to {(k, i) : k ≤ n}.
Proof. Let us assume that p�n does not force ϕ(ẋ) and let q ⊃ p�n be such
that q � ¬ϕ(ẋ). It is easy to find some π ∈ Hn such that πp and q are
compatible; since πp � ϕ(πẋ) and πẋ = ẋ, we get a contradiction. ��

Now let us assume that g ∈ N is a function of ω onto ℵω, and let ġ be
a symmetric name for g. Let p0 ∈ G be such that p0 forces “ġ is a function
from ω̌ onto ℵ̌ω.” Let n be such that p0�n = p0 and that sym(ġ) ⊃ Hn. Since
g takes ℵω values, it follows that for some k ∈ ω, there exists an incompatible
set W of conditions p ⊃ p0 such that |W | ≥ ℵn+1, and distinct ordinals αp,
p ∈ W , such that for each p ∈ W , p � ġ(k) = αp. By Lemma 15.58, we have
p�n � ġ(k) = αp, for each p ∈ W , which is a contradiction: On the one hand,
the conditions p�n, p ∈ W , must be mutually incompatible, and on the other
hand, the set {p�n : p ∈ P} has size only ℵn. ��

If the ground model M in the above example satisfies GCH, then one can
show that in N , the set of all reals is the countable union of countable sets.

Example 15.59. Let M be a transitive model of ZFC. There is a model
N ⊃ M such that in N , there is no nonprincipal ultrafilter on ω.

Proof. The model N is obtained by adjoining to M infinitely many generic
reals an, n < ω, without putting in N the set {an : n ∈ ω} (unlike in Exam-
ple 15.52 where {an : n ∈ ω} is in N). First we construct M [G] as in Exam-
ple 15.52: (P,⊃) is the set of all finite 0–1 functions with domain ⊂ ω × ω.
Let G be generic and let an = {m : p(n, m) = 1 for some p ∈ G}, for each
n ∈ ω.

Now let N be as follows. Every X ⊂ ω × ω induces a symmetry σX , an
automorphism of P defined by

(σXp)(n, m) =

{
p(n, m) if (n, m) /∈ X ,

1 − p(n, m) if (n, m) ∈ X .
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Let G be the group of all σX , X ⊂ ω×ω, and let F be the filter on G generated
by {fix(E) : E ⊂ ω finite}, where fix(E) = {σX : X ∩ (E ×ω) = ∅}. Let N be
the symmetric model.

Let D ∈ N be an ultrafilter on ω; we shall show that D is principal. Let
Ḋ ∈ HS be a name for D and let p ∈ G be such that p forces “Ḋ is an
ultrafilter on ω̌.” Let E ⊂ ω be finite, such that sym(Ḋ) ⊃ fix(E), and let
n /∈ E. Then there is some q ≤ p, q ∈ G, that decides ȧn ∈ Ḋ (where ȧn is
the canonical name for an). For example, assume that q � ȧn ∈ Ḋ (the proof
is similar if q � ȧn /∈ Ḋ).

Let m0 be such that for all m ≥ m0, (n, m) /∈ dom(q), and let X =
{(n, m) : m ≥ m0}. Let ḃn = σX(ȧn). Since for each m ≥ m0, ‖m̌ ∈ ḃn‖ =
−‖m̌ ∈ ȧn‖, it follows that an ∩ bn is a finite set. However, σXq � σX ȧn ∈
σXḊ; it is fairly obvious that σXq = q and since σX ∈ fix(E), we have
σXḊ = Ḋ. Thus q � ḃn ∈ Ḋ and hence an ∩ bn ∈ D. Consequently, D is
principal. ��

Exercises

15.1. If P satisfies the κ-chain condition then |B(P )| ≤ |P |<κ.
[Every u ∈ B+ is

P

W for some antichain in P .]

15.2. Let P be as in (15.2) and let Q = {p ∈ P : dom(p) is an initial segment
of κ}. Then Q is dense in P and hence B(Q) = B(P ).

15.3. Let κ be a singular cardinal and let (P, <) be defined as in (15.2). Then
P collapses κ to cf(κ): In the generic extension, there is a one-to-one function g
from κ into cf(κ).

[Let κ = ℵω, and let X be the added subset of ℵω. For each α < ℵω, let
g(α) = the least n such that the order-type of X∩(ωn+1−ωn) is ωn +α. Show that
for every α and every p ∈ P there is q ⊃ p and some n such that dom(q) ⊃ ωn+1−ωn

and that the set {ξ ∈ ωn+1 − ωn : q(ξ) = 1} has the order-type ωn + α. By the
genericity of G, the function g is defined for every α < ℵω; it is clearly one-to-one.]

15.4. Again let κ be singular, and let P be the set of all 0–1 functions whose
domains are bounded subsets of κ; P is ordered by ⊃. Show that P collapses κ
to cf(κ).

15.5. If every f : κ→ V in V B is in the ground model, then B is κ-distributive.
[Let Wα, α < κ, be partitions of B. Consider ḟ ∈ V B such that ‖ḟ(α) = u‖ = u

for u ∈ Wα, and find a common refinement of the Wα.]

15.6. If B(P1) = B(P2) and B(Q1) = B(Q2) then B(P1 ×Q1) = B(P2 ×Q2).

15.7. B(P×Q) is the completion of the direct sum of the algebras B(P ) and B(Q).

15.8. Let P be such that for every p there exist incompatible q ≤ p and r ≤ p.
Show that if G ⊂ P then G×G is not generic on P × P .

15.9. If B(Pi) = B(Qi) for each i ∈ I , then B(P ) = B(Q) where P =
Q

i Pi and
Q =

Q

i Qi.
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15.10. Let P be the notion of forcing (15.1) that adjoins κ Cohen reals. Then P is
(isomorphic to) the product of κ copies of the forcing for adding a single Cohen
real (Example 14.2).

15.11. If P satisfies c.c.c. and Q has property (K) then P ×Q satisfies c.c.c.

15.12. The Singular Cardinal Hypothesis holds in Easton’s model.
[If κ is singular then every f : cf(κ)→ κ is in N = V [G≤ cf κ], and so if F (cf κ) <

κ then (κcf κ)V [G] = (κcf κ)N ≤ (2κ)N ≤ |B(P≤ cf κ)|κ = (F (cf κ))κ = κ+.]

15.13. In (15.18), let κ = ℵ1 and λ = ℵω. Then in V [G] there is a one-to-one
function g : ℵℵ0

ω → ℵ1.
[If X is a countable subset of ℵω, let g(X) = the least α such that f(α + ω−α) =

X (where f =
S

G is the collapsing function). Use the fact that X ∈ V .]

15.14. In (15.18), let κ = ℵω. Then in V [G] there is a one-to-one function g from λ
into ω.

[Let f =
S

G, and let g(α) = the least n such the function f�(ωn+1 − ωn) is
eventually equal to α.]

15.15. There is a generic extension V [G] such that V [G] satisfies the GCH.
[For each α, let Pα be the notion of forcing which collapses λ = �α+1 onto

κ = (�α)+ (see (15.18)). Pα is �α-closed and satisfies the λ+-chain condition. Let
P be an Easton product of Pα, α ∈ Ord ; namely, we require that |s(p)∩ γ| < γ for
every inaccessible γ = �α. Show that for each α, κ = (�α)+ is a cardinal in V [G],
κ = ℵV [G]

α+1 , and V [G] � 2ℵα = ℵα+1. Apply Lemma 15.19 in two ways: (a) For
each α, consider P≤α × P >α: P≤α satisfies the �+

α+1-chain condition and P >α is
�α+1-closed; (b) if α is inaccessible and α = �α, consider P <α×P≥α: P <α satisfies
the �+

α -chain condition and P≥α is �α-closed.]

15.16. Let (P, <) be the notion of forcing that adds a subset of ω1 (15.2), and let
(Q, <) be the notion of forcing that collapses 2ℵ0 onto ℵ1 (15.18). Then B(P ) =
B(Q).

[Let Q′ = {q ∈ Q : dom(q) is an initial segment of ω1}; Q′ is dense in Q. Show
that P has a dense set P ′ isomorphic to Q′: Use the fact that every p ∈ P has
2ℵ0 mutually incompatible extensions.]

[Another way to show that (P, <) from (15.2) adjoins a one-to-one mapping

of 2ℵ0 into ℵ1: Let f =
S

G, and for every g ∈ {0, 1}ω, let F (g) = least α such that
f(α + n) = g(n) for all n.]

15.17. Let P be the forcing that adds a subset of ω1, and let Q be the forcing that
adds a Suslin tree as in (15.9). Then B(P ) = B(Q).

If T1 and T2 are trees, then an isomorphism π : T1 → T2 between T1 and T2 is
a one-to-one mapping of T1 onto T2 such that x < y if and only if π(x) < π(y). An
isomorphism maps level α of T1 onto level α of T2 (for all α); and if b is a branch
in T1, then π(b) is a branch in T2. An automorphism of T is an isomorphism
of T1 onto T2. A tree T is rigid if it has no nontrivial automorphism, i.e., the only
automorphism of T is the identity mapping. T is homogeneous if for any x, y at
the same level of T , there exists an automorphism π of T such that π(x) = y.

15.18. If T is a normal α-tree where α < ω1 is a limit ordinal and if π is a nontrivial
automorphism of T , then T has an extension T ∈ P of height α + 1 such that
π cannot be extended to an automorphism of T ′.

[Construct T ′ so that for some branch b in T , b is extended while π(b) is not.]
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15.19. The generic Suslin tree constructed in Theorem 15.23 is rigid.
[If T � ρ̇ is a nontrivial automorphism of T , then the set {T ′ ≤ T :

∃automorphism π of an initial segment of T ′ that cannot be extended to an auto-
morphism of T ′ and T ′ � π ⊂ ρ̇} is dense below T ; a contradiction.]

If s : α→ ω and t : α→ ω, let s ∼ t if and only if s(ξ) = t(ξ) for all but finitely
many ξ < α.

15.20. There is a generic model V [G] in which there exists a homogeneous Suslin
tree.

[Let the forcing conditions be normal countable trees with the additional prop-
erties: (vi) if t ∈ T and s ∼ t, then s ∈ T ; and (vii) if s ∈ T and t ∈ T are at the
same level, then s ∼ t.]

Let (P, <) be the notion of forcing consisting of finite trees (T, <T ) such that
T ⊂ ω1, and such that α < β if α <T β; (T1, <T1) is stronger than (T2, <T2) if and
only if T1 ⊃ T2 and <T1 = <T2 ∩ (T2× T2). If G is a generic set of conditions, then
T =

S{T : T ∈ G} is a Suslin tree. The crucial properties to verify are: (a) (P, <)
satisfies the countable chain condition, and (b) T has no uncountable antichain:

15.21. (P, <) satisfies c.c.c.
[Given an uncountable set W of conditions, use ∆-Lemma to find an uncount-

able Z ⊂W such that any X, Y ∈ Z are compatible.]

15.22. T has no uncountable antichain.
[If T0 � Ȧ is uncountable, we first find an uncountable set W of pairs (T, αT )

such that T ≤ T0 and T � αT ∈ Ȧ. By ∆-Lemma, find an uncountable Z ⊂ W
with the property that if T1, T2 ∈ Z, then there is T stronger than both T1 and T2

such that T � αT1 is compatible with αT2 . Then some T ′ ≤ T0 forces that Ȧ is not
an antichain.]

Let Q consist of all countable sequences p = 〈Sξ : ξ < α〉 (α < ω1) where Sξ ⊂ ξ
for all ξ < α; let p ≤ q if and only if p extends q. Q is ℵ0-closed.

15.23. Let G be Q-generic. Then V [G] � ♦.
[If p � (Ċ is closed unbounded set and Ẋ ⊂ ω1), find q ≤ p such that q = 〈Sξ :

ξ ≤ α〉 and q � (α ∈ Ċ and Ẋ ∩ α = Sα).]

15.24. Let P be the forcing that adds a subset of ω1 (15.2) and let Q be the forcing
that adds a ♦-sequence (Exercise 15.23). Then B(P ) = B(Q).

A purely combinatorial argument can be used to show that ♦ is equivalent to
the following statement:

(♦′) There exists a sequence of functions hα, α < ω1, such that for every f :
ω1 → ω1, the set {α < ω1 : f�α = hα} is stationary.

15.25. V = L implies ♦′.

15.26. If V = L then there exists a rigid Suslin tree.

15.27. If V = L then there exists a homogeneous Suslin tree.

15.28. If T is a normal Suslin tree then PT × PT does not satisfy the countable
chain condition.

[For each x ∈ T , pick two immediate successors px and qx of x. The set {(px, qx) :
x ∈ T} ⊂ PT × PT is an antichain in PT × PT .]



264 Part II. Advanced Set Theory

15.29. A Cohen-generic real is not minimal over the ground model.
[Show that P is isomorphic to P×P , and therefore V [x] = V [x1][x2], where x1 is

Cohen-generic over V and x2 is Cohen-generic over V [x1]. Consequently, x1 /∈ V
and x /∈ V [x1].]

15.30. If a is a Sacks real, then in V [a], every f : ω → ω is dominated by some
g : ω → ω in the ground model.

15.31. If B is (κ, 2)-distributive then it is (κ, 2κ)-distributive.
[Given f : κ→ P (κ), consider {(α, β) : β ∈ f(α)} ∈ P (κ× κ).]

15.32. If κ is singular and B is <κ-distributive then it is κ-distributive.
[Given a function f on κ, consider {f�κα : α < cf κ}.]

15.33. Let P be the forcing that adds a Cohen real. The algebra B(P ) is not
weakly (ω, ω)-distributive.

[See Lemma 15.30(ii).]

15.34. B is weakly (ω,ω1)-distributive if and only if ω1 is a cardinal in V [G].

15.35. If a complete Boolean algebra is κ-generated and λ-saturated, then |B| ≤
κ<λ.

15.36. Every infinite countably generated c.c.c. complete Boolean algebra has
size 2ℵ0 .

15.37. Show that in either Example 15.49 or 15.50, the set A cannot be linearly
ordered.

Historical Notes

The forcing that adds Cohen reals is due to Cohen. Shortly after Cohen’s discoveries,
Solovay (in [1963]) noticed that Cohen’s construction of a model for 2ℵ0 = ℵ2 can
be generalized so that for a regular cardinal κ one obtains a model of with 2κ = λ
(assuming 2<κ = κ and λκ = λ in the ground model).

The relation between the chain condition and preservation of cardinals is ba-
sically due to Cohen; the observation that a λ-closed notion of forcing does not
produce new subsets of λ is due to Solovay. The Product Lemma 15.9 is due to
Solovay [1970]. Theorem 15.15 comes from general topology and is due to Engelk-
ing and Kar�lowicz [1965].

Easton’s Theorem (Theorem 15.18) was published in [1970]. The generalization
of Cohen’s method allowing a class of forcing conditions is due to Easton. The Lévy
collapse (Theorem 15.22) was constructed by Lévy; cf. [1970].

Suslin’s Problem was formulated by Suslin in [1920]. Tennenbaum [1968] and
Jech [1967] discovered models of set theory in which a Suslin line exists; Solovay and
Tennenbaum [1971] proved that existence of a Suslin line is not provable in ZFC.
Subsequently, Jensen proved that a Suslin line exists in the constructible universe
(cf. [1968, 1972]).

The present proof of Theorem 15.23 is as in Jech [1967] (countable conditions);
Tennenbaum’s proof (finite conditions) is presented in Exercises 15.21 and 15.22.

Random reals were introduced by Solovay [1970]. Forcing with perfect trees to
obtain a minimal degree (Theorem 15.34) is due to Sacks [1971].
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Theorem 15.46 is due to Vopěnka and appears in the book [1972] of Vopěnka
and Hájek.

The idea of using symmetry arguments to construct models in which the Axiom
of Choice fails goes back to Fraenkel [1922b]; the two examples of models of ZFA (an
infinite set of atoms without a countable subset, and a countable set of pairs that
has no choice function) are basically due to him. Further examples of permutation
models were given by Mostowski who (in [1939]) developed a theory of such models.
The present definition using filters was given by Specker [1957].

Cohen incorporated the symmetry arguments into his method and constructed
the model in Example 15.52. The formulation of Cohen’s method in terms of sym-
metric submodels of Boolean-valued models is due to Scott (unpublished) and
Jech [1971a]; the latter’s version was a reformulation of a topological version of
Vopěnka and Hájek [1965].

Theorem 15.53 is due to Jech and Sochor [1966a, 1966b]. Numerous applications
of the theorem are given in the second paper [1966b]. The method has been gen-
eralized by Pincus in [1971] and in [1972], extending further the analogy between
permutations models of ZFA and symmetric models of ZF.

Lévy showed that in Cohen’s model in Example 15.52 every set can be linearly
ordered; consequently, Halpern and Lévy [1971] proved that the Prime Ideal Theo-
rem holds in the model. Example 15.57 (singularity of ℵ1) is due to Feferman and
Lévy [1963]. Example 15.59 (independence of the Prime Ideal Theorem) is due to
Feferman [1964/65]. A. Blass constructed in [1977] a model, similar to Feferman’s
model, in which every ultrafilter is principal.

Exercise 15.15: Jensen [1965].
Exercise 15.20: Fukson [1971].
Exercises 15.25–15.28: Jensen [1969].
The results in Exercises 15.31 and 15.32 had been known before forcing; see

Sikorski [1964].


