
16. Iterated Forcing and Martin’s Axiom

In this chapter we introduce two related concepts: iterated forcing and Mar-
tin’s Axiom. Iteration of forcing is one of the basic techniques used in appli-
cations of forcing. It was first used by Solovay and Tennenbaum in their proof
of the independence of Suslin’s Hypothesis. The idea is to repeat the generic
model construction transfinitely many times. Such iterations are described in
the ground model.

Martin observed that many properties of a generic extension obtained by
iteration follow from a single axiom that captures the combinatorial content
of the model. The general principle has become known as Martin’s Axiom.
Martin’s Axiom has become a favorite tool in combinatorial set theory and
set-theoretic topology. Its consistency is proved by iterated forcing.

Two-Step Iteration

The basic observation is that a two-step iteration can be represented by
a single forcing extension. Let P be a notion of forcing, and let Q̇ ∈ V P be
a name for a partial ordering in V P .

Definition 16.1.

(i) P ∗ Q̇ = {(p, q̇) : p ∈ P and �P q̇ ∈ Q̇},
(ii) (p1, q̇1) ≤ (p2, q̇2) if and only if p1 ≤ p2 and p1 � q̇1 ≤ q̇2.

In (i), �P ϕ means that every condition in P forces ϕ; equivalently,
‖ϕ‖B(P ) = 1.

Theorem 16.2. (i) Let G be a V -generic filter on P , let Q = Q̇G, and let
H be a V [G]-generic filter on Q. Then

G ∗ H = {(p, q̇) ∈ P ∗ Q̇ : p ∈ G and q̇G ∈ H}

is a V -generic filter on P ∗ Q̇ and V [G ∗ H ] = V [G][H ].
(ii) Let K be a V -generic filter on P ∗ Q̇. Then

G = {p ∈ P : ∃q̇ (p, q̇) ∈ K} and H = {q̇G : ∃p (p, q̇) ∈ K}

are, respectively, a V -generic filter on P and a V [G]-generic filter on Q = Q̇G,
and K = G ∗ H.
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Proof. (i) Let us prove that if D ∈ V is a dense subset of P ∗Q then D∩(G∗H)
is nonempty. In V [G], let

D1 = {q̇G : ∃p ∈ G such that (p, q̇) ∈ D}.

The set D1 is dense in Q; this is proved by showing that for every q̇0, the set
(in V )

{p ∈ P : ∃q̇1 (p � q̇1 ≤ q̇0 and (p, q̇1) ∈ D)}

is dense in P . Hence D1 ∩ H �= ∅ and so there exists some q ∈ H such
that for some p ∈ G and some G-name q̇ for q, (p, q̇) ∈ D. It follows that
(p, q̇) ∈ D ∩ (G ∗ H).

(ii) Let D ∈ V be dense in P . Then D1 = {(p, q̇) : p ∈ D} is dense in
P ∗ Q̇ and so D ∩ G is nonempty. Hence G is a V -generic filter on P .

Let D ∈ V [G] be dense in Q, and let Ḋ ∈ V P be a G-name for D such
that �P Ḋ is dense in Q̇. Then the set {(p, q̇) ∈ P ∗ Q̇ : p � q̇ ∈ Ḋ} is dense
in P ∗ Q̇ and it follows that D ∩ H is nonempty. Hence H is V [G]-generic.

The proof of K = G ∗ H is routine. ��

We shall now describe two-step iteration in terms of complete Boolean
algebras. Let B be a complete Boolean algebra and let Ċ ∈ V B be such that

‖Ċ is a complete Boolean algebra‖B = 1.

Let us consider all ċ ∈ V B such that ‖ċ ∈ Ċ‖ = 1 and the equivalence relation

(16.1) ċ1 ≡ ċ2 if and only if ‖ċ1 = ċ2‖ = 1.

We let D be the set of equivalence classes for (16.1). We make D a Boolean
algebra as follows: If ċ1 and ċ2 are in D, there exists a unique ċ ∈ D such
that ‖ċ = ċ1 +Ċ ċ2‖ = 1; we let ċ = ċ1 +D ċ2. The operations ·D and −D are
defined similarly. With these operations, D is a Boolean algebra; also,

ċ1 ≤D ċ2 if and only if ‖ċ1 ≤Ċ ċ2‖ = 1.

Lemma 16.3. D is a complete Boolean algebra, and B embeds in D as
a complete subalgebra.

Proof. If X ⊂ D, let Ẋ ∈ V B be such that dom(Ẋ) = X and Ẋ(ċ) = 1 for
all ċ ∈ X . Since Ċ is a complete Boolean algebra in V B and V B is full, there
exists a ċ such that ‖ċ =

∑
Ċ Ẋ‖ = 1. It follows that ċ =

∑
D X .

For each b ∈ B, let ċ = π(b) be the unique ċ ∈ D such that

‖ċ = 1Ċ‖ = b and ‖ċ = 0Ċ‖ = −b;

π is a complete embedding of B into D. ��
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We use the notation D = B ∗ Ċ. If B = B(P ) and in V B, Ċ = B(Q̇),
then P ∗ Q̇ embeds densely in B ∗ Ċ (Exercise 16.1).

Two-step iteration is a generalization of product: If P and Q are two
notions of forcing then P × Q embeds densely in P ∗ Q̌ (Exercise 16.2).

If B and D are complete Boolean algebras and B is a complete subalgebra
of D then there exists a Ċ ∈ V B that is a complete Boolean algebra in V B,
such that D = B ∗ Ċ: In V B, let Ḟ be the filter on Ď generated by the
generic ultrafilter Ġ on B̌, and let Ċ be the quotient of Ď by Ḟ . We denote
this algebra (in V B) Ċ = D : B. D : B is a complete Boolean algebra in V B,
and B ∗ (D : B) = D (Exercises 16.3 and 16.4).

It follows that if V [G] and V [H ] are two generic extensions of V such that
V [G] ⊂ V [H ], then V [H ] is a generic extension of V [G].

Theorem 16.4. Let κ be a regular uncountable cardinal. If P satisfies the
κ-chain condition and if in V P , Q̇ satisfies the κ-chain condition, then P ∗ Q̇
satisfies the κ-chain condition.

Proof. Assume that (pα, q̇α), α < κ, are mutually incompatible in P ∗ Q̇.
Let Ż ∈ V P be the canonical name for the set {α : pα ∈ G} (where G is
a generic filter on P ), i.e., ‖α ∈ Ż‖ = pα. For every α and every β, either pα

and pβ are incompatible, or every stronger condition forces that q̇α and q̇β

are incompatible. Thus qα and qβ are incompatible if α ∈ Z and β ∈ Z,
and since Q satisfies the κ-chain condition in V [G], we have |Z| < κ; i.e.,
�P |Ż| < κ.

Since κ is regular in V [G] (by Theorem 15.3), there exists a maximal
antichain W ⊂ P , and for each p ∈ W there exists some γp < κ such that
p � Ż ⊂ γp. If we let γ = sup{γp : p ∈ W}, we have γ < κ, and �P Ż ⊂ γ.
This is a contradiction, since pγ � γ ∈ Ż. ��

The converse of Theorem 16.4 is also true:

Lemma 16.5. If P ∗ Q̇ satisfies the κ-chain condition then �P Q̇ satisfies
the κ-chain condition.

Of course P satisfies the κ-c.c. because B(P ) is a complete subalgebra of
B(P ∗ Q̇).

Proof. Let D = B ∗ Ċ and assume that D satisfies the κ-chain condition. Let
Ẇ ∈ V B and b0 ∈ B+ be such that

b0 � Ẇ is a subset of Ċ+ of size κ.

We shall find a nonzero b ≤ b0 such that

(16.2) b � Ẇ is not an antichain.

Let ḟ ∈ V B be such that

b0 � ḟ is a one-to-one function of κ onto Ẇ .
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For every α < κ, b0 � (∃x ∈ Ẇ )x = ḟ(α̌); and since V B is full, there exists
a ċα ∈ D such that b0 � (ċα ∈ W and ċα = ḟ(α̌)). Let ḋα = b0 · ċα. Since
b0 � ċα �= ċβ , for all α �= β, the set {ḋα : α < κ} is a subset of D of size κ.
Since D satisfies the κ-chain condition, there exist α and β such that ḋα

and ḋβ are compatible. Hence there exists a ḋ ∈ D+ such that ḋ ≤ ḋα · ḋβ ;
moreover, we can find ḋ such that ḋ = b · ċ, where 0 �= b ≤ b0 and b � (ċ �= 0
and ċ ≤ ċα · ċβ). Now (16.2) follows. ��

Corollary 16.6. If P and Q satisfy the κ-chain condition then P ×Q satis-
fies the κ-chain condition if and only if �P Q̌ satisfies the κ-chain condition.

��

Lemma 16.7. If P is κ-closed and �P Q̇ is κ-closed, then P ∗Q̇ is κ-closed.

Proof. Let λ ≤ κ and let (p1, q̇1) ≥ (p2, q̇2) ≥ . . . ≥ (pα, q̇α) ≥ . . . (α < λ) be
a descending sequence in P ∗Q̇. Then {pα}α<λ is a descending sequence in P ,
and has a lower bound p. The condition p forces that {q̇α}α<λ is a descending
sequence in Q̇, and has a lower bound q̇. Then (p, q̇) is a lower bound of
{(pα, q̇α)}α<λ. ��

Iteration with Finite Support

The idea of transfinite iteration of forcing is to construct sequences {Pα}α<θ

of forcing notions so that for every α, Pα+1 = Pα ∗ Q̇α where Q̇ ∈ V Pα , and
that at limit stages, Pα is a “limit” of {Pβ}β<α. In this section we describe
iteration with finite support, where the “limit” is the direct limit.

In Definition 16.8 below, Q̇α is assumed to be a forcing notion in V Pα ,
with greatest element 1. The symbol ≤α denotes the partial ordering of Pα,
and �α denotes the corresponding forcing relation.

Definition 16.8. Let α ≥ 1. A forcing notion Pα is an iteration (of length α
with finite support) if it is a set of α-sequences with the following properties:

(i) If α = 1 then for some forcing notion Q0,
(a) P1 is the set of all 1-sequences 〈p(0)〉 where p(0) ∈ Q0;
(b) 〈p(0)〉 ≤1 〈q(0)〉 if and only if p(0) ≤ q(0) (in Q0).

(ii) If α = β + 1 then Pβ = Pα�β = {p�β : p ∈ Pα} is an iteration of
length β, and there is some forcing notion Q̇β ∈ V Pβ such that
(a) p ∈ Pα if and only if p�β ∈ Pβ and �β p(β) ∈ Q̇β;
(b) p ≤α q if and only if p�β ≤β q�β and p�β �β p(β) ≤ q(β).

(iii) If α is a limit ordinal, then for every β < α, Pβ = Pα�β = {p�β :
p ∈ Pα} is an iteration of length β and
(a) p ∈ Pα if and only if ∀β < α p�β ∈ Pβ and for all but finitely

many β < α, �β p(β) = 1;
(b) p ≤α q if and only if ∀β < α p�β ≤β q�β.
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The finite set {β < α : not �β p(β) = 1} is the support of p ∈ Pα.

An iteration with finite support is uniquely determined by the sequence
〈Q̇β : β < α〉. Thus we call Pα the iteration of 〈Q̇β : β < α〉. For each β < α,
Pβ+1 is isomorphic to Pβ ∗ Q̇β . When α is a limit ordinal, (Pα,≤α) is the
direct limit of the Pβ , β < α, in the sense of Lemma 12.2. In fact B(Pα) is
the completion of the direct limit of the B(Pβ), β < α (Exercise 16.8).

Finite support iteration preserves chain conditions:

Theorem 16.9. Let κ be a regular uncountable cardinal. Let Pα be the it-
eration with finite support of 〈Q̇β : β < α〉, such that for each β < α,
�β Q̇β satisfies the κ-chain condition. Then Pα satisfies the κ-chain condi-
tion.

Proof. By induction on α. If α = β + 1 then Pα = Pβ ∗ Q̇β and the assertion
follows from Theorem 16.4. Thus let α be a limit ordinal. For each p ∈ Pα,
let s(p) denote the support of p.

Let W = {pξ : ξ < κ} be a subset of Pα of size κ. If cf α �= κ then
there exist a β < α and some Z ⊂ W of size κ such that s(p) ⊂ β for each
p ∈ Z. Then {p�β : β ∈ Z} ⊂ Pβ and since Pβ satisfies the κ-chain condition,
there exist p and q in Z such that p�β and q�β are compatible (in Pβ). Since
s(p) ⊂ β and s(q) ⊂ β, p and q are compatible.

Thus assume that cf α = κ, and let {αξ : ξ < κ} be a normal sequence
with limit α. Let C ⊂ κ be the closed unbounded set of all η such that
s(pξ) ⊂ αη for all ξ < η. For each limit ξ ∈ C there is some γ(ξ) < ξ such
that s(pξ) ∩ αξ ⊂ αγ(ξ). By Fodor’s Theorem there exist a stationary set
S ⊂ C and some γ < κ such that s(pξ) ∩ αξ ⊂ αγ for all ξ ∈ S.

Now consider the set {pξ�αγ : ξ ∈ S}. This is a subset of Pαγ , of size κ,
and therefore there exist ξ and η in S, γ < ξ < η, such that pξ�αγ and pη�αγ

are compatible. Let q ∈ Pαγ be a condition stronger than both pξ�αγ and
pη�αγ , and consider the following α-sequence r:

(16.3) r(β) =

⎧⎪⎪⎨
⎪⎪⎩

q(β) if β < αγ ,

pξ(β) if αγ ≤ β < αη,

pη(β) if αη ≤ β < α.

It is easily verified that r is a condition in Pα and is stronger than both pξ

and pη. Thus pξ and pη are compatible, and W is not an antichain. ��

Theorem 16.9 gives the following corollary for complete Boolean algebras:

Corollary 16.10. Let B0 ⊂ B1 ⊂ . . . ⊂ Bβ ⊂ . . . (β < α) be a sequence of
complete Boolean algebras such that for all β < γ, Bβ is a complete subal-
gebra of Bγ , and that for each limit ordinal γ,

⋃
β<γ Bβ is dense in Bγ . If

every Bβ satisfies the κ-chain condition then
⋃

β<α Bβ satisfies the κ-chain
condition. ��
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Martin’s Axiom

Definition 16.11 (Martin’s Axiom (MA)). If (P, <) is partially ordered
set that satisfies the countable chain condition and if D is a collection of
fewer than 2ℵ0 dense subsets of P , then there exists a D-generic filter on P .

By Lemma 14.4, if (P, <) is any partial ordering and if D is a countable
collection of dense subsets of P , then a D-generic filter on P exists. Hence
Martin’s Axiom is a consequence of the Continuum Hypothesis. Exercises
16.10 and 16.11 show that the restriction to fewer than continuum dense sets
as well as some restriction on (P, <) are necessary.

If κ is an infinite cardinal, let MAκ be the statement

(16.4) If (P, <) is a partially ordered set that satisfies the countable chain
condition, and if D is a collection of at most κ dense subsets of P ,
then there exists a D-generic filter on P .

MAℵ0 is true by Lemma 14.4, and Martin’s Axiom states that MAκ holds
for all κ < 2ℵ0 . Exercise 16.10 shows that MAκ implies that κ < 2ℵ0 .

Lemma 16.12. Martin’s Axiom is equivalent to its restriction to partial or-
ders of cardinality < c:

(16.5) If (P, <) is a partially ordered set that satisfies the countable chain
condition and |P | < 2ℵ0 , and if D is a collection of at most κ dense
subsets of P , then there exists a D-generic filter on P .

Proof. Let P be a c.c.c. partially ordered set and let us assume that (16.5)
holds. Let D be a family of fewer than c dense subsets of P . For each D ∈
D, we let WD be a maximal incompatible subset of D. Since each WD is
countable, there exists a set Q ⊂ P of size < c such that WD ⊂ Q for
all D ∈ D, and if p, q ∈ Q are compatible, then there exists some r ∈ Q
such that r ≤ p and r ≤ q. Each WD is a maximal antichain in Q; let
ED = {q ∈ Q : q ≤ w for some w ∈ WD}. Each ED is dense in Q.

The partially ordered set Q has size at most κ and satisfies the countable
chain condition. By (16.5) there is a filter G on Q that meets every ED.
G generates a D-generic filter on P . ��

We will now show that MA is consistent with 2ℵ0 > ℵ1:

Theorem 16.13 (Solovay and Tennenbaum). Assume GCH and let κ
be a regular cardinal greater than ℵ1. There exists a c.c.c. notion of forc-
ing P such that the generic extension V [G] by P satisfies Martin’s Axiom
and 2ℵ0 = κ.

As P satisfies the countable chain condition, the model V [G] preserves
cardinals and cofinalities.
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Proof. We construct P as a finite support iteration of length κ, of a certain
(yet to be determined) sequence 〈Q̇α : α < κ〉. At each stage, we’ll have
�α Q̇α satisfies the countable chain condition, and so P will satisfy c.c.c. as
well. We shall also have, for each α < κ, �α |Q̇α| < κ. It follows, by induction
on α, that |Pα| ≤ κ for every α ≤ κ: If α is a limit ordinal and if |Pβ | ≤ κ for
all β < α, then |Pα| ≤ κ since the elements of Pα are α-sequences with finite
support. Thus assume that |Pα| ≤ κ and let us prove |Pα+1| ≤ κ. Because
Pα satisfies c.c.c. and κ is regular, there exists a λ < κ such that �α |Q̇α| ≤ λ.
Every name q̇ for an element of Q̇α can be represented by a function from an
antichain in Pα into λ. As every antichain in Pα is countable, the number of
such functions is at most κℵ0 which is κ (by GCH). It follows that |Pα+1| ≤ κ;
in fact |B(Pα+1)| ≤ κ.

Note that because GCH holds in V , and because Pα is a c.c.c. forcing of
size ≤ κ, we have �α 2λ ≤ κ, for every λ < κ. In particular, �P 2ℵ0 ≤ κ.

We shall now define the Q̇α, by induction on α < κ. Let us fix a function π
that maps κ onto κ × κ such that if π(α) = (β, γ) then β ≤ α. For every
α < κ, the model V Pα has at most κ nonisomorphic partial orderings of
size < κ (because �α κ<κ = κ). Since Pα satisfies c.c.c., there are at most κ
distinct names in V Pα for such partial orderings.

Thus let us assume that α < κ and that 〈Q̇β : β < α〉 has been de-
fined. Let π(α) = (β, γ). Let Q̇ be the γth name in V Pβ for a partial order
with a greatest element 1, of size < κ. Let b = ‖Q̇ satisfies the countable
chain condition‖Pα and let Q̇α ∈ V Pα be such that ‖Q̇α = Q̇‖Pα = b and
‖Q̇α = {1}‖Pα = −b.

Now let P be the finite support iteration of 〈Q̇α : α < κ〉. We shall prove
that V P satisfies Martin’s Axiom as well as 2ℵ0 = κ. Let G be a generic filter
on P , and let Gα = G�Pα for all α < κ.

Lemma 16.14. If λ < κ and X ⊂ λ is in V [G] then X ∈ V [Gα] for some
α < κ.

Proof. Let Ẋ be a name for X . Every Boolean value ‖ξ ∈ Ẋ‖ (where ξ < λ)
is determined by a countable antichain in P and hence Ẋ is determined by
at most λ conditions in P . Every condition has finite support which in turn
is included in some α < κ. Therefore there exists some α < κ such that all
these λ conditions have support included in α. It follows that X has a name
in V Pα ; hence X ∈ V [Gα]. ��

Lemma 16.15. Let (Q, <) ∈ V [G] and D ∈ G be such that (Q, <) is a c.c.c.
partial order, |Q| < κ and |D| < κ. There exists in V [G] a D-generic filter
on Q.

Once we prove Lemma 16.15, we finish the proof of Theorem 16.13 as
follows: Let Q be the forcing for adding one Cohen generic real; Q is countable.
For any set X ⊂ {0, 1}ω of size < κ, let DX = {Dg : g ∈ X} where Dg =
{q ∈ Q : q �⊂ g} (see Exercise 16.10). Lemma 16.15 applied to DX shows
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that X �= {0, 1}ω and therefore V [G] satisfies 2ℵ0 ≥ κ. However, we already
proved that 2ℵ0 ≤ κ, and so V [G] � 2ℵ0 = κ. Thus V [G] satisfies (16.5) and
therefore MA, completing the proof. ��

Proof of Lemma 16.15. By Lemma 16.14, both (Q, <) and D are in V [Gβ ],
for some β < κ. Let Q̇ be a name for Q in V Pβ . We may assume that Q has
a greatest element, and let γ be such that Q̇ is the γth name for such partial
order. Let α be such that π(α) = (β, γ). As Q satisfies the countable chain
condition in V [G], it also satisfies the countable chain condition in V [Gα].
Thus Q = Q̇Gα

α .
In V [Gα+1] there is a generic filter H on Q over V [Gα], because Pα+1 =

Pα ∗ Q̇α. The filter H meets every dense subset of Q that is in V [Gα], and
therefore it meets every D ∈ D. Hence H is D-generic. ��

Independence of Suslin’s Hypothesis

Suslin’s Hypothesis (SH) is the statement there are no Suslin lines. In Chap-
ter 15 we showed that the negation of SH is consistent; by the following
theorem, SH is independent.

Theorem 16.16. If MAℵ1 holds, then there is no Suslin tree.

Proof. Let us assume that T is a normal Suslin tree and let PT be the partially
ordered set obtained from T by reversing the order. PT satisfies the countable
chain condition. For each α < ω1, let Dα be the union of all levels above α:
Dα = {x ∈ T : o(x) > α}. Each Dα is dense in PT ; if we let D = {Dα :
α < ω1} and if G is a D-generic filter on P , then G is a branch in T of
length ω1. A contradiction. ��

The proof of independence of SH was the first application of iterated
forcing (and led to the formulation of Martin’s Axiom). The model for SH,
due to Solovay and Tennenbaum [1971], was constructed by iteration of the
forcing notions PT , for all prospective Suslin trees in the final model. The
forcing PT “kills” the Suslin tree T by forcing an ω1-branch in T .

In the proof of the following theorem, Suslin trees are killed by a different
method: by specializing the tree. Recalling the definition in Chapter 9 (and
Exercise 9.9), an Aronszajn tree T is special if there exists a function f :
T → ω such that each f−1({n}) is an antichain.

Theorem 16.17 (Baumgartner, Malitz, and Reinhardt [1970]). If
MAℵ1 holds, then every Aronszajn tree is special.

Lemma 16.18. If T is an Aronszajn tree and W is an uncountable collection
of finite pairwise disjoint subsets of T , then there exist S, S′ ∈ W such that
any x ∈ S is incomparable with any y ∈ S′.
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Proof. Since uncountably many elements of W have the same size, we may
as well assume that there exists a natural number n such that |S| = n for
all S ∈ W ; furthermore let us consider a fixed enumeration {z1, . . . , zn} of
each set S ∈ W . Let D be an ultrafilter on W such that every X ∈ D is
uncountable.

Let us assume that the lemma is false. For each x ∈ T and each k = 1,
. . . , n, let Yx,k be the set of all S ∈ W such that x is comparable with the
kth element of S. Since any S and S′ contain comparable elements, we have

⋃
x∈S

n⋃
k=1

Yx,k = W

for every S ∈ W . Thus pick, for each S ∈ W , an element x = xS of S
and k = kS such that Yx,k ∈ D. Now, there is k ≤ n such that the set
Z = {S ∈ W : kS = k} is uncountable. We shall show that the elements xS ,
S ∈ Z, are pairwise comparable; and that will be a contradiction since T has
no uncountable branch.

If S1, S2 ∈ Z and x = xS1 , y = xS2 , then Y = Yx,k∩Yy,k is in the ultrafilter
and thus uncountable. If S ∈ Y , then the kth element of S is comparable
with both x and y. Since Y is uncountable, there must exist S ∈ Y such that
the kth element of S is greater than both x and y. But then it follows that
x and y are comparable. ��

Let T be an Aronszajn tree and let us consider the following notion of
forcing (P, <): Forcing conditions are functions p such that

(i) dom(p) is a finite subset of T ;
(ii) ran(p) ⊂ ω;
(iii) if x, y ∈ dom(p) and x and y are comparable, then p(x) �= p(y);
(iv) p is stronger than q if and only if p extends q.

(16.6)

Lemma 16.19. (P, <) satisfies the countable chain condition.

Proof. Let W be an uncountable subset of P . Note that the set {dom(p) :
p ∈ W} is uncountable (there are only countably many functions from a fi-
nite set into ω). By ∆-Lemma, there is an uncountable W1 ⊂ W , and a fi-
nite set S ⊂ T such that dom(p) ∩ dom(q) = S for any distinct elements
p, q ∈ W1. Then there is an uncountable W2 ⊂ W1 such that p�S = q�S for
any p, q ∈ W2. By Lemma 16.18 there exist p and q ∈ W2 such that any
x ∈ dom(p) − S is incomparable with any y ∈ dom(q) − S. Then p ∪ q is
a function that satisfies (16.6) and extends both p and q. Thus p and q are
compatible elements of W and so (P, <) satisfies the countable chain condi-
tion. ��

Proof of Theorem 16.17. For each x ∈ T , let Dx be the set of all p ∈ P such
that x ∈ dom(p); clearly, each Dx is dense in P . Let D = {Dx : x ∈ T }.
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It follows from MAℵ1 , that (P, <) has a D-generic filter G. The elements
of G are pairwise compatible and since G is D-generic, every x ∈ T is in the
domain of the function f =

⋃
G. The function f maps T into ω and witnesses

that T is a special Aronszajn tree. ��

More Applications of Martin’s Axiom

Theorem 16.20 (Martin-Solovay). Martin’s Axiom implies that c is reg-
ular, and 2κ = c for all infinite cardinals κ < c.

Proof. Assuming MA, we prove that 2κ = 2ℵ0 for every κ < 2ℵ0 . Regularity
of c follows, as cf 2ℵ0 = cf 2κ > κ for all κ < 2ℵ0 . Let κ < 2ℵ0 and let
{Aα : α < κ} be an almost disjoint family of subsets of ω.

Let X be a subset of κ. We shall find a set A ⊂ ω such that for all α < κ

(16.7) α ∈ X if and only if A ∩ Aα is infinite.

In other words, X = {α ∈ κ : A ∩ Aα is infinite} is “coded” by the set A.
Therefore there exists a mapping of P (ω) onto P (κ), and so 2κ ≤ 2ℵ0 .

Let (P, <) be the following notion of forcing: A condition is a function p
from a subset of ω into {0, 1} such that:

(i) dom(p) ∩ Aα is finite for every α ∈ X ;
(ii) {n : p(n) = 1} is finite.

(16.8)

The set P is partially ordered by reverse inclusion: p ≤ q if and only if p
extends q.

We first show that P satisfies the countable chain condition. If p and q
are incompatible, then {n : p(n) = 1} �= {n : q(n) = 1} and since there are
only countably many finite subsets of ω, it follows that P satisfies c.c.c.

For each β ∈ κ − X , let Dβ = {p ∈ P : Aβ ⊂ dom(p)}. Any q ∈ P can
be extended to some p ∈ Dβ: Simply let p(n) = 0 for all n ∈ Aβ − dom(p).
Since Aβ is almost disjoint from all Aα, α ∈ X , p has property (16.8)(i) and
hence is a condition. Thus each Dβ is dense.

For each α ∈ X and each k ∈ ω, let

Eα,k = {p ∈ P : {n ∈ Aα : p(n) = 1} has size at least k}.

It is easy to see that each Eα,k is dense in P .
Let D be the collection of all Dβ for β ∈ κ − X and all Eα,k for α ∈ X

and k ∈ ω. By MA, there exists a D-generic filter G on P . Note that f =
⋃

G
is a function on a subset of ω. We let

(16.9) A = {n : f(n) = 1} = {n : p(n) = 1 for some p ∈ G}.

If α ∈ X , then A∩Aα is infinite because for each k there is some p ∈ G∩Eα,k.
If β ∈ κ − X , then A ∩ Aβ is finite because for some p ∈ G, Aβ ⊂ dom(p)
and {n : p(n) = 1} is finite. ��
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The almost disjoint forcing defined in the proof of Theorem 16.20 is of-
ten used to code generically uncountable sets. A typical application is the
following:

Let V [X ] be a generic extension where X ⊂ ω1; furthermore, assume that
ωV [X]

1 = ω1. Let A = {Aα : α < ω1} be an almost disjoint family in V , and
let us consider the almost disjoint forcing P in V [X ]. If G ⊂ P is generic
over V [X ], then V [X ][G] = V [X ][A], where A is defined by (16.9). Note that
ωV [X][A]

1 = ω1.
Now in V [X ][A], the set X satisfies (16.7), and since A ∈ V , it follows

that X ∈ V [A], and we have V [X ][A] = V [A]. Thus we have found a generic
extension V [A] such that A ⊂ ω and X ∈ V [A]. See Exercise 16.15.

The next theorem shows that under MAℵ1 , countable chain condition is
preserved by products. Compare with Exercise 15.28.

Theorem 16.21. MAℵ1 implies that every partially ordered set that satisfies
the countable chain condition has property (K).

Proof. Let P be a partially ordered set that satisfies the countable chain
condition and let W = {wα : α < ω1} be an uncountable subset of P . We
will use MAℵ1 to find a filter G such that Z = G ∩ W is uncountable.

First we claim that there is some p0 ∈ W such that every p ≤ p0 is
compatible with uncountably many wα. Otherwise, for each α < ω1 there is
β > α and some vα ≤ wα which is incompatible with all wγ , γ ≥ β; then
we can construct an ω1-sequence {vαi : i < ω1} of pairwise incompatible
elements.

For each α < ω1, let

Dα = {p ≤ p0 : p ≤ wγ for some γ ≥ α}.

By the above claim, each Dα is dense below p0. By MAℵ1 , there exists a fil-
ter G on P such that p0 ∈ G and G ∩ Dα �= ∅ for all α < ω1. It follows that
G ∩ W is uncountable. Hence P has property (K). ��

Corollary 16.22. MAℵ1 implies that if every Pi, i ∈ I, satisfies the count-
able chain condition then so does the product

∏
i∈I Pi (with finite support).

Proof. Theorem 15.15. ��

The next result generalizes the Baire Category Theorem:

Theorem 16.23. Martin’s Axiom implies that the intersection of fewer
than c dense open sets of reals is dense.

Proof. Let κ < c and let Uα, α < κ, be dense open sets of reals. Let I be
a bounded open interval. We’ll show that

⋂
α<κ Uα ∩ I �= ∅. Let P be the

following notion of forcing: Conditions are nonempty open sets p such that
p ⊂ I, with p ≤ q if and only if p ⊂ q. Since every collection of disjoint
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open sets is at most countable, P satisfies the countable chain condition. For
each α < κ, let Dα = {p ∈ P : p ⊂ Uα}; each Dα is dense in P . Let G be
a D-generic filter on P where D = {Dα : α < κ}. Since G is a filter, the
intersection

⋂
{p : p ∈ G} is nonempty, and is contained in each Uα since

G ∩ Dα �= ∅. ��

If f and g are functions from ω to ω, we say that f eventually dominates g
if f(n) > g(n) for all but finitely many n ∈ ω (i.e., f > g in the notation of
Lemma 10.16). A set of functions G is eventually dominated by f if f > g
for all g ∈ G.

Theorem 16.24. Martin’s Axiom implies that every family G of fewer than c
functions from ω to ω is eventually dominated by some f ∈ ωω.

Corollary 16.25. MA implies that there exists a c-scale.

Proof. A scale is constructed by transfinite induction, using an enumeration
of ωω of order-type c. ��

Corollary 16.26. MA implies that c is not real-valued measurable.

Proof. Lemma 10.16. ��

The proof of Theorem 16.24 uses the Hechler forcing: Let G be a given
family of functions h : ω → ω. A forcing condition is a pair p = (s, E),
where s = 〈s(0), . . . , s(n − 1)〉 is a finite sequence of natural numbers and
E is a finite subset of G. A condition (s′, E′) is stronger than (s, E) if:

(i) s ⊂ s′, and E ⊂ E′;
(ii) if k ∈ dom(s′) − dom(s), then s(k) > h(k) for all h ∈ E.

(16.10)

If (s1, E1) and (s2, E2) are conditions and s1 = s2, then (s1, E1) and
(s2, E2) are compatible. Hence (P, <) satisfies the countable chain condition.
Let G ⊂ P be generic; we let f =

⋃
{s : (s, E) ∈ G for some E}. We claim

that G is eventually dominated by f . Let h ∈ G be arbitrary. First there
is a condition (s, E) ∈ G such that h ∈ E (by genericity). Secondly, every
condition (s′, E′) < (s, E) satisfies (16.10)(ii), and so f(k) > g(k) for all
k /∈ dom(s). Thus in V [G], there is f : ω → ω such that h < f for all h ∈ G.

Proof of Theorem 16.24. If G ⊂ ωω and |G| < c, let P be the Hechler forcing
for the family G. Let D = {Dh : h ∈ G} ∪ {En : n ∈ ω} where Dh = {(s, E) :
h ∈ E} and En = {(s, E) : n ∈ dom(s)}. Then if G is a D-generic filter,
the function f =

⋃
{s : (s, E) ∈ G for some E} eventually dominates all

h ∈ G. ��

Theorem 16.27 (Booth). Martin’s Axiom implies that there exists a p-
point.
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Proof. Let Aα, α < 2ℵ0 , be an enumeration of all decreasing sequences
{An}∞n=0 of subsets of ω. We construct, by induction on α < 2ℵ0 , a chain
of families G0 ⊂ . . . ⊂ Gα ⊂ . . . of nonempty subsets of ω, such that each Gα

is closed under finite intersections and |Gα| < 2ℵ0 for all α.
We let G0 = {X ⊂ ω : ω − X is finite}. If α is a limit ordinal, we let

Gα =
⋃

β<α Gα. Having constructed Gα, we construct Gα+1 as follows: Let
Aα = {An}∞n=0 be a decreasing sequence of subsets of ω. If some An is
disjoint from some X ∈ Gα, then we let Gα+1 = Gα. Otherwise, the family
G = Gα ∪ {An : n ∈ ω} has the finite intersection property and we claim (see
Lemma 16.28 below), that there exists a Z ⊂ ω such that Z − An is finite
for all n, and G′ = G ∪ {Z} has the finite intersection property. Then we let
Gα+1 consist of all finite intersections X1 ∩ . . . ∩ Xk of elements of G′.

Finally, we let G =
⋃
{Gα : α < 2ℵ0}, and let D be any ultrafilter such

that D ⊃ G. We claim that D is a p-point: If A0 ⊃ A1 ⊃ . . . An ⊃ . . . is any
decreasing sequence of elements of D, then {An}∞n=0 = Aα for some α < 2ℵ0

and we have Z ∈ Gα+1 such that Z − An is finite for all n. By Exercise 7.7,
D is a p-point. ��

It remains to prove the claim:

Lemma 16.28. Assume MA, and let G be a family of subsets of ω with the
finite intersection property such that |G| < 2ℵ0 . Let A0 ⊃ A1 ⊃ . . . An ⊃ . . .
be a decreasing sequence of elements of G. Then there exists a Z ⊂ ω such
that :

(i) G ∪ {Z} has the finite intersection property;
(ii) Z − An is finite for all n ∈ ω.

Proof. We may assume that that if X, Y ∈ G, then X ∩ Y ∈ G. For each
X ∈ G, let hX : ω → ω be some function such that hX(n) ∈ X ∩ An.
By Theorem 16.24 the family {hX : X ∈ G} is eventually dominated by
a function f ; in particular for every X ∈ G there exists some n such that
f(n) ≥ hX(n). Now we let Z =

⋃∞
n=0{k ∈ An : k ≤ f(n)}. It is readily

verified that Z −An is finite for each n, and that Z ∩X �= ∅ for every X ∈ G.
��

Iterated Forcing

We conclude this chapter with the general definition of iterated forcing. We
shall return to the general method in later chapters. Below we follow closely
Definition 16.8 of finite support iteration. As before, for each ordinal α ≥ 1,
Pα denotes an iteration of length α, ≤α is the partial ordering of Pα and �α is
the corresponding forcing relation, and Q̇α is a name in V Pα for a forcing
notion with a greatest element 1. The general definition differs from Defini-
tion 16.8 by its handling of limit stages.
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Definition 16.29. Let α ≥ 1. A forcing notion Pα is an iteration (of
length α) if it is a set of α-sequences with the following properties:

(i) If α = 1 then for some forcing notion Q0,
(a) P1 is the set of all 1-sequences 〈p(0)〉 where p(0) ∈ Q0;
(b) 〈p(0)〉 ≤1 〈q(0)〉 if and only if p(0) ≤ q(0).

(ii) If α = β + 1 then Pβ = Pα�β = {p�β : p ∈ Pα} is an iteration of
length β, and there is some forcing notion Q̇β ∈ V Pβ such that
(a) p ∈ Pα if and only if p�β ∈ Pβ and �β p(β) ∈ Q̇β;
(b) p ≤α q if and only if p�β ≤β q�β and p�β �β p(β) ≤ q(β).

(iii) If α is a limit ordinal, then for every β < α, Pβ = Pα�β = {p�β :
p ∈ Pα} is an iteration of length β and
(a) the α-sequence 〈1, 1, . . . , 1, . . .〉 is in Pα;
(b) if p ∈ Pα, β < α and if q ∈ Pβ is such that q ≤β p�β, then

r ∈ Pα where for all ξ < α, r(ξ) = q(ξ) if ξ < β and r(ξ) = p(ξ) if
β ≤ ξ < α;

(c) p ≤α q if and only if ∀β < α p�β ≤β q�β.

Clearly, an iteration with finite support is an iteration. In general, prop-
erty (iii)(b) guarantees that if Pβ = Pα�β then V Pβ ⊂ V Pα ; see Exer-
cise 16.17.

A general iteration depends not only on the Q̇β but also on the limit
stages of the iteration. Let Pα be an iteration of length α where α is a limit
ordinal. Pα is a direct limit if for every α-sequence p,

(16.11) p ∈ Pα if and only if ∃β < α p�β ∈ Pβ and ∀ξ ≥ β p(ξ) = 1.

Pα is an inverse limit if for every α-sequence p,

(16.12) p ∈ Pα if and only if ∀β < α p�α ∈ Pβ .

In practice, forcing iterations combine direct and inverse limits. Finite sup-
port iterations are exactly those that use direct limits at all limit stages. In
general, let s(p), the support of p ∈ Pα, be the set of all β < α such that it is
not the case that �β p(β) = 1. If I is an ideal on α containing all finite sets
then an iteration with I-support is an iteration that satisfies for every limit
ordinal γ ≤ α,

(16.13) p ∈ Pγ if and only if ∀β < γ p�β ∈ Pβ and s(p) ∈ I.

One of the most useful tools in forcing are iterations with countable support,
where in (16.13) I is the ideal of at most countable sets. A countable support
iteration is an iteration such that for every limit ordinal γ if cf γ = ω then Pγ

is an inverse limit, and if cf γ > ω then Pγ is a direct limit. We shall return
to countable support iterations later in the book.

The following generalizes Theorem 16.9:
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Theorem 16.30. Let κ be a regular uncountable cardinal and let α be a limit
ordinal. Let Pα be an iteration such that for each β < α, Pβ = Pα�β satisfies
the κ-chain condition. If Pα is a direct limit, and either cf α �= κ or (if
cf α = κ) for a stationary set of β < α, Pβ is a direct limit, then Pα satisfies
the κ-chain condition.

Proof. Exactly as the proof of Theorem 16.9. The only difference is that we
apply Fodor’s Theorem not to C, but to the stationary subset of C consisting
of all ξ such that Pαξ

is a direct limit. ��

Exercises

16.1. B(P ∗ Q̇) = B(P ) ∗ B(Q̇).

16.2. P ×Q embeds densely in P ∗ Q̌.

16.3. In V B , D : B = D/İ where for each d ∈ D, ‖d ∈ İ‖B =
P{b ∈ B : b · d = 0}.

16.4. ‖D : B is a complete Boolean algebra‖B = 1, and D is isomorphic to B ∗
(D : B).

[Every name for an element of D : B has the form d/I where d ∈ D. To see
that D : B is complete in V B, let A be a name for a subset of D : B, and let
e =

P{d : ‖d/I ∈ A‖} = 1. Then ‖e/I =
P

A‖ = 1.]

16.5. Let h : P ∗ Q̇→ P be defined by h(p, q̇) = p. Then h satisfies the conditions
in Lemma 15.45.

16.6. If P has property (K) and �P Q̇ has property (K), then P ∗ Q̇ has prop-
erty (K).

16.7. If P is κ-distributive and �P Q̇ is κ-distributive then P ∗ Q̇ is κ-distributive.

16.8. Let Pα, α a limit ordinal, be a finite support iteration, and Bβ = B(Pα�β)
for all β ≤ α. Then Bα is the completion of the direct limit of the algebras Bβ ,
β < α.

16.9. If Pα is a finite support iteration and Pβ = Pα�β then V Pβ ⊂ V Pα . The
projection h(p) = p�β satisfies Lemma 15.45; Gβ = {p�β : p ∈ G} is a generic filter
on Pβ .

16.10. Let (P, <) be the notion of forcing producing a Cohen generic real. There
is a collection D of size 2ℵ0 of dense subsets of P such that there is no D-generic
filter on P .

[For each g : ω → {0, 1}, let Dg = {p ∈ P : p �⊂ g}.]

16.11. Let (P, <) be the notion of forcing that collapses ω1. There is a collection D
of size ℵ1 of dense subsets of P such that there is no D-generic filter on P .

[For each α < ω1, let Dα = {p ∈ P : α ∈ ran(p)}.]

16.12. MAκ is equivalent to the statement of MAκ restricted to complete Boolean
algebras.
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16.13. MAκ is equivalent to of MAκ restricted to partial orders of cardinality ≤ κ.

16.14. Let T be a Suslin tree and let P be the notion of forcing that adjoins
κ Cohen generic reals. Let G be a generic filter on P . Then T is a Suslin tree
in V [G].

[Let PT be the notion of forcing associated with the Suslin tree T . P satisfies
the c.c.c. in any V [H ] where H is a generic filter on PT . Thus PT ×P is c.c.c., and
so PT is c.c.c. in V[G].]

It follows that the existence of a Suslin tree is consistent with 2ℵ0 > ℵ1.

16.15. There is a generic extension V [A] where A ⊂ ω, such that ωV [A]
1 = ω1, and

ω2 is collapsed.
[Let f be a generic mapping of ω1 onto ω2 and let X ⊂ ω1 be such that

V [f ] = V [X]. Use almost disjoint forcing to find A ⊂ ω such that V [A] = V [X][A].]

16.16. Assume MAκ and let {Xα : α < κ} be a sequence of infinite subsets of ω
such that Xβ −Xα is finite if α < β. Show that there exists an infinite X such that
X −Xα is finite for all α < κ.

[A forcing condition is a pair (s, F ) where s is a finite subset of ω and F is
a finite subset of κ; (s′, F ′) ≤ (s,F ) just in case s′ ⊃ s, F ′ ⊃ F , and s′ − s ⊂ Xα

for all α ∈ F . Consider the dense sets Dn = {(s, F ) : |s| ≥ n}, n < ω, and
Eα = {(s, F ) : α ∈ F}, α < κ.]

16.17. If Pα is an iteration and Pβ = Pα�β then V Pβ ⊂ V Pα .
[Use (iii)(b) in Definition 16.29 and Lemma 15.45.]

16.18. Let Pα and P ′
α be countable support iterations of {Q̇β}β and {Q̇′

β}β , respec-

tively. Assume that for every β < α, if B(Pβ) = B(P ′
β) then �β B(Q̇β) = B(Q̇′

β).
Then B(Pα) = B(P ′

α).

16.19. Let I be a κ-closed ideal on α, and let Pα be an iteration of {Q̇β}β with
I-support. If for each β < α, �β Q̇β is <κ-closed, then Pα is <κ-closed.

16.20. Let κ ≥ ℵ2 be a regular cardinal. Let P be a countable support iteration
of length κ such that for all β < κ, P �β has a dense subset of size < κ. Then
P satisfies the κ-chain condition.

[Use Theorem 16.30.]

Historical Notes

Iterated forcing was introduced by Solovay and Tennenbaum [1971]. The formu-
lation in terms of Boolean algebras is based on their paper. Our presentation of
general iteration (Definitions 16.8 and 16.29) follows Baumgartner [1983].

Following Solovay and Tennenbaum’s construction of a model in which there
are no Suslin trees (Theorem 16.13), Martin formulated an axiom (MAℵ1) which
implies that there are no Suslin trees, and whose consistency was obtained by
Solovay-Tennenbaum’s method. The consistency proof of MA + 2ℵ0 > ℵ1 appears
in Solovay and Tennenbaum [1971].

Martin’s Axiom is investigated in detail in the paper [1970] of Martin and
Solovay. The paper contains various equivalent formulations of Martin’s Axiom and
numerous applications (including Theorem 16.20). Theorem 16.21 was discovered
by Kunen, Rowbottom, Solovay and possibly others.
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Baumgartner, Malitz, and Reinhardt [1970] proved that MAℵ1 implies that
every Aronszajn tree is special (Theorem 16.17). Special Aronszajn trees have ap-
plications in model theory (this fact is due to Rowbottom and Silver) and are
investigated in Mitchell’s paper [1972/73].

Scales were investigated extensively by Hechler [1974]. Hechler introduced the
notion of forcing used in the proof of Theorem 16.24. Hechler, among others, showed
that if cf κ > ω, then there is a generic extension in which 2ℵ0 > κ and a κ-scale
exists.

The construction of p-points (and Ramsey ultrafilters) under the assumption
of Martin’s Axiom is due to Booth [1970]. Our proof of Theorem 16.27 follows
Ketonen [1976].


