
17. Large Cardinals

The theory of large cardinals plays central role in modern set theory. In
this chapter we begin a systematic study of large cardinals. In addition to
combinatorial methods, the proofs use techniques from model theory.

Ultrapowers and Elementary Embeddings

We start with the following theorem that introduced the technique of ultra-
powers to the study of large cardinals.

Theorem 17.1 (Scott). If there is a measurable cardinal then V �= L.

Ultrapowers were introduced in Chapter 12. We now generalize the tech-
nique to construct ultrapowers of the universe. Let U be an ultrafilter on
a set S and consider the class of all functions with domain S. Following
(12.3) and (12.4) we define

f =∗ g if and only if {x ∈ S : f(x) = g(x)} ∈ U,

f ∈∗ g if and only if {x ∈ S : f(x) ∈ g(x)} ∈ U.

For each f , we denote [f ] the equivalence class of f in =∗ (recall (6.4)):

[f ] = {g : f =∗ g and ∀h (h =∗ f → rank g ≤ rankh)}.

We also use the notation [f ] ∈∗ [g] when f ∈∗ g.
Let Ult = UltU (V ) be the class of all [f ], where f is a function on S, and

consider the model Ult = (Ult,∈∗). �Loś’s Theorem 12.3 holds in the present
context as well: If ϕ(x1, . . . , xn) is a formula of set theory, then

Ult � ϕ([f1], . . . , [fn]) if and only if {x ∈ S : ϕ(f1(x), . . . , fn(x))} ∈ U.

If σ is a sentence, then Ult � σ if and only if σ holds; the ultrapower
is elementarily equivalent to the universe (V,∈). The constant functions ca

are defined, for every set a, by (12.12), and the function j = jU : V → Ult,
defined by jU (a) = [ca] is an elementary embedding of V in Ult:

(17.1) ϕ(a1, . . . , an) if and only if Ult � ϕ(ja1, . . . , jan)

whenever ϕ(x1, . . . , xn) is a formula of set theory.
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The most important application of ultrapowers in set theory are those in
which (Ult,∈∗) is well-founded. As we show below, well-founded ultrapowers
are closely related to measurable cardinals.

The model UltU (V ) is well-founded if (i) every nonempty set X ⊂ Ult
has a ∈∗-minimal element, and (ii) ext(f) is a set for every f , where

ext(f) = {[g] : g ∈∗ f}.

The second condition is clearly satisfied for any ultrafilter U : For every g ∈∗ f
there is some h =∗ g such that rankh ≤ rank f . As for the condition (i), this
is satisfied if and only if there exists no infinite descending ∈∗-sequence

f0 �∗ f1 �∗ . . . �∗ fk �∗ . . . (k ∈ ω)

of elements of the ultrapower.

Lemma 17.2. If U is a σ-complete ultrafilter, then (Ult,∈∗) is a well-
founded model.

Proof. We shall show that there is no infinite descending ∈∗-sequence in Ult
if U is a σ-complete ultrafilter on S. Let us assume that f0, f1, . . . , fn, . . .
is such a descending sequence. Thus for each n, the set

Xn = {x ∈ S : fn+1(x) ∈ fn(x)}

is in the ultrafilter. Since U is σ-complete, the intersection X =
⋂∞

n=0 Xn is
also in U and hence nonempty; let x be an arbitrary element of X . Then we
have

f0(x) � f1(x) � f2(x) � . . .

an infinite descending �-sequence, which is a contradiction. ��

By the Mostowski Collapsing Theorem every well-founded model is iso-
morphic to a transitive model. Thus if U is σ-complete, there exists a one-
to-one mapping π of Ult onto a transitive class such that f ∈∗ g if and only
π([f ]) ∈ π([g]). In order to simplify notation, we shall identify each [f ] with
its image π([f ]). Thus if U is σ-complete, the symbol Ult denotes the transi-
tive collapse of the ultrapower, and for each function f on S, [f ] is an element
of the transitive class Ult; we say the function f represents [f ] ∈ Ult.

Thus if U is a σ-complete ultrafilter, M = UltU (V ) is an inner model and
j = jU is an elementary embedding j : V → M .

If α is an ordinal, then since j is elementary, j(α) is an ordinal; moreover,
α < β implies j(α) < j(β). Thus we have α ≤ j(α) for every ordinal num-
ber α. Note that j(α + 1) = j(α)+1, and j(n) = n for all natural numbers n.
It is also easy to see that j(ω) = ω: If [f ] < ω, then f(x) < ω for almost
all x ∈ S, and by σ-completeness, there exists n < ω such that f(x) = n for
almost all x. By the same argument, if U is λ-complete, then j(γ) = γ for all
γ < λ.
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Now let κ be a measurable cardinal, and let U be a nonprincipal κ-com-
plete ultrafilter on κ. Let d (the diagonal function) be the function on κ
defined by

d(α) = α (α < κ).

Since U is κ-complete every bounded subset of κ has measure 0 and so for
every γ < κ, we have d(α) > γ for almost all α. Hence [d] > γ for all γ < κ
and thus [d] ≥ κ. However, we clearly have [d] < j(κ) and it follows that
j(κ) > κ.

We have thus proved that if there is a measurable cardinal, then there
is an elementary embedding j of the universe in a transitive model M such
that j is not the identity mapping; j is a nontrivial elementary embedding of
the universe.

Proof of Theorem 17.1. Let us assume V = L and that measurable cardinals
exist; let κ be the least measurable cardinal. Let U be a nonprincipal κ-
complete ultrafilter on κ and let j : V → M be the corresponding elementary
embedding. As we have shown, j(κ) > κ.

Since V = L, the only transitive model containing all ordinals is the
universe itself: V = M = L. Since j is an elementary embedding and κ is the
least measurable cardinal, we have

M � j(κ) is the least measurable cardinal;

and hence, j(κ) is the least measurable cardinal. This is a contradiction since
j(κ) > κ. ��

If there exists a measurable cardinal, then there exists a nontrivial elemen-
tary embedding of the universe. Let us show that conversely, if j : V → M is
a nontrivial elementary embedding then there exists a measurable cardinal.

Lemma 17.3. If j is a nontrivial elementary embedding of the universe, then
there exists a measurable cardinal.

Proof. Let j : V → M be a nontrivial embedding. Notice that there exists an
ordinal α such that j(α) �= α; otherwise, we would have rank(jx) = rank(x)
for all x, and then we could prove by induction on rank that j(x) = x for
all x.

Thus let κ be the least ordinal number such that j(κ) �= κ (and hence
j(κ) > κ). It is clear that j(n) = n for all n and j(ω) = ω since 0, n + 1,
and ω are absolute notions and j is elementary. Hence κ > ω. We shall show
that κ is a measurable cardinal.

Let D be the collection of subsets of κ defined as follows:

(17.2) X ∈ D if and only if κ ∈ j(X) (X ⊂ κ).

Since κ < j(κ), i.e., κ ∈ j(κ), we have κ ∈ D; also ∅ /∈ D because j(∅) = ∅.
Using the fact that j(X ∩Y ) = j(X)∩ j(Y ) and that j(X) ⊂ j(Y ) whenever
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X ⊂ Y , we see that D is a filter: If κ ∈ j(X) and κ ∈ j(Y ), then κ ∈ j(X∩Y );
if X ⊂ Y and κ ∈ j(X), then κ ∈ j(Y ). Similarly, j(κ − X) = j(κ) − j(X)
and thus D is an ultrafilter.

D is a nonprincipal ultrafilter: For every α < κ, we have j({α}) =
{j(α)} = {α}, and so κ /∈ j({α}) and we have {α} /∈ D. We shall now
show that D is κ-complete. Let γ < κ and let X = 〈Xα : α < γ〉 be a se-
quence of subsets of κ such that κ ∈ j(Xα) for each α < γ. We shall show
that

⋂
α<γ Xα ∈ D. In M (and thus in V ), j(X ) is a sequence of length j(γ)

of subsets of j(κ); for each α < γ, the j(α)th term of j(X ) is j(Xα). Since
j(α) = α for all α < γ and j(γ) = γ, it follows that j(X ) = 〈j(Xα) : α < γ〉.
Hence if X =

⋂
α<γ Xα, we have j(X) =

⋂
α<γ j(Xα). Now it is clear that

κ ∈ j(X) and hence X ∈ D. ��

The construction of a κ-complete ultrafilter from an elementary embed-
ding yields the following commutative diagram (17.3):

Lemma 17.4. Let j : V → M be a nontrivial elementary embedding, let κ be
the least ordinal moved, and let D be the ultrafilter on κ defined in (17.2). Let
jD : V → Ult be the canonical embedding of V in the ultrapower UltD(V ).
Then there is an elementary embedding k of Ult in M such that k(jD(a)) =
j(a) for all a:

(17.3)

Ult

V M
j

k
jD

�

�

�
�

�
�

�
���

Proof. For each [f ] ∈ Ult, let

(17.4) k([f ]) = (j(f))(κ).

(Here f is a function on κ and j(f) is a function on j(κ).)
We shall first show that definition (17.4) does not depend on the choice

of f representing [f ]. If f =D g, then the set X = {α : f(α) = g(α)} is in D
and hence κ is in the set

j(X) = {α < j(κ) : (jf)(α) = (jg)(α)}.

Therefore (jf)(κ) = (jg)(κ).
Next we show that k is elementary. Let ϕ(x) be a formula and let Ult �

ϕ([f ]); we shall show that M � ϕ(k([f ])). The set X = {α : ϕ(f(α))} is in D
and hence κ belongs to the set

j(X) = {α < j(κ) : M � ϕ((jf)(α))}.

Since (jf)(κ) = k([f ]), we have M � ϕ(k([f ])).
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Finally, we show that k(jD(a)) = j(a) for all a. Since jD(a) = [ca], where
ca is the constant function on κ with value a, we have k(jD(a)) = (j(ca))(κ).
Now j(ca) is the constant function on j(κ) with value j(a) and hence
(j(ca))(κ) = j(a). ��

We remark that the measure D = {X ⊂ κ : κ ∈ j(X)} defined from
an elementary embedding is normal: Let f be a regressive function on some
X ∈ D. Then (jf)(κ) < κ, and if γ = (jf)(κ), then f(α) = γ for almost
all α.

Normality can be expressed in terms of ultrapowers:

Lemma 17.5. Let D be a nonprincipal κ-complete ultrafilter on κ. Then the
following are equivalent :

(i) D is normal.
(ii) In the ultrapower UltD(V ),

κ = [d]

where d is the diagonal function.
(iii) For every X ⊂ κ, X ∈ D if and only if κ ∈ jD(X).

Proof. (i) implies (ii): Every function f ∈∗ d is regressive, and hence repre-
sents an ordinal γ < κ.

(ii) implies (iii): If X ⊂ κ, then X ∈ D if and only if d(α) ∈ X for almost
all α, that is, if and only if [d] ∈ jD(X). If [d] = κ, we get X ∈ D if and only
if κ ∈ jD(X).

(iii) implies (i): If D = {X ⊂ κ : κ ∈ jD(X)} then D is normal, by the
remark preceding the lemma. ��

Let j : V → M be an elementary embedding. If X is a class defined by
a formula ϕ, then j(X) is the class of the model M , defined in M by the same
formula ϕ. Note that j(X) =

⋃
α∈Ord j(X ∩ Vα). In particular, M = j(V ).

Lemma 17.6. Let j be an elementary embedding of the universe and let κ
be the least ordinal moved (i.e., j(κ) > κ). If C is a closed unbounded subset
of κ, then κ ∈ j(C).

Proof. Since j(α) = α for all α < κ, we have j(C) ∩ κ = C. Thus j(C) ∩ κ
is unbounded in κ; and because j(C) is closed (in j(V ) and hence in the
universe), we have κ ∈ j(C). ��

A consequence of Lemma 17.6 is that the set of all regular cardinals below
a measurable cardinal κ is stationary (cf. Lemma 10.21): Let X ⊂ κ be the
set of all regular cardinals below κ. Since κ is regular in M , we have κ ∈ j(X),
and κ ∈ j(X ∩C) for every closed unbounded C ⊂ κ. Hence X is stationary.
Similarly, as κ is Mahlo, it is Mahlo in M , and if X is now the set of all
Mahlo cardinals below κ, it follows that X is stationary.



290 Part II. Advanced Set Theory

More generally, if M(X) denotes the Mahlo operation

(17.5) M(X) = {α : X ∩ α is stationary in α}

where X is any class of ordinals, the above argument shows that if κ ∈ j(X)
then κ ∈ M(X) (Exercise 17.7).

The next theorem shows that there exists no nontrivial elementary em-
bedding of V into V . As the statement “there exists an elementary embedding
of V ” is not expressible in the language of set theory, the theorem needs to be
understood as a theorem in the following modification of ZFC: The language
has, in addition to ∈, a function symbol j, the axioms include Separation and
Replacement Axioms for formulas that contain the symbol j, and axioms that
state that j is an elementary embedding of V .

Theorem 17.7 (Kunen). If j : V → M is a nontrivial elementary embed-
ding, then M �= V .

First we prove the following lemma:

Lemma 17.8. Let λ be an infinite cardinal such that 2λ = λℵ0 . There exists
a function F : λω → λ such that whenever A is a subset of λ of size λ and
γ < λ, there exists some s ∈ Aω such that F (s) = γ.

Proof. Let {(Aα, γα) : α < 2λ} be an enumeration of all pairs (A, γ) where
γ < λ and A is a subset of λ of size λ. We define, by induction on α, a sequence
sα, α < 2λ, of elements of λω as follows: If α < 2λ, then since λℵ0 = 2λ > |α|,
there exists an sα ∈ Aω

α such that sα �= sβ for all β < α.
For each α < 2λ, we define F (sα) = γα (and let F (s) be arbitrary if s is

not one of the sα). The function F has the required property: If A ⊂ λ has
size λ and γ < λ, then (A, γ) = (Aα, γα) for some α, and then γα = F (sα).

��

Proof of Theorem 17.7. Let us assume that j is a nontrivial elementary em-
bedding of V in V . Let κ = κ0 be the least ordinal moved; κ0 is measurable,
and so are κ1 = j(κ0), κ2 = j(κ1), and every κn, where κn+1 = j(κn). Let
λ = limn→∞ κn. Since j(〈κn : n < ω〉) = 〈j(κn) : n < ω〉 = 〈κn+1 : n < ω〉,
we have j(λ) = limn→∞ j(κn) = λ. Let G = {j(α) : α < λ}; we shall use the
set G and Lemma 17.8 to obtain a contradiction.

The cardinal λ is the limit of a sequence of measurable cardinals and hence
is a strong limit cardinal. Since cf λ = ω, we have 2λ = λℵ0 . By Lemma 17.8
there is a function F : λω → λ such that F (Aω) = λ for all A ⊂ λ of size λ.
Since j is elementary, and j(ω) = ω and j(λ) = λ, the function j(F ) has the
same property. Thus, considering the set A = G, there exists s ∈ Gω such
that (jF )(s) = κ.

Now, s is a function, s : ω → G, and hence there is a t : ω → λ such
that s(n) = j(t(n)) for all n < ω. It follows that s = j(t). Thus we have
κ = (jF )(jt) = j(F (t)); in other words, κ = j(α) where α = F (t). However,
this is impossible since j(α) = α for all α < κ, and j(κ) > κ. ��
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Let us now consider ultrapowers and the corresponding elementary em-
beddings jU : V → Ult. To introduce the following lemma, let us observe
that if j : V → M and if κ is the least ordinal moved, then j(x) = x for
every x ∈ Vκ, and j(X) ∩ Vκ = X for every X ⊂ Vκ. Hence V M

κ+1 = Vκ+1

(and PM (κ) = P (κ)).

Lemma 17.9. Let U be a nonprincipal κ-complete ultrafilter on κ, let M =
UltU (V ) and let j = jU be the canonical elementary embedding of V in M .

(i) Mκ ⊂ M , i.e., every κ-sequence 〈aα : α < κ〉 of elements of M is
itself a member of M .

(ii) U /∈ M .
(iii) 2κ ≤ (2κ)M < j(κ) < (2κ)+.
(iv) If λ is a limit ordinal and if cf λ = κ, then j(λ) > limα→λ j(α); if

cf λ �= κ, then j(λ) = limα→λ j(α).
(v) If λ > κ is a strong limit cardinal and cf λ �= κ, then j(λ) = λ.

Proof. (i) Let 〈aξ : ξ < κ〉 be a κ-sequence of elements of M . For each
ξ < κ, let gξ be a function that represents aξ, and let h be a function that
represents κ:

[gξ] = aξ, [h] = κ.

We shall construct a function F such that [F ] = 〈aξ : ξ < κ〉. We let, for each
α < κ,

F (α) = 〈gξ : ξ < h(α)〉.

Since for each α, F (α) is an h(α)-sequence, [F ] is a κ-sequence. Let ξ < κ; we
want to show that the ξth term of [F ] is aξ. Since [h] > ξ, we have ξ < h(α)
for almost all α; and for each α such that ξ < h(α), the ξth term of F (α)
is gξ(α). But [cξ] = ξ and [gξ] = aξ, and we are done.

(ii) Assume that U ∈ M , and let us consider the mapping e of κκ onto j(κ)
defined by e(f) = [f ]. Since κκ ∈ M and U ∈ M , the mapping e is in M .
It follows that M � |j(κ)| ≤ 2κ. This is a contradiction since κ < j(κ) and
j(κ) is inaccessible in M .

(iii) 2κ ≤ (2κ)M holds because PM (κ) = P (κ) and M ⊂ V ; (2κ)M is less
than j(κ) since j(κ) is inaccessible in M ; finally, we have |j(κ)| = 2κ and
hence j(κ) < (2κ)+.

(iv) If cf λ = κ, let λ = limα→κ λα and let f(α) = λα for all α < κ.
Then [f ] > j(λα) for all α < κ and [f ] < j(λ). If cf λ > κ, then for every
f : κ → λ there exists α < λ such that [f ] < j(α). If cf λ = γ < κ, let
λ = limν→γ λν ; for every f : κ → λ there exists (by κ-completeness) ν < γ
such that [f ] < j(λν).

(v) For every α < λ, the ordinals below α are represented by functions
f : κ → α; hence |j(α)| ≤ |ακ| < λ; by (iv) we have j(λ) = limα→λ j(α) = λ.

��
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Note that in (v) it suffices to assume that cf λ �= κ and ακ < λ for all
cardinals α < λ.

Let us recall (Lemma 10.18) that a measurable cardinal is weakly com-
pact. We now prove a stronger result:

Theorem 17.10. Every measurable cardinal κ is weakly compact and if D is
a normal measure on κ then the set {α < κ : α is weakly compact} is in D.

Proof. The first statement was proved in Lemma 10.18. Let D be a normal
measure on κ, and let jD : V → M be the canonical embedding. Since
PM (κ) = P (κ), it follows that κ is weakly compact in M , and since [d]D = κ,
we have {α : α is weakly compact} ∈ D. ��

The following two results show that the existence of measurable cardinals
influences cardinal arithmetic:

Lemma 17.11. Let κ be a measurable cardinal. If 2κ > κ+, then the set
{α < κ : 2α > α+} has measure one for every normal measure on κ.

Consequently, if 2α = α+ for all cardinals α < κ, then 2κ = κ+.

Proof. Let D be a normal measure on κ, and let M = UltD(V ). If 2α = α+

for almost all α, then, since [d]D = κ, we have M � 2κ = κ+. In other words,
there is a one-to-one mapping in M between PM (κ) and (κ+)M . However,
PM (κ) = P (κ) and (κ+)M = κ+ (because PM (κ) = P (κ)), and so 2κ = κ+.

��

Lemma 17.12. Let κ be a measurable cardinal, let D be a normal measure
on κ and let j : V → M be the corresponding elementary embedding. Let
λ > κ be a strong limit cardinal of cofinality κ. Then 2λ < j(λ).

Proof. Since cf λ = κ, we have j(λ) > λ. We shall show that 2λ = λκ ≤
(λκ)M ≤ (λj(κ))M < j(λ). The first equality holds because λ is strong limit.
We have λκ ≤ (λκ)M because every function f : κ → λ is in M . As for the
last inequality, we have

M � j(λ) is a strong limit cardinal

and since λ < j(λ) and j(κ) < j(λ), we have M � λj(κ) < j(λ). ��

See Exercises 17.12–17.16.

Weak Compactness

We shall investigate weakly compact cardinals in some detail, and give a char-
acterization of weakly compact cardinals that explains the name “weakly
compact.” This aspect of weakly compact cardinals has, as many other large
cardinal properties, motivation in model theory.
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We shall consider infinitary languages which are generalizations of the
ordinary first order language. Let κ be an infinite cardinal number. The
language Lκ,ω consists of

(i) κ variables;
(ii) various relation, function, and constant symbols;
(iii) logical connectives and infinitary connectives

∨
ξ<α ϕξ,

∧
ξ<α ϕξ for

α < κ (infinite disjunction and conjunction);
(iv) quantifiers ∃v, ∀v.

The language Lκ,κ is like Lκ,ω except that it also contains infinitary quanti-
fiers:

(v) ∃ξ<αvξ, ∀ξ<αvξ for α < κ.

The interpretation of the infinitary symbols of Lκ,κ is the obvious generaliza-
tion of the finitary case where

∨
ξ<n ϕξ is ϕ0 ∨ . . .∨ ϕn−1, ∃ξ<nvξ stands for

∃v0 . . .∃vn−1, etc. The language Lω,ω is just the language of the first order
predicate calculus.

The finitary language Lω,ω satisfies the Compactness Theorem: If Σ is
a set of sentences such that every finite S ⊂ Σ has a model, then Σ has
a model. Let us say that the language Lκ,κ (or Lκ,ω) satisfies the Weak
Compactness Theorem if whenever Σ is a set of sentences of Lκ,κ (Lκ,ω) such
that |Σ| ≤ κ and that every S ⊂ Σ with |S| < κ has a model, then Σ has
a model. Clearly, if Lκ,κ satisfies the Weak Compactness Theorem, then so
does Lκ,ω because Lκ,ω ⊂ Lκ,κ.

Theorem 17.13.

(i) If κ is a weakly compact cardinal, then the language Lκ,κ satisfies the
Weak Compactness Theorem.

(ii) If κ is an inaccessible cardinal and if Lκ,ω satisfies the Weak Com-
pactness Theorem, then κ is weakly compact.

Proof. (i) The proof of the Weak Compactness Theorem for Lκ,κ is very much
like the standard proof of the Compactness Theorem for Lω,ω. Let Σ be a set
of sentences of Lκ,κ of size κ such that if S ⊂ Σ and |S| < κ, then S has
a model. Let us assume that the language L = Lκ,κ has only the symbols
that occur in Σ; thus |L| = κ.

First we extend the language as follows: For each formula ϕ with free
variables vξ, ξ < α, we introduce new constant symbols cϕ

ξ , ξ < α (Skolem
constants); let L(1) be the extended language. Then we do the same for each
formula of L(1) and obtain L(2) ⊃ L(1). We do the same for each n < ω, and
then let L∗ =

⋃∞
n=1 L(n). Since κ is inaccessible, it follows that |L∗| = κ.

L∗ has the property that for each formula ϕ with free variables vξ, ξ < α,
there are in L∗ constant symbols cϕ

ξ , ξ < α (which do not occur in ϕ).



294 Part II. Advanced Set Theory

For each ϕ(vξ, . . .)ξ<α let σϕ be the sentence (a Skolem sentence)

(17.6) ∃ξ<αvξ ϕ(vξ , . . .)ξ<α → ϕ(cϕ
ξ , . . .)ξ<α

and let Σ∗ = Σ ∪ {σϕ : ϕ is a formula of L∗}.
Note that if S ⊂ Σ∗ and |S| < κ, then S has a model: Take a model for

S∩Σ (for L) and then expand it to a model for L∗ by interpreting the Skolem
constants so that each sentence (17.6) is true.

Let {σα : α < κ} be an enumeration of all the sentences in L∗. Let (T,⊂)
be the binary κ-tree consisting of all t : γ → {0, 1}, γ < κ, for which there
exists a model A of Σ ∩ {σα : α ∈ dom(t)} such that for all α ∈ dom(t)

t(α) = 1 if and only if A � σα.

Since κ has the tree property, there exists a branch B in T of length κ. Let

∆ = {σα : t(α) = 1 for some t ∈ B}.

Clearly, Σ∗ ⊂ ∆. Let A0 be the set of all constant terms of L∗, and let ≈ be
the equivalence relation on A0 defined by

τ1 ≈ τ2 if and only if (τ1 ≈ τ2) ∈ ∆,

and let A = A0/≈.
We make A into a model A for L∗ as follows:

A � P [[τ1], . . . , [tn]] if and only if P (τ1, . . . , τn) ∈ ∆

and similarly for function and constant symbols. The proof is then completed
by showing that A is a model for ∆ (and hence for Σ). The proof of

(17.7) A � σ if and only if σ ∈ ∆

is done by induction on the number of quantifier blocks in σ: If σ =
∃ξ<αvξ ϕ(vξ, . . .), then by induction hypothesis we have

A � σ(cϕ
ξ , . . .)ξ<α if and only if σ(cϕ

ξ , . . .)ξ<α ∈ ∆

and (17.7) follows.
(ii) Let κ be inaccessible and assume that the language Lκ,ω satisfies the

Weak Compactness Theorem. We shall show that κ has the tree property.
Let (T, <) be a tree of height κ such that each level of T has size < κ.
Let us consider the Lκ,ω language with one unary predicate B and constant
symbols cx for all x ∈ T . Let Σ be the following set of sentences:

¬(B(cx) ∧ B(cy)) for all x, y ∈ T that are incomparable,∨
x∈Uα

B(cx) for all α < κ, where Uα is the αth level of T

(Σ says that B is branch in T of length κ). If S ⊂ Σ and |S| < κ, then we
get a model for S by taking a sufficiently large initial segment of T and some
branch in this segment. By the Weak Compactness Theorem for Lκ,ω, Σ has
a model, which obviously yields a branch of length κ. ��
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Indescribability

Let n > 0 be a natural number and let us consider the nth order predicate
calculus. There are variables of orders 1, 2, . . . , n, and the quantifiers are
applied to variables of all orders. An nth order formula contains, in addition
to first order symbols and higher order quantifiers, predicates X(z) where
X and z are variables of order k + 1 and k respectively (for any k < n).
Satisfaction for an nth order formula in a model A = (A, P, . . . , f, . . . , c, . . .)
is defined as follows: Variables of first order are interpreted as elements of
the set A, variables of second order as elements of P (A) (as subsets of A),
etc.; variables of order n are interpreted as elements of Pn−1(A). The predi-
cate X(z) is interpreted as z ∈ X . A Πn

m formula is a formula of order n + 1
of the form

(17.8) ∀X ∃Y . . .︸ ︷︷ ︸
m quantifiers

ψ

where X , Y , . . . are (n + 1)th order variables and ψ is such that all quantified
variables are of order at most n. Similarly, a Σn

m formula is as in (17.8), but
with ∃ and ∀ interchanged.

We shall often exhibit a sentence σ and claim that it is Πn
m (or Σn

m)
although it is only equivalent to a Πn

m (or Σn
m) sentence, in the following

sense: We are considering a specific type of models in which σ is interpreted
(e.g., the models (Vα,∈)) and there is a Πn

m (or Σn
m) sentence σ such that

the equivalence σ ↔ σ holds in all these models.
Note that every first order formula is equivalent to some Π0

n formula (and
also to some Σ0

k formula).

Definition 17.14. A cardinal κ is Πn
m-indescribable if whenever U ⊂ Vκ

and σ is a Πn
m sentence such that (Vκ,∈, U) � σ, then for some α < κ,

(Vα,∈, U ∩ Vα) � σ.

Lemma 17.15. Every measurable cardinal is Π2
1-indescribable.

Proof. Let κ be a measurable cardinal, let U ⊂ Vκ and let σ be a Π2
1 sentence

of the (third order) language {∈, U}. Let us assume that (Vκ,∈, U) � σ.
We have σ = ∀X ϕ(X) where X is a third order variable and ϕ(X) con-

tains only second and first order quantifiers. Thus

(17.9) ∀X ⊂ Vκ+1 (Vκ+1,∈, X, Vκ, U) � ϕ̃

where ϕ̃ is the (first order) sentence obtained from ϕ by replacing the first
order quantifiers by the restricted quantifiers ∀x ∈ Vκ and ∃x ∈ Vκ.

Now let D be a normal measure on κ and let M = UltD(V ). Since
V M

κ+1 = Vκ+1, we know that (17.9) holds also in M . Using the fact that Vκ is
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represented in the ultrapower by the function α �→ Vα, Vκ+1 by α �→ Vα+1,
and U by α �→ U ∩ Vα, we conclude that for almost all α,

(17.10) ∀X ⊂ Vα+1 (Vα+1,∈, X, Vα, U ∩ Vα) � ϕ̃.

Then, translating (17.10) back into the third order language, we obtain

(Vα,∈, U ∩ Vα) � σ

for almost all, and hence for some, α < κ. ��

Lemma 17.16. If κ is not inaccessible, then it is describable by a first order
sentence, i.e., Π0

m-describable for some m.

Proof. Let κ be a singular cardinal, and let f be a function with dom(f) =
λ < κ and ran(f) cofinal in κ. Let U1 = f and U2 = {λ}, and let σ be
the first order sentence saying that U2 is nonempty and that the unique
element of U2 is the domain of U1. Clearly, κ is describable in the sense that
(Vκ,∈, U1, U2) � σ and there is no α < κ such that (Vα,∈, U1 ∩ Vα, U2 ∩ Vα) �
σ. It is routine to find a single U ⊂ Vκ and an (∈, U)-sentence σ̃ attesting to
the describability of κ.

If κ ≤ 2λ for some λ < κ, there is a function f that maps P (λ) onto κ.
We let U1 = f and U2 = {P (λ)}; then κ is described by the same sentence
as above.

Finally, κ = ω is describable as follows: (Vκ,∈) � ∀x∃y x ∈ y. ��

The converse is also true; cf. Exercise 17.23.
We shall now present a result of Hanf and Scott that shows that Π1

1-
indescribable cardinals are exactly the weakly compact cardinals. First we
need a lemma.

Lemma 17.17. If κ is a weakly compact cardinal, then for every U ⊂ Vκ,
the model (Vκ,∈, U) has a transitive elementary extension (M,∈, U ′) such
that κ ∈ M .

Proof. Let Σ be the set of all Lκ,κ sentences true in the model (Vκ,∈, U, x)x∈Vκ

plus the sentences
c is an ordinal,

c > α, (all α < κ).

Clearly |Σ| = κ, and if S ⊂ Σ is such that |S| < κ, then S has a model
(namely Vκ, where the constant c can be interpreted as some ordinal greater
than all the α’s mentioned in S).

Hence Σ has a model A = (A, E, UA, xA)x∈Vκ ; we may assume that A ⊃
Vκ, E ∩ (Vκ × Vκ) = ∈, UA ∩ Vκ = U , and xA = x for all x ∈ Vκ. Moreover,
Vκ ≺ (A, E, UA) because A satisfies all formulas true in Vκ of all x ∈ Vκ.
If we show that the model (A, E) is well-founded, then the lemma follows.
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Here we make use of the expressive power of the infinitary language Lκ,κ: We
consider the sentence

(17.11) ¬∃v0 ∃v1 . . . ∃vn . . .
∧

n∈ω
(vn+1 ∈ vn).

The sentence (17.11) holds in a model A = (A, E) if and only if A is well-
founded. Since Σ contains the sentence (17.11), every model of Σ is well-
founded. ��

The converse is also true; this will follow from the proof of Theorem 17.18.

Theorem 17.18 (Hanf-Scott). A cardinal κ is Π1
1-indescribable if and

only if it is weakly compact.

Proof. First we show that every Π1
1-indescribable cardinal is weakly compact.

If κ is Π1
1-indescribable, then by Lemma 17.16, κ is inaccessible, and it suffices

to show that κ has the tree property. In fact, by the proof of Theorem 17.13(i)
it suffices to consider trees (T, <) consisting of sequences t : γ → {0, 1}, γ < κ.
Let T be such a tree. For every α < κ, the model (Vα,∈, T ∩ Vα) satisfies the
Σ1

1 sentence

(17.12) ∃B (B ⊂ T and B is a branch of unbounded length).

Namely, let B = {t�ξ : ξ < α} where t is any t ∈ T with domain α. Since κ is
Π1

1-indescribable, the sentence (17.12) holds in (Vκ,∈, T ) and hence T has
a branch of length κ.

To show that a weakly compact cardinal is Π1
1-indescribable, we use

Lemma 17.17. Let κ be weakly compact, let U ⊂ Vκ and let σ be a Π1
1 sen-

tence true in (Vκ,∈, U). We have σ = ∀X ϕ(X) where X is a second order
variable and ϕ has only first order quantifiers.

Let (M,∈, U ′) be a transitive elementary extension of (Vκ,∈, U) such that
κ ∈ M . Since

(∀X ⊂ Vκ) (Vκ,∈, U) � ϕ(X)

and V M
κ = Vκ, we have

(M,∈, U ′) � (∀X ⊂ Vκ) (Vκ,∈, U ′ ∩ Vκ) � ϕ(X).

Therefore,

(M,∈, U ′) � ∃α (∀X ⊂ Vα) (Vα,∈, U ′ ∩ Vα) � ϕ(X),

and so
(Vκ,∈, U) � ∃α (∀X ⊂ Vα) (Vα,∈, U ′ ∩ Vα) � ϕ(X).

Hence for some α < κ, (Vα,∈, U ∩ Vα) � σ. ��

Corollary 17.19. Every weakly compact cardinal κ is a Mahlo cardinal, and
the set of Mahlo cardinals below κ is stationary.
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Proof. Let C ⊂ κ be a closed unbounded set. Since κ is inaccessible, (Vκ,∈, C)
satisfies the following Π1

1 sentence:

¬∃F (F is a function from some λ < κ cofinally into κ)

and C is unbounded in κ.

By Π1
1-indescribability, there exists a regular α < κ such that C ∩ α is un-

bounded in α; hence α ∈ C. Thus κ is Mahlo.
Being Mahlo is also expressible by a Π1

1 sentence:

∀X (if X is closed unbounded, then ∃ a regular α in X)

and so the same argument as above shows that there is a stationary set of
Mahlo cardinals below κ. ��

Corollary 17.20. If κ is weakly compact and if S ⊂ κ is stationary, then
there is a regular uncountable λ < κ such that S ∩ λ is stationary in λ.

Proof. “κ is regular” is expressible by a Π1
1 sentence in (Vκ,∈) and so is “κ is

uncountable.” “S is stationary” is Π1
1 in (Vκ,∈, S): For every C, if C is closed

unbounded, then S ∩ C �= ∅. ��

Lemma 17.21. If κ is weakly compact and if A ⊂ κ is such that A ∩ α ∈ L
for every α < κ, then A is constructible.

Proof. Let A ⊂ κ be such that A ∩ α ∈ L for all α < κ. By Lemma 17.17
there is a transitive model (M,∈, A′) $ (Vκ,∈, A) such that κ ∈ M . Consider
the sentence ∀α ∃x (x is constructible and x = A ∩ α) and let α = κ. ��

Unlike measurability, weak compactness is consistent with V = L:

Theorem 17.22. If κ is weakly compact then κ is weakly compact in L.

Proof. In L, let T = (κ, <T ) be a tree of height κ such that each level of T
has size less than κ. If κ is weakly compact then T has a branch B (in the
universe), and by Lemma 17.21, B ∈ L. Hence κ has the tree property in L,
and since κ is inaccessible, it is weakly compact in L. ��

Partitions and Models

Let us consider a model A = (A, PA, . . . , FA, . . . , cA, . . .) of a (not necessarily
countable) language L = {P, . . . , F, . . . , c, . . .}. Let κ be an infinite cardinal
and let us assume that the universe A of the model A contains all ordinals
α < κ, i.e., κ ⊂ A.
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Definition 17.23. A set I ⊂ κ is a set of indiscernibles for the model A if
for every n ∈ ω, and every formula ϕ(v1, . . . , vn),

A � ϕ[α1, . . . , αn] if and only if A � ϕ[β1, . . . , βn]

whenever α1 < . . . < αn and β1 < . . . < βn are two increasing sequences of
elements of I.

Lemma 17.24. Let κ be an infinite cardinal and assume that

κ → (α)<ω
2λ

where α is a limit ordinal and λ is an infinite cardinal. Let L be a language
of size ≤ λ and let A be a model of L such that κ ⊂ A. Then A has a set of
indiscernibles of order-type α.

Proof. Let Φ be the set of all formulas of the language L. We consider
the function F : [κ]<ω → P (Φ) defined as follows: If x ∈ [κ]n and
x = {α1, . . . , αn} where α1 < . . . < αn, then

F (x) = {ϕ(v1, . . . , vn) ∈ Φ : A � ϕ[α1, . . . , αn]}.

The function F is a partition into at most 2λ pieces and thus has a homo-
geneous set I ⊂ κ of order-type α. It is now easy to verify that I is a set of
indiscernibles for A. ��

We shall see later that for a given limit ordinal α, the least κ that satisfies
κ → (α)<ω is inaccessible and satisfies κ → (α)<ω

λ for all λ < κ. Now we shall
prove this for Ramsey cardinals.

Lemma 17.25. If κ → (κ)<ω and if λ < κ is a cardinal, then κ → (κ)<ω
λ .

Proof. Let F : [κ]<ω → λ be a partition into λ < κ pieces. We consider the
following partition G of [κ]<ω into two pieces: If α1 < . . . < αk < αk+1 <
. . . < α2k are elements of κ and if F ({α1, . . . , αk}) = F ({αk+1, . . . , α2k}),
then we let G({α1, . . . , α2k}) = 1; for all other x ∈ [κ]<ω, we let G(x) = 0.

Now, let H ⊂ κ be a homogeneous set for G, |H | = κ. We claim that
for each k and each x ∈ [H ]2k, G(x) = 1: This is because |H | = κ > λ, and
therefore we can find α1 < . . . < αk < αk+1 < . . . < α2k in H such that
F ({α1, . . . , αk}) = F ({αk+1, . . . , α2k}).

It follows that H is homogeneous for F : If α1 < . . . < αn and β1 < . . . <
βn are two sequences in H , we choose a sequence γ1 < . . . < γn in H such
that both αn < γ1 and βn < γ1. Then

G({α1, . . . , αn, γ1, . . . , γn}) = G({β1, . . . , βn, γ1, . . . , γn}) = 1,

and hence

F ({α1, . . . , αn}) = F ({γ1, . . . , γn}) = F ({β1, . . . , βn}). ��
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Corollary 17.26. If κ is a Ramsey cardinal and if A ⊃ κ is a model of
a language of size < κ, then A has a set of indiscernibles of size κ. ��

The combinatorial methods introduced in this section will now be em-
ployed to obtain a result on measurable cardinals considerably stronger than
Scott’s Theorem. It will be shown that if a Ramsey cardinal exists then
V = L fails in a strong way. A more extensive theory will be developed in
Chapter 18.

Let us make a few observations about models with definable Skolem func-
tions. Let A be a model of a language L such that A ⊃ κ and let I ⊂ κ be
a set of indiscernibles for A. Let us assume that the model A has definable
Skolem functions ; i.e., for every formula ϕ(u, v1, . . . , vn), where n ≥ 0, there
exists an n-ary function hϕ in A such that:

(i) hϕ is definable in A, i.e., there is a formula ψ such that

y = hϕ(x1, . . . , xn) if and only if A � ψ[y, x1, . . . , xn]

for all y, x1, . . . , xn ∈ A; and
(ii) hϕ is a Skolem function for ϕ.

Let B ⊂ A be the closure of I under all functions in L and the functions hϕ

for all formulas ϕ. B is an elementary submodel of A, and in fact is the
smallest elementary submodel of A that includes the set I; we call B the
Skolem hull of I and say that I generates B.

We augment the language of A by adding function symbols for all the
Skolem functions hϕ and call Skolem terms the terms built from variables and
constant symbols (0-ary functions) by applications of functions in L and the
Skolem functions. Since B is an elementary submodel of A, the interpretation
of each Skolem term t is the same in B as in A. For every element x ∈ B
there is a Skolem term t and indiscernibles γ1 < . . . < γn, elements of I,
such that x = tA[γ1, . . . , γn] = tB[γ1, . . . , γn]. Now if ψ is a formula of the
augmented language, i.e., if ψ also contains the Skolem terms, it still does not
distinguish between the indiscernibles: If α1 < . . . < αn and β1 < . . . < βn

are two sequences in I, then ψ(α1, . . . , αn) holds (either in A or in B) if and
only if ψ(β1, . . . , βn) holds.

Theorem 17.27 (Rowbottom). If κ is a Ramsey cardinal, then the set of
all constructible reals is countable. More generally, if λ is an infinite cardinal
less than κ, then |PL(λ)| = λ.

Proof. Let κ be a Ramsey cardinal and let λ < κ. Since κ is inaccessible, we
have PL(λ) ⊂ Lκ. Consider the model

A = (Lκ,∈, PL(λ), α)α≤λ.

A is a model of the language L = {∈, Q, cα}α≤λ where Q is a one-place
predicate (interpreted in A as P (λ)∩L) and cα, α ≤ λ, are constant symbols
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(interpreted as ordinals less than or equal to λ). Since κ is Ramsey, there
exists a set I of size κ of indiscernibles for A.

The model A has definable Skolem functions: Since κ is inaccessible, Lκ is
a model of ZFC + V = L and therefore has a definable well-ordering. Thus
let B ⊂ Lκ be the elementary submodel of A generated by the set I. Every
element x ∈ B is expressible as x = t(γ1, . . . , γn) where t is a Skolem term
and γ1 < . . . < γn are elements of I.

We shall now show that the set S = PL(λ) ∩ B has at most λ elements.
Since S is the interpretation in B of the one-place predicate Q, it suffices to
show that there are at most λ elements x ∈ B such that B � Q(x).

Let t be a Skolem term. Let us consider the truth value of the formula

(17.13) t(α1, . . . , αn) = t(β1, . . . , βn)

for a sequence of indiscernibles α1 < . . . < αn < β1 < . . . < βn. The
formula (17.13) is either true for all increasing sequences in I or false for
all increasing sequences in I. If (17.13) is true, then it is true for any two
sequences α1 < . . . < αn, β1 < . . . < βn, in I: Pick γ1, . . . , γn bigger than
both αn and βn and then t(α1, . . . , αn) = t(γ1, . . . , γn) = t(β1, . . . , βn). If
(17.13) is false, then we choose κ increasing sequences

α0
1 < . . . < α0

n < α1
1 < . . . < α1

n < . . . < αξ
1 < . . . < αξ

n < . . . (ξ < κ)

in I and then t(αξ
1, . . . , α

ξ
n) �= t(αη

1 , . . . , αη
n) whenever ξ �= η. In conclusion,

the set

(17.14) {t(α1, . . . , αn) : α1 < . . . < αn are in I}

has either one or κ elements.
Now we apply this to evaluate the size of the set S. We know that |S| < κ

because S ⊂ PL(λ) ⊂ P (λ) and κ is inaccessible. If t is a Skolem term
for which the set (17.14) has size κ, then t(α1, . . . , αn) is not in S, for any
α1 < . . . < αn in I; by indiscernibility, Q(t(α1, . . . , αn)) is true or false
simultaneously for all increasing sequences in I. Thus if t(α1, . . . , αn) ∈ S,
the set (17.14) has only one element.

However, since |L| ≤ λ, there are at most λ Skolem terms. And since every
x ∈ B has the form t(α1, . . . , αn) for some Skolem term and α1 < . . . < αn

in I, it follows that |S| ≤ λ.
Thus we have proved that S = QB = PL(λ)∩B has at most λ elements.

Now B ≺ Lκ and |B| = κ; hence the transitive collapse of B is Lκ and we
have an isomorphism

π : B � Lκ.

Since each α ≤ λ has a name in A, we have λ ∪ {λ} ⊂ B and so π(X) = X
for each X ⊂ λ in B. In particular π(X) = X for all X ∈ S; and since
Qπ(B) = π(S) = S, we have

S = PL(λ) ∩ π(B) = PL(λ) ∩ Lκ = PL(λ).
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This completes the proof: On the one hand, we proved that |S| ≤ λ; and on
the other hand, |PL(λ)| ≥ λ; thus |PL(λ)| = λ. ��

Every Ramsey cardinal is weakly compact. Not only is the least Ramsey
cardinal greater than the least weakly compact but, as we show below, there
is a hierarchy of large cardinals below each Ramsey cardinal, exceeding the
least weakly compact.

Definition 17.28. For every limit ordinal α, the Erdős cardinal ηα is the
least κ such that κ → (α)<ω .

We shall prove that each ηα, if it exists, is inaccessible, and if α < β then
ηα < ηβ . Note that κ is a Ramsey cardinal if and only if κ = ηκ.

Lemma 17.29. If κ → (α)<ω, then κ → (α)<ω
2ℵ0 .

Proof. Let f be a partition, f : [κ]<ω → {0, 1}ω. For each n < ω, let fn =
f�[κ]n, and for each κ < ω, let fn,k : [κ]n → {0, 1} be as follows:

fn,k({α1, . . . , αn}) = h(k), where h = fn({α1, . . . , αn}).

Let π be a one-to-one correspondence between ω and ω × ω such that if
π(m) = (n, k), then m ≥ n; for each m, let gm : [κ]m → {0, 1} be the
partition defined by

gm({α1, . . . , αm}) = fn,k({α1, . . . , αn})

where (n, k) = π(m).
By the assumption, there exists H ⊂ κ of order-type α which is homo-

geneous for all gm. We claim that H is homogeneous for f . If not, then
fn({α1, . . . , αn}) �= fn({β1, . . . , βn}) for some α’s and β’s in H . Then for
some k, fn,k({α1, . . . , αn}) �= fn,k({β1, . . . , βn}), contrary to the assumption
that H is homogeneous for gm, where π(m) = (n, k). ��

Lemma 17.30. For every κ < ηα, ηα → (α)<ω
κ .

Proof. Let κ < ηα, and let f : [ηα]<ω → κ. We wish to find a homogeneous
set for f of order-type α. Since κ < ηα, there exists g : [κ]<ω → {0, 1} that
has no homogeneous set of order-type α. For each n, let fn = f�[ηα]n and
gn = g�[κ]n, and let A be the model (Vηα ,∈, fn, gn)n=0,1,....

By Lemmas 17.29 and 17.24, the model A has a set of indiscernibles H of
order-type α. We shall show that H is homogeneous for f . It suffices to show
that for each n, the formula

(17.15) fn({α1, . . . , αn}) = fn({β1, . . . , βn})

holds in A for any increasing sequence α1 < . . . < αn < β1 < . . . < βn

of indiscernibles: Then if α1 < . . . < αn and α′
1 < . . . < α′

n are arbitrary
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in H , we choose β1 < . . . < βn in H such that αn < β1 and α′
n < β1, and

fn({α1, . . . , αn}) = fn({α′
1, . . . , α

′
n}) follows from (17.15).

Thus let us assume that the negation of (17.15) holds for any α1 < . . . <
αn < β1 < . . . < βn in H . Let uξ, ξ < α, be increasing n-sequences in H such
that the last element of uξ is less than the first element of uη whenever ξ < η.
Let γξ = f(uξ) for all ξ < α, and let G = {γξ : ξ < α}. By indiscernibility,
and since γ0 > γ1 > . . . > γξ > . . . is impossible, we have γ0 < γ1 < . . . <
γξ < . . ..

We shall reach a contradiction by showing that G is homogeneous for g.
For each k, consider the formula

(17.16) g({f(uξ1), . . . , f(uξk
)}) = g({f(uν1), . . . , f(uνk

)}).

By indiscernibility, either (17.16) or its negation holds for all increasing se-
quences ξ1 < . . . < ξk < ν1 < . . . < νk. The inequality cannot hold because
g takes only two values, 0 and 1, and three sequences 〈ξ1, . . . , ξk〉 would give
three different values. Thus (17.16) holds, and the same argument as earlier
in this proof shows that g is constant on [G]k. ��

Theorem 17.31. Every Erdős cardinal ηα is inaccessible, and if α < β then
ηα < ηβ.

Proof. First we claim that ηα is a strong limit cardinal. If κ < ηα then
because 2κ �→ (α)2κ (by Lemma 9.3) and ηα → (α)2κ, we have 2κ < ηα. We
shall show that ηα is regular.

Let us assume that ηα is singular and that κ = cf ηα; let ηα = limν→κ λν .
For each ν < κ, let fν : [λν ]<ω → {0, 1} be such that fν has no homoge-
neous set of order-type α. For each n, let fν

n = fν�[λν ]n; let A be the model
(Vηα ,∈, λν , fν

n)ν<κ,n=0,1,... Since ηα is a strong limit and κ < ηα, the model A
has a set of indiscernibles H of order-type α.

Let ν be such that λν is greater than the least element of H . Then by
indiscernibility, all elements of H are smaller than λν . Since the function fν

takes only two values, it follows that for each n, it is the equality

fν
n({α1, . . . , αn}) = fν

n({β1, . . . , βn})

that holds for all increasing sequences α1 < . . . < αn < β1 < . . . < βn

in H , and not its negation. Hence H is homogeneous for fν , contrary to the
assumption on fν .

Finally, let α < β be limit ordinals, and let us assume that ηα = ηβ .
For each ξ < ηα, there exists a function fξ : [ξ]<ω → {0, 1} that has no
homogeneous subset of ξ of order-type α. Let us define g : [ηβ ]<ω → {0, 1}
by

g({ξ1, . . . , ξn}) = fξn({ξ1, . . . , ξn−1}).
Now if H is homogeneous for g, then for each ξ ∈ H , H ∩ ξ is homogeneous
for fξ. Hence the order-type of each H ∩ ξ is less than α, and therefore the
order-type of H is at most α, which is less than β. A contradiction. ��



304 Part II. Advanced Set Theory

We shall now show that the least Erdős cardinal ηω is greater than the
least weakly compact cardinal. We use the following lemma, of independent
interest:

Lemma 17.32. Let M and N be transitive models of ZFC and let j : M →
N be a nontrivial elementary embedding ; let κ be the least ordinal moved. If
PM (κ) = PN (κ), then κ is a weakly compact cardinal in M .

Proof. We prove a somewhat stronger statement: κ is ineffable in M (see
Exercise 17.26).

Let 〈Aα : α < κ〉 ∈ M be such that Aα ⊂ α for all α. We have j(Aα) = Aα

for all α < κ, and hence j(〈Aα : α < κ〉) = (〈Aα : α < j(κ)〉 (for some Aα,
κ ≤ α < j(κ)). The set Aκ is in M and witnesses ineffability of κ in M . ��

Theorem 17.33. If ηω exists then there exists a weakly compact cardinal
below ηω.

Proof. Let hϕ, ϕ ∈ Form , be Skolem functions for the language {∈} of set
theory, and let us consider the model A = (Vηω ,∈, hA

ϕ)ϕ∈Form where for
each ϕ, hA

ϕ is a Skolem function for ϕ in (Vηω ,∈). The model A has a set of
indiscernibles I of order-type ω. Let B be the closure of I under the Skolem
functions hA

ϕ .
Let us consider some nontrivial order-preserving mapping of H into H .

Using the Skolem functions, we extend this mapping (in the unique way)
to a nontrivial elementary embedding of B into B. Let M be the transitive
set isomorphic to B and let j : M → M be the corresponding nontrivial
elementary embedding.

Since ηω is inaccessible, Vηω is a model of ZFC and thus M is a transitive
model of ZFC. By Lemma 17.32 there exists a weakly compact cardinal in M ,
and therefore in Vηω . ��

The next result shows that the Erdős cardinal ηω is consistent with V = L.
In Chapter 18 we show that the existence of ηω1 implies V �= L.

Theorem 17.34. If κ → (ω)<ω then L � κ → (ω)<ω.

Proof. Let f be a constructible partition f : [κ]<ω → {0, 1}. We claim that
if there is an infinite homogeneous set for f , then there is one in L. Let T
be the set of all finite increasing sequences t = 〈α0, . . . , αn−1〉 in κ such that
for every k ≤ n, f is constant on [{α0, . . . , αn−1}]k, and let us consider the
tree (T,⊃); clearly, T is constructible. We note that an infinite homogeneous
set for f exists if and only if (T,⊃) is not well-founded. However, being well-
founded is an absolute property for models of ZFC; and so if the tree is not
well-founded, then it is not well-founded in L, and the claim follows. ��

Let us consider models of a countable language L, with a distinguished
one-place predicate Q. A model A = (A, QA, . . .) of L has type (κ, λ) if |A| = κ
and |QA| = λ.
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Definition 17.35. A cardinal κ > ℵ1 is a Rowbottom cardinal if for every
uncountable λ < κ, every model of type (κ, λ) has an elementary submodel
of type (κ,ℵ0).

An infinite cardinal is a Jónsson cardinal if every model of size κ has
a proper elementary submodel of size κ.

Every Rowbottom cardinal is a Jónsson cardinal and the following lemma,
a variation on Rowbottom’s Theorem, shows that every Ramsey cardinal is
a Rowbottom cardinal.

Lemma 17.36. Let κ be a Ramsey cardinal, and let λ be an infinite cardinal
less than κ. Let A = (A, . . .) be a model of a language L such that |L| ≤ λ,
and let A ⊃ κ. If P ⊂ A is such that |P | < κ then A has an elementary
submodel B = (B, . . .) such that |B| = κ and |P ∩ B| ≤ λ.

Moreover, if X ⊂ A is of size at most λ, then we can find B such that
X ⊂ B.

Moreover, if κ is a measurable and D is a normal measure on κ, then we
can find B such that B ∩ κ ∈ D.

Proof. First we add to the language L one unary predicate whose interpre-
tation is the set P ; we also add constant symbols for all x ∈ X . Next we find
some Skolem functions hϕ (in (A, . . . , P, x)x∈X) for every formula ϕ, and
extend the language further by adding function symbols for the functions hϕ.

Next we find a set of indiscernibles I ⊂ κ, of size κ, for the expanded
model A′; if κ is measurable and D is a normal measure, we find I ∈ D. We
let B be the elementary submodel of A′ generated by I. As in the proof of
Theorem 17.27, one proves that if |P ∩ B| < κ then |P ∩ B| ≤ λ. ��

In Chapter 18 we show that if there exists a Jónsson cardinal then V �= L.

Exercises

17.1. Let U be a nonprincipal ultrafilter on ω. Then UltU (V ) is not well-founded.
[For each k ∈ ω, let fk be a function on ω such that fk(n) = n−k for all n ≥ k.

Then f0 �∗ f1 �∗ f2 �∗ . . . is a descending ∈∗-sequence in Ult.]

17.2. If U is not σ-complete, then UltU (V ) is not well-founded.
[There exists a countable partition {Xn : n = 0, 1, 2, . . .} of S such that

Xn /∈ U for all n. For each k, let fk be a function on S such that fk(x) = n− k for
all x ∈ Xn.]

17.3. If Ult is well-founded, then every ordinal number α is represented by a func-
tion f : S → Ord .

17.4. If U is a principal ultrafilter {X ∈ S : x0 ∈ S} then [f ] = f(x0) for each f ,
and jU is the identity mapping.
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17.5. Let U be a nonprincipal σ-complete ultrafilter on S and let λ be the largest
cardinal such that U is λ-complete. Then jU (λ) > λ.

[Let {Xα : α < λ} be a partition of S into sets of measure 0; let f be a function
on S such that f(x) = α if x ∈ Xα. Then [f ] ≥ λ.]

17.6. If j is an elementary embedding of the universe into a transitive model M ,
then M =

S

α∈Ord j(Vα).

17.7. Let j be an elementary embedding of the universe and let κ be the least
ordinal moved. If X is a class of ordinals such that κ ∈ j(X), then κ ∈M(X).

17.8. If j : V → M is a nontrivial elementary embedding, if κ is the least ordinal
moved, and if λ = lim{κ, j(κ), j(j(κ)), . . .}, then there exists A ⊂ λ such that
A /∈M .

[Assuming that M contains all bounded subsets of λ, the proof of Theorem 17.7
shows that G /∈M .]

17.9. If κ is measurable, then there exists a normal measure D on κ such that
UltD(V ) � κ is not measurable.

[Let D be a normal measure such that jD(κ) is the least possible ordinal; let
M = UltD(V ). If κ is measurable in M , then there is a normal measure U on κ
such that U ∈ M . Since P (κ) ⊂ M , we have UltU (κ, <) ∈ M . By Lemma 17.9(iii)
we have jU (κ) < ((2κ)+)M . Since ((2κ)+)M < jD(κ), we get a contradiction.]

A function f on κ is monotone if f(α) ≤ f(β) whenever α < β.

17.10. Let U be a nonprincipal κ-complete ultrafilter on κ. Then U extends the
closed unbounded filter if and only if the diagonal function is the least nonconstant
monotone function in UltU .

[If U extends the closed unbounded filter and if f is monotone and regressive
on some X ∈ U , then since X is stationary, f is constant on an unbounded set
and hence constant almost everywhere. If U does not extend the closed unbounded
filter, then f(α) = sup(C ∩α) (where C /∈ U is closed unbounded) is a nonconstant
monotone function regressive on X ∈ U .]

17.11. Let U be a κ-complete ultrafilter on κ, and let h : κ → κ. If D = h∗(U),
then the mapping k : UltD(V ) → UltU (V ) defined by k([f ]D) = [f ◦ h]U is an
elementary embedding.

17.12. If D is a normal measure on κ and {α : 2α ≤ α++} ∈ D, then 2κ ≤ κ++.
More generally, if β < κ and {ℵα : 2ℵα ≤ ℵα+β} ∈ D, then 2ℵκ ≤ ℵκ+β.

[If f is such that f(ℵα) = ℵα+β for all α < κ, then [f ]D = (ℵκ+j(β))
M ≤ ℵκ+β.]

17.13. If D is a normal measure on κ and {α : 2ℵα < ℵα+α} ∈ D, then 2ℵκ < ℵκ+κ.
[If f(α) = ℵα+α, then [f ] = (ℵκ+κ)M .]

17.14. Let κ be measurable and let λ = ℵκ+κ be strong limit. Then 2λ < ℵ(2κ)+ .
[j(λ) = (ℵj(κ+κ))

M ≤ ℵj(κ)+j(κ); j(κ) + j(κ) < (2κ)+.]

17.15. Let κ be measurable, let λ be strong limit, cf λ = κ, such that λ < ℵλ.
Then 2λ < ℵλ.

[If λ = ℵα, then j(λ) = (ℵj(α))
M ≤ ℵj(α), and j(α) < (ακ)+ < λ.]

17.16. Let Φ(α) denote the αth fixed point of ℵ, i.e., the αth ordinal ξ such
that ℵξ = ξ. Let κ be measurable and let λ = Φ(κ + κ) be strong limit. Then
2λ < Φ((2κ)+).

[Use the fact that (Φ(α))M ≤ Φ(α) for all α.]
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17.17. If κ = λ+ is a successor cardinal, then the Weak Compactness Theorem
for Lκ,ω is false.

[Consider constants cα, α ≤ κ, a binary relation < and a ternary relation R.
Consider the sentences saying that (a) < is a linear ordering; (b) cα < cβ for α < β;
(c) each fx is a function, where fx(y) = z stands for R(x, y, z). Let Σ consist of these
sentences, the sentence z < x → ∃y R(x, y, z) (saying that ran(fx) ⊃ {z : z < x}),
and the infinitary sentence R(x, y, z)→ W

ξ<λ(y = cξ) (saying that dom(fx) ⊂ {cξ :
ξ < λ}). Show that each S ⊂ Σ, |S| ≤ λ, has a model, but Σ does not.]

17.18. If κ is a singular cardinal, then the Weak Compactness Theorem for Lκ,ω

is false.
[Let A ⊂ κ be a cofinal subset of size < κ. Consider constants cα, α ≤ κ, and

a linear ordering <. There is Σ that says on the one hand that {cα : α ∈ A} is cofinal
in the universe, and on the other hand that for each α < κ, if (∀β < α) cκ > cβ

then cκ > cα; and each S ⊂ Σ, |S| < κ, has a model.]

17.19. If κ is weakly compact and if (B,⊂) is a κ-complete algebra of subsets
of κ such that |B| = κ, then every κ-complete filter F on B can be extended to
a κ-complete ultrafilter on B.

[Consider constants cX for all X ∈ B, and a unary predicate U . Let Σ be the
following set of Lκ,ω-sentences: ¬U(c∅), U(cX ) ∨ U(cκ−X) for all X ∈ B, U(cX)→
U(cY ) for all X ⊂ Y in B, U(cX) for all X ∈ F , and

V

X∈A U(cX)→ U(cT A) for
all A ⊂ B such that |A| < κ. Show that Σ has a model.]

17.20. If κ is inaccessible and if every κ-complete filter on any κ-complete algebra B
of subsets of κ such that |B| = κ can be extended to a κ-complete ultrafilter, then
κ is weakly compact.

[As in Lemma 10.18.]

17.21. If (P, <) is a linearly ordered set of size κ, and κ is weakly compact, then
there is a subset W ⊂ P of size κ that is either well-ordered or conversely well-
ordered by <.

17.22. The least measurable cardinal is Σ2
1-describable.

[∃U (U is κ-complete nonprincipal ultrafilter on κ).]

17.23. Every inaccessible cardinal is Π0
m-indescribable for all m.

[Let U ⊂ Vκ. The model (Vκ,∈, U) has a countable elementary submodel M0.
Let α0 < κ be such that M0 ⊂ Vα0 . For each n, let Mn+1 be an elementary submodel
of (Vκ,∈, U) such that Vαn ⊂ Mn+1, and let Mn+1 ⊂ Vαn+1 . Let α = limn→ω αn;
then Vα is an elementary submodel of (Vκ,∈, U).]

17.24. If κ is weakly compact, then there is no countably generated complete
Boolean algebra B such that |B| = κ.

[Assume that B is such. Note that sat(B) = κ. We may assume that B =
(κ, +, ·,−); let A ⊂ κ be a countable set of generators. Let U1 be the set of all
pairs (u, x) such that u ∈ κ, x ⊂ κ, |x| < κ, and u =

P

x, let U2 = {A}. Let
σ be the conjunction of these sentences: (a) B is a Boolean algebra and B ⊃ A
(first order), (b) ∀x∃u (if x ⊂ κ, then u =

P

x) (first order), and (c) ∀X (if X ⊂ κ
and X is a partition of B, then ∃x (x = X)) (here x is a first order variable; the
sentence (c) is Π1

1). Since (Vκ,∈, U1, U2) satisfies σ, there is some α < κ such
that (Vα,∈, U1 ∩ Vα, U2 ∩ Vα) � σ. Then (α, +, ·,−) is a complete subalgebra of B
containing A.]
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17.25. Let κ be a measurable cardinal. If 〈Aα : α < κ〉 is a sequence of sets such
that Aα ⊂ α for all α < κ, then there exists an A ⊂ κ such that {α ∈ κ : A∩α = Aα}
is stationary.

A cardinal κ with the property from Exercise 17.25 is called ineffable.

17.26. Let κ be ineffable and let f : [κ]2 → {0, 1} be a partition. Then there exists
a stationary homogeneous set. (Hence κ is weakly compact.)

[For each α < κ let Aα = {ξ < α : f({ξ, α}) = 1}, and let A ⊂ κ be such that
S = {α : A ∩ α = Aα} is stationary. Either S ∩ A or S − A is stationary, and is
homogeneous.]

17.27. If κ is ineffable then κ is ineffable in L.
[Use Lemma 17.21.]

17.28. If κ is Ramsey then ℵ1 is inaccessible in L.
[Show that P L[x](ω) is countable for every x ⊂ ω.]

17.29. If M is a transitive model of ZFC and if j : M → M is a nontrivial
elementary embedding, then the least ordinal κ moved by j is Πn

m-indescribable
in M , for all n and m.

[If U ⊂ V M
κ , then U = j(U)∩V M

κ . If σ is a Πn
m sentence and M � ((Vκ,∈, U) �

σ), then M � ((∃α < j(κ)) (Vα,∈, j(U) ∩ Vα) � σ).]

17.30. The cardinal ηω is not weakly compact.
[ηω is Π1

1-describable.]

17.31. An infinite cardinal κ is a Jónsson cardinal if and only if for every F :
[κ]<ω → κ there exists a set H ⊂ κ of size κ such that the image of [H ]<ω under F
is not the whole set κ.

[To show that the condition is necessary, consider the model (κ, <, F1, F2, . . .)
where Fn = F �[κ]n. To show that the condition is sufficient, let A = (κ, . . .) be
a model. Let {hn : n < ω} be a set of Skolem functions for A, closed under
composition and arranged so that each hα is n-ary. For each x ∈ [κ]n, let F (x) =
hn(x). If H ⊂ κ, then the image of [H ]<ω under F is an elementary submodel of A.]

17.32. ℵ0 is not a Jónsson cardinal.
[Let A = (ω, f) where f(n) = n− 1 for all n > 0.]

17.33. If κ is a Rowbottom cardinal, then either κ is weakly inaccessible or
cf κ = ω.

[To show that κ = λ+ is not Rowbottom, let fα be a one-to-one mapping of α
onto λ, for each α, such that λ ≤ α < κ. Let A = (κ, λ, <, R) where R(α, β, γ)
if and only if fα(β) = γ. If (B,B ∩ λ, <, R ∩ B3) ≺ A and |B| = κ, let α be the
λth element of B; then fα(B ∩ α) ⊂ B ∩ λ and hence |B ∩ λ| = λ > ℵ0.

To show that κ is not Rowbottom if κ > cf κ = λ > ℵ0, let f be a nondecreasing
function of κ onto λ and use f to produce a counterexample.]

Historical Notes

In [1963/64] Keisler and Tarski introduced the method of ultraproducts in the
study of measurable cardinals, and it was established that the least measurable
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cardinal is greater than the least inaccessible cardinal. Scott used the method of ul-
trapowers to prove that existence of measurable cardinals contradicts the Axiom of
Constructibility. Rowbottom and Silver initiated applications of infinitary combina-
torics developed by Erdős and his collaborators. Scott’s Theorem appeared in [1961]
and Kunen’s Theorem in [1971a]. (Lemma 17.8 is due to Erdős and Hajnal [1966].)

In [1963/64a] Hanf studied compactness of infinitary languages; his work let to
the systematic study of Keisler and Tarski. Hanf proved that the least inaccessible
cardinal is not measurable (in fact not weakly compact); Erdős and Hajnal then
pointed out (cf. [1962]) that the same result can be proved using infinitary combi-
natorics. Keisler and Tarski introduced the Mahlo operation and showed that the
least measurable cardinal is much greater than, e.g., the least Mahlo cardinal, etc.

The equivalence of various formulations of weak compactness is a result of
several papers. In [1963/64a] Hanf initiated investigations of compactness of in-
finitary languages. Erdős and Tarski listed in [1961] several properties that were
subsequently shown mutually equivalent (for inaccessible cardinals) and proved
several implications. These properties included the partition property κ → (κ)22,
the tree property, and several other properties. Hanf and Scott [1961] introduced
Πn

m-indescribability and announced Theorem 17.18. Further contributions were
made in the papers Hanf [1963/64b], Hajnal [1964], Keisler [1962], Monk and
Scott [1963/64], Tarski [1962], and Keisler and Tarski [1963/64]. A complete list of
equivalent formulations with the proofs appeared in Silver [1971b]. Theorem 17.22
is due to Silver [1971b]. Rowbottom’s Theorem (as well as Lemma 17.36) are due
to Rowbottom [1971].

The main results on Erdős cardinals are due to Rowbottom, Reinhardt, and
Silver. Rowbottom proved that if ηω1 exists, then there are only countably many
constructible reals (see [1971]); Theorem 17.33 is due to Reinhardt and Silver [1965],
and Theorem 17.34 is due to Silver [1970a].

Exercise 17.10: Ketonen [1973].
Ineffable cardinals were introduced by Jensen; Exercises 17.26 and 17.27 are

due to Kunen and Jensen.
Exercise 17.29: Reinhardt and Silver [1965].


