
19. Iterated Ultrapowers and L[U ]

In this chapter we investigate inner models for measurable cardinals, using
Kunen’s technique of iterated ultrapowers.

The Model L[U ]

Let κ be a measurable cardinal and let U be a κ-complete nonprincipal ultra-
filter on κ. Let us consider the model L[U ]. By Lemma 13.23, L[U ] = L[Ū ],
where Ū = U ∩ L[U ].

Lemma 19.1. In L[U ], Ū is a κ-complete nonprincipal ultrafilter on κ.
Moreover, if U is normal, then L[U ] � Ū is normal.

Proof. A straightforward verification. For instance if U is normal and f ∈
L[U ] is a regressive function on κ, then for some γ < κ, the set X = {α :
f(α) = γ} is in U ; since X ∈ L[U ], L[U ] � f is constant on some X ∈ Ū . ��

We shall eventually prove, among others, that the model L[U ] satis-
fies GCH. For now, we recall Theorem 13.22(iv) by which 2ℵα = ℵα+1

holds in L[U ] for all sufficiently large α. Specifically, using the Condensa-
tion Lemma 13.24, we get:

Lemma 19.2. If V = L[A], and if A ⊂ P (ωα), then 2ℵα = ℵα+1.

Proof. Let X be a subset of ωα. Let λ be a cardinal such that A ∈ Lλ[A]
and X ∈ Lλ[A]. Let M be an elementary submodel of (Lλ[A],∈) such that
ωα ⊂ M , A ∈ M , X ∈ M , and |M | = ℵα. Let π be the transitive collapse
of M , and let N = π(M). Since ωα ⊂ M , we have π(Z) = Z for every Z ⊂ ωα

that is in M and in particular π(X) = X ; also, π(A) = π(A ∩ M) = A ∩ N .
Now N = Lγ [A ∩ N ] for some γ, and hence N = Lγ [A]. Since |N | = ℵα, we
have γ < ωα+1 and hence X ∈ Lωα+1[A]. It follows that every subset of ωα

is in Lωα+1[A] and therefore 2ℵα = ℵα+1. ��

Theorem 19.3 (Silver). If V = L[D] where D is a normal measure on
a measurable cardinal κ, then the Generalized Continuum Hypothesis holds.
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Proof. If λ ≥ κ, then D ⊂ P (λ) and hence 2λ = λ+ by Lemma 19.2. Thus
it suffices to show that 2λ = λ+ for every infinite cardinal λ < κ. Let λ < κ
and let us assume that there are more than λ+ subsets of λ; we shall reach
a contradiction. If 2λ > λ+, then there exists a set X ⊂ λ that is the λ+th
subset of λ in the canonical well-ordering <L[D] of L[D]. Let α be the least
ordinal such that X ∈ Lα[D]. Since the well-ordering <L[D] has the property
that each Lξ[D] is an initial segment of <L[D] every subset of λ preceding X
is also in Lα[D] and hence the set P (λ) ∩ Lα[D] has size at least λ+.

We shall now apply Lemma 17.36. Let η be a cardinal such that η > α
and that D ∈ Lη[D], and consider the model A = (A,∈) where A = Lη[D].
We have κ ⊂ A, and we consider the set P = P (λ)∩A. Since 2λ < κ, we have
|P | < κ. By Lemma 17.36, there is an elementary submodel B = (B,∈) ≺ A
such that λ ∪ {D, X, α} ⊂ B, κ ∩ B ∈ D and |P ∩ B| ≤ λ. Let π be the
transitive collapse of B onto a transitive set M ; we have M = Lγ [π(D)] for
some γ.

Using the normality of D, we show that π(D) = D∩M . Clearly, π(κ) = κ
because |κ ∩ B| = κ. The function π is one-to-one, and for every ξ < κ,
π(ξ) ≤ ξ. Since D is normal, there is a set Z ∈ D such that π(ξ) = ξ for all
ξ ∈ Z. Hence if Y ∈ B is a set in D, then π(Y ) ⊃ π(Y ∩ Z) = Y ∩ Z, and so
π(Y ) is also in D; similarly, if Y ∈ B and π(Y ) ∈ D, then Y ∈ D. It follows
that π(D) = D ∩ M .

Hence M = Lγ [D]. Since λ ⊂ B, π maps every subset of λ onto itself,
and so P (λ) ∩ M = P (λ) ∩ B. In particular, we have π(X) = X and so
X ∈ Lγ [D]. By the minimality assumption on α, we have α ≤ γ, and this is
a contradiction since on the one hand |P (λ)∩Lα[D]| ≥ λ+, and on the other
hand |P (λ) ∩ Lγ [D]| ≤ λ. ��

One proves rather easily that the model L[D] has only one measurable
cardinal:

Lemma 19.4. If V = L[D] and D is a normal measure on κ, then κ is the
only measurable cardinal.

Proof. Let us assume that there is a measurable cardinal λ �= κ and let us
consider the elementary embedding jU : V → M where U is some nonprin-
cipal λ-complete ultrafilter on λ. We shall prove that M = L[D] = V thus
getting a contradiction since U /∈ M by Lemma 17.9(ii).

Since j is elementary, it is clear that M = L[j(D)]. If λ > κ, then j(D) =
D and so M = L[D]. Thus assume that λ < κ.

Since κ is measurable, the set Z = {α < κ : α is inaccessible and α > λ}
belongs to D. By Lemma 17.9(v), j(κ) = κ and j(α) = α for all α ∈ Z. We
shall show that j(D) = D ∩ M . It suffices to show that j(D) ⊂ D ∩ M since
j(D) is (in M) an ultrafilter. Let X ∈ j(D) be represented by f : λ → D. Let
Y =

⋂
ξ<λ f(ξ); we have Y ∈ D, and clearly j(Y ) ⊂ X . Now if α ∈ Y ∩ Z,

then j(α) = α and so X ⊃ j(Y ) ⊃ j“(Y ∩Z) = Y ∩Z ∈ D and hence X ∈ D.
Thus j(D) = D∩M , and we have M = L[j(D)] = L[D ∩M ] = L[D]. ��
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Iterated Ultrapowers

Let κ be a measurable cardinal and let U be a κ-complete nonprincipal ul-
trafilter on κ. Using U , we construct an ultrapower of V mod U ; and since
the ultrapower is well-founded, we identify the ultrapower with its transi-
tive collapse, a transitive model M = UltU (V ). Let us denote this transitive
model Ult(1)U (V ) or just Ult(1). Let j(0) = jU be the canonical embedding
of V in Ult(1), and let κ(1) = j(0)(κ) and U (1) = j(0)(U).

In the model Ult(1), the ordinal κ(1) is a measurable cardinal and U (1) is
a κ(1)-complete nonprincipal ultrafilter on κ(1). Thus working inside Ult(1),
we can construct an ultrapower mod U (1): UltU(1)(Ult(1)). Let us denote this
ultrapower Ult(2), and let j(1) be the canonical embedding of Ult(1) in Ult(2)

given by this ultrapower. Let κ(2) = j(1)(κ1) and U (2) = j(1)(U (1)).
We can continue this procedure and obtain transitive models

Ult(1), Ult(2), . . . , Ult(n), . . . (n < ω).

[That we can indeed construct such a sequence of classes follows from the
observation that for each α, the initial segment Vα∩Ult(n) of each ultrapower
in the sequence is defined from an initial segment Vβ of the universe (where
β is something like κ + α + 1).]

Thus we get a sequence of models Ult(n), n < ω (where Ult(0) = V ). For
any n < m, we have an elementary embedding in,m : Ult(n) → Ult(m) which
is the composition of the embeddings j(n), j(n+1), . . . , j(m−1):

in,m(x) = j(m−1)j(m−2) . . . j(n)(x) (x ∈ Ult(n)).

These embeddings form a commutative system; that is,

im,k ◦ in,m = in,k (m < n < k).

We also let κ(n) = i0,n(κ), and U (n) = i0,n(U). Note that κ(0) < κ(1) < . . . <
κ(n) < . . ., and Ult(0) ⊃ Ult(1) ⊃ . . . ⊃ Ult(n) ⊃ . . ..

Thus we have a directed system of models and elementary embeddings

(19.1) {Ult(n), im,n : m, n ∈ ω}.

Even though the models are proper classes, the technique of Lemma 12.2 is
still applicable and we can consider the direct limit

(19.2) (M, E) = limdirn→ω{Ult(n), in,m},

along with elementary embeddings in,ω : Ult(n) → (M, E). The direct limit
is a model of ZFC and we shall prove below that it is well-founded. Thus we
identify it with a transitive model Ult(ω). (We shall also prove that Ult(ω) ⊂
Ult(n) for every n.)
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Let κ(ω) = i0,ω(κ) and U (ω) = i0,ω(U). Since Ult(ω) satisfies that U (ω) is
a κ(ω)-complete nonprincipal ultrafilter on κ(ω), we can construct, working
inside the model Ult(ω), the ultrapower of Ult(ω) mod U (ω) and the corre-
sponding canonical embedding j(ω).

Let us denote Ult(ω+1) the ultrapower of Ult(ω) mod U (ω) and let iω,ω+1 be
the corresponding canonical elementary embedding. For n < ω, let in,ω+1 =
iω,ω+1 ◦ in,ω.

This procedure can be continued, and so we define the iterated ultrapower
as follows:

(Ult(0), E(0)) = (V,∈),

(Ult(α+1), E(α+1)) = UltU(α)(Ult(α), E(α)),

(Ult(λ), E(λ)) = limdirα→λ{(Ult(α), E(α)), iα,β} (λ limit)

where U (α) = i0,α(U), for each α. We do not know yet that all the mod-
els Ult(α) are well-founded; but we make a convention that if Ult(α) is well-
founded, then we identify it with its transitive collapse.

If M is a transitive model of set theory and U is (in M) a κ-complete
nonprincipal ultrafilter on κ, we can construct, within M , the iterated ultra-
powers. Let us denote by Ult(α)

U (M) the αth iterated ultrapower, constructed
in M .

Lemma 19.5 (The Factor Lemma). Let us assume that Ult(α) is well-
founded. Then for each β, the iterated ultrapower Ult(β)

U(α)(Ult(α)) taken
in Ult(α) is isomorphic to the iterated ultrapower Ult(α+β).

Moreover, there is for each β an isomorphism e
(α)
β such that if for all

ξ and η, i
(α)
ξ,η denotes the elementary embedding of Ult(ξ)

U(α)(Ult(α)) into

Ult(η)

U(α)(Ult(α)), then the following diagram commutes:

Ult(ξ)
U(α)(Ult(α))

i
(α)
ξ,η−−−−→ Ult(η)

U(α)(Ult(α))

e
(α)
ξ

⏐⏐� ⏐⏐�e(α)
η

Ult(α+ξ)
U −−−−−−→

i
(α)
α+ξ,α+η

Ult(α+η)
U

Proof. The proof is by induction on β. If β = 0, then the 0th iterated
ultrapower in Ult(α) is Ult(α); and we let e

(α)
0 be the identity mapping.

If Ult(β)

U(α) and Ult(α+β)
U are isomorphic and e

(α)
β is the isomorphism, then

Ult(β+1)

U(α) and Ult(α+β+1)
U are ultrapowers of Ult(β)

U(α) and Ult(α+β)
U , respec-

tively, mod i
(α)
0,β(U (α)) and mod i0,α+β(U), respectively; and since i0,α+β(U) =

e
(α)
β (i(α)

0,β(U (α))), the isomorphism e
(α)
β induces an isomorphism e

(α)
β+1 between

Ult(β+1)

U(α) and Ult(α+β+1)
U .



19. Iterated Ultrapowers and L[U ] 343

If λ is a limit ordinal, then Ult(λ)

U(α) and Ult(α+λ)
U are (in Ult(α)) the di-

rect limits of {Ult(β)

U(α) , i
(α)
β,γ : β, γ < λ} and {Ult(α+β)

U , iα+β,α+γ : β, γ < λ},
respectively. It is clear that the isomorphisms e

(α)
β , β < λ, induce an isomor-

phism e
(α)
λ between Ult(λ)

U(α) and Ult(α+λ)
U . ��

Corollary 19.6. For every limit ordinal λ, if Ult(λ) is well-founded then
Ult(λ) ⊂ Ult(α) for all α < λ.

Proof. Ult(λ) is a class in Ult(α); it is the iterated ultrapower Ult(β)

U(α)(Ult(α))
where α + β = λ. ��

Next we show that the iterated ultrapowers Ult(α)
U are all well-founded.

Theorem 19.7 (Gaifman). Let U be a κ-complete nonprincipal ultrafilter
on κ. Then for every α, the αth iterated ultrapower Ult(α) is well-founded.

Proof. Clearly, if Ult(α) is well-founded, then Ult(α+1) is well-founded. Thus
if γ is the least γ such that Ult(γ) is not well-founded, then γ is a limit
ordinal. The ordinals of the model Ult(γ) are not well-ordered; let ξ be the
least ordinal such that the ordinals of Ultγ below i0,γ(ξ) are not well-ordered.

Let x0, x1, x2, . . . be a descending sequence of ordinals in the model Ult(γ)

such that x0 is less than i0,γ(ξ). Since Ult(γ) is the direct limit of Ult(α),
α < γ, there is an α < γ and an ordinal ν (less than i0,α(ξ)) such that
x0 = iα,γ(ν). Let β be such that α + β = γ.

By our assumptions, the following is true (in V ):

(19.3) (∀γ′ ≤ γ)(∀ξ′ < ξ) the ordinals below i0,γ′(ξ′) in Ult(γ
′) are well-

ordered.

When we apply the elementary embedding i0,α to (19.3), we get:

(19.4) Ult(α) � (∀γ′ ≤ i0,α(γ))(∀ξ′ < i0,α(ξ)) the ordinals below i
(α)
0,γ′(ξ′) in

Ult(γ
′)

U(α) are well-ordered.

Now β ≤ γ ≤ i0,α(γ), and ν < i0,α(ξ). Hence if we let γ′ = β and ξ′ = ν
in (19.4), we get

Ult(α) � the ordinals below i
(α)
0,β(ν) in Ult(β)

U(α) are well-ordered.

By the Factor Lemma, Ult(β)

U(α) is (isomorphic to) Ult(α+β), and i
(α)
0,β(ν)

is iα,α+β(ν). Since α + β = γ and iα,γ(ν) = x0, and since being well-ordered
is absolute (for the transitive model Ult(α)), we have:

The ordinals below x0 in Ult(γ) are well-ordered.

But this is a contradiction since x1, x2, x3, . . . is a descending sequence of
ordinals below x0 in Ult(γ). ��
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Thus for any given κ-complete nonprincipal ultrafilter U on κ we have
a transfinite sequence of transitive models, the iterated ultrapowers Ult(α)

U (V ),
and the elementary embeddings iα,β : Ult(α) → Ult(β). Let κ(α) = i0,α(κ) for
each α; we shall show that the sequence κ(α), α ∈ Ord , is a normal sequence.

Lemma 19.8.

(i) If γ < κ(α), then iα,β(γ) = γ for all β ≥ α.
(ii) If X ⊂ κ(α) and X ∈ Ult(α), then X ⊂ iα,β(X) for all β ≥ α; in fact

X = κ(α) ∩ iα,β(X).

Proof. By the Factor Lemma, it suffices to give the proof for α = 0.
(i) As we know, i0,1(γ) = γ for all γ < κ. By induction on β, if i0,β(γ) = γ,

then i0,β+1(γ) = iβ,β+1(γ) = γ because γ < κ(β); if λ is limit and i0,β(ξ) = ξ
for all ξ ≤ γ and β < λ, then i0,λ(γ) = γ.

(ii) Follows from (i). ��

Lemma 19.9. The sequence 〈κ(α) : α ∈ Ord〉 is normal ; i.e., increasing and
continuous.

Proof. For each α, κ(α+1) = iα,α+1(κ(α)) > κ(α). To show that the sequence is
continuous, let λ be a limit ordinal; we want to show that κ(λ) = limα→λ κ(α).
If γ < κ(λ), then γ = iα,λ(δ) for some α < λ and δ < κ(α). Hence γ = δ and
so γ < κ(α). ��

Lemma 19.10. Let D be a normal measure on κ, and let for each α, Ult(α)

be the αth iterated ultrapower mod D, κ(α) = i0,α(κ), and D(α) = i0,α(D).
Let λ be an infinite limit ordinal. Then for each X ∈ Ult(λ), X ⊂ κ(λ),

(19.5) X ∈ D(λ) if and only if (∃α < λ)X ⊃ {κ(γ) : α ≤ γ < λ}.

Proof. Since for no X can both X and its complement contain a final segment
of the sequence 〈κ(γ) : γ < λ〉, it suffices to show that if X ∈ D(λ), then there
is an α such that κ(γ) ∈ X for all γ ≥ α.

There exists an α < λ such that X = iα,λ(Y ) for some Y ∈ D(α). Let us
show that κ(γ) ∈ X for all γ, α ≤ γ < λ. Let γ ≥ α and let Z = iα,γ(Y ).
Then Z ∈ D(γ) and since D(γ) is a normal measure on κ(γ) in Ult(γ), we have
κ(γ) ∈ iγ,γ+1(Z). However, iγ,γ+1(Z) ⊂ iγ+1,λ(iγ,γ+1(Z)) = X and hence
κ(γ) ∈ X . ��

Representation of Iterated Ultrapowers

We shall now give an alternative description of each of the models Ult(α) by
means of a single ultrapower of the universe, using an ultrafilter on a certain
Boolean algebra of subsets of κα. This will enable us to obtain more precise
information about the embeddings i0,α : V → Ult(α).
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We shall deal first with the finite iterations. Let U be a κ-complete non-
principal ultrafilter on κ. Let us use the symbol ∀∗α for “almost all α < κ:”

∀∗α ϕ(α) if and only if {α < κ : ϕ(α)} ∈ U.

If X ⊂ κn and α < κ, let

X(α) = {〈α1, . . . , αn−1〉 : 〈α, α1, . . . , αn−1〉 ∈ X}.

We define ultrafilters Un on κn, by induction on n:

U1 = U,

Un+1 = {X ⊂ κn+1 : ∀∗α X(α) ∈ Un}.

Each Un is a nonprincipal κ-complete ultrafilter on κn, and if Z ∈ U , then
Zn ∈ Un. It is easy to see that for all X ⊂ κn,

X ∈ Un if and only if ∀∗α0 ∀∗α1 . . . ∀∗αn−1 〈α0, . . . , αn−1〉 ∈ X.

Note that Un concentrates on increasing n-sequences:

{〈α0, . . . , αn−1〉 ∈ κn : α0 < . . . < αn−1} ∈ Un

(because ∀α0 (∀α1 > α0) . . . (∀αn−1 > αn−2)α0 < . . . < αn−1).

Lemma 19.11. For every n,

UltUn(V ) = Ult(n)(V )

and jUn = i0,n.

Here jUn is the canonical embedding j : V → UltUn(V ).

Proof. By induction on n. The case n = 1 is trivial. Let us assume that
the lemma is true for n and let us consider UltUn+1 . Let f be a function
on κn+1. For each t = 〈α0, . . . , αn−1〉 ∈ κn, let f(t) be the function on κ
defined by f(t)(ξ) = f(α0, . . . , αn−1, ξ) and let F be a function on κn such
that F (t) = f(t) for all t ∈ κn. In UltUn = Ult(n), the function F represents
a function on jUn(κ) = κ(n): Let f̃ = [F ]Un . This way we assign to each
function f on κn+1 a function f̃ ∈ Ult(n) on κ(n).

Conversely, if h ∈ Ult(n) is a function on κ(n), there is an f on κn+1 such
that h = f̃ : There exists some F on κn such that h = [F ]Un and that for
each t ∈ κn, F (t) is a function on κ; thus we let f(α0, . . . , αn) be the value
of F (α0, . . . , αn−1) at αn.
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We shall show that the correspondence [f ]Un+1 �→ [f̃ ]U(n) is an isomor-
phism between UltUn+1 and Ult(n+1) = UltU(n)(Ult(n)). We have

[f ]Un+1 = [g]Un+1 ↔ ∀∗α0 . . . ∀∗αn−1 ∀∗ξ f(α0, . . . , αn−1, ξ) = g(α0, . . . ,
αn−1, ξ)

↔ ∀∗t {ξ < κ : f(t)(ξ) = g(t)(ξ)} ∈ U

↔ UltUn � {ξ < jUn(κ) : f̃(ξ) = g̃(ξ)} ∈ jUn(U)

↔ Ult(n) � {ξ < κ(n) : f̃(ξ) = g̃(ξ)} ∈ U (n)

↔ [f̃ ]U(n) = [g̃]U(n)

and similarly for ∈ in place of =.
Thus UltUn+1 = Ult(n+1). To show that jUn+1 = i0,n+1, let f = cx be

the constant function on κn+1 with value x. It follows that f̃ is the constant
function on κ(n) with value i0,n(x), and therefore

jUn+1(x) = [cx]Un+1 = in,n+1(i0,n(x)) = i0,n+1(x). ��

The infinite iterations are described with the help of ultrafilters UE on κE ,
where E ranges over finite sets of ordinal numbers. If E is a finite set of
ordinals, then the order isomorphism π between n = |E| and E induces, in
a natural way, an ultrafilter UE corresponding to Un:

UE = {π(X) : X ⊂ κn}

where π(〈α0, . . . , αn−1〉) = t ∈ κE with t(π(k)) = αk for all k = 0, . . . , n − 1.
If S is any set of ordinals and E ⊂ S is a finite set, we define a mapping

inE,S (an inclusion map) of P (κE) into P (κS) as follows:

inE,S(X) = {t ∈ κS : t�E ∈ X} (all X ⊂ κE).

Lemma 19.12. If E ⊂ F are finite sets of ordinals, then for each X ⊂ κE ,

X ∈ UE if and only if inE,F (X) ∈ UF .

Proof. By induction on (m, n) where m = |E| and n = |F |. Let E ⊂ F be
finite sets of ordinals. Let a be the least element of F , and let us assume
that a ∈ E (if a /∈ E, then the proof is similar). Let E′ = E − {a} and
F ′ = F − {a}.

If X ⊂ κE , let us define for each α < κ, the set X(α) ⊂ κE′
as follows:

X(α) = {t�E′ : t ∈ X and t(a) = α}; for Z ⊂ κF , let us define Z(α) ⊂ κF ′

similarly (for all α < κ). It should be clear that

(19.6) X ∈ UE ↔ ∀∗α X(α) ∈ UE′ and Z ∈ UF ↔ ∀∗α Z(α) ∈ UF ′ .

Now we observe that if Z = inE,F (X), then Z(α) = inE′,F ′(X(α)), and the
lemma for E, F follows from (19.6) and the induction hypothesis. ��
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Let us now consider an ordinal number α. If E ⊂ α is a finite set, let us
say that a set Z ⊂ κα has support E if Z = inE,α(X) for some X ⊂ κE .
Note that if Z has support E and E ⊂ F , then Z also has support F . Let Bα

denote the collection of all subsets of κα that have finite support. (Bα,⊂) is
a Boolean algebra.

Let Uα be the following ultrafilter on Bα: For each Z ∈ Bα, if Z =
inE,α(X) where X ⊂ κE , let

Z ∈ Uα if and only if X ∈ UE .

By Lemma 19.12, the definition of Uα does not depend on the choice of
support E of Z.

We shall now construct an ultrapower mod Uα. If f is a function on κα, let
us say that f has a finite support E ⊂ α if f(t) = f(s) whenever t, s ∈ κα are
such that t�E = s�E. In other words, there is g on κE such that f(t) = g(t�E)
for all t ∈ κα. Let us consider only functions f on κα with finite support and
define

(19.7)
f =α g if and only if {t : f(t) = g(t)} ∈ Uα,

f Eα g if and only if {t : f(t) ∈ g(t)} ∈ Uα.

The sets on the right-hand side of (19.7) have finite support, namely E ∪ F
where E and F are, respectively, supports of f and g.

Let (UltUα(V ), Eα) be the model whose elements are equivalence classes
mod =α of functions on κα with finite support.

We are now in a position to state the main lemma.

Lemma 19.13 (The Representation Lemma). For every α, the model
(UltUα(V ), Eα) is (isomorphic to) the αth iterated ultrapower Ult(α)

U (V ), and
the canonical embedding jUα : V → UltUα is equal to i0,α. Moreover, if α ≤ β
and [f ]Uα ∈ Ult(α), then iα,β([f ]Uα) = [g]Uβ

where g is defined by g(t) =
f(t�α) for all t ∈ κβ.

Proof. By induction on α. The induction step from α to α + 1 follows closely
the proof of Lemma 19.11; thus let us describe only how to assign to [f ]Uα+1

the corresponding [f̃ ]U(α) in Ult(α+1). Let f be a function on κα+1 with
support E ∪ {α} where E ⊂ α. For each t ∈ κα let f(t)(ξ) = f(t�ξ) for all
ξ < κ, and let F be a function on κα (with support E) such that F (t) = f(t)

for all t ∈ κα. Let f̃ = [F ]Uα ; f̃ is in Ult(α) and is a function on κ(α).
When λ is a limit ordinal, a routine verification shows that UltUλ

is the
direct limit of {UltUα , iα,β : α, β < λ} and that the embeddings iα,λ commute
with the iα,β . ��
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Uniqueness of the Model L[D]

Theorem 19.14 (Kunen).

(i) If V = L[D] and D is a normal measure on κ, then κ is the only
measurable cardinal and D is the only normal measure on κ.

(ii) For every ordinal κ, there is at most one D ⊂ P (κ) such that D ∈ L[D]
and

L[D] � D is a normal measure on κ.

(iii) If κ1 < κ2 are ordinals and if D1, D2 are such that

L[Di] � Di is a normal measure on κi (i = 1, 2)

then L[D2] is an iterated ultrapower of L[D1]; i.e., there is α such that
L[D2] = Ult(α)

D1
(L[D1]), and D2 = i0,α(D1).

The proof of Theorem 19.14 uses iterated ultrapowers. The following
lemma uses the representation of iterated ultrapowers.

Lemma 19.15. Let U be a κ-complete nonprincipal ultrafilter on κ and let,
for each α, i0,α : V → Ult(α) be the embedding of V in its αth iterated
ultrapower.

(i) If α is a cardinal and α > 2κ, then i0,α(κ) = α.
(ii) If λ is a strong limit cardinal, λ > α, and if cf λ > κ, then i0,α(λ) = λ.

Proof. It follows from the Representation Lemma that for all ξ, η, the ordinals
below i0,ξ(η) are represented by functions with finite support from κξ into η
and hence |i0,ξ(η)| ≤ |ξ| · |η|κ.

(i) We have i0,α(κ) = limξ→α i0,ξ(κ), and for each ξ < α, |i0,ξ(κ)| ≤
|ξ| · 2κ < α. Hence i0,κ(κ) = α.

(ii) Since cf λ > κ, every function f : κα → λ with finite support is
bounded below λ: There exists γ < λ such that f(t) < γ for all t ∈ κα. Hence
i0,α(λ) = limγ→λ i0,α(γ). Since λ is strong limit, we have |i0,α(γ)| < λ for all
γ < λ and hence i0,λ = λ. ��

It is clear from the proof that in (ii) it is enough to assume that γκ < λ
for all cardinals γ < λ, instead of that λ is a strong limit cardinal.

Let U ⊂ P (κ). If θ is a cardinal and U ∈ Lθ[U ], then by absoluteness of
relative constructibility, every elementary submodel of (Lθ[U ],∈) that con-
tains U and all ordinals < κ, is isomorphic to M = Lα[U ] for some α. (If
π is the transitive collapse of the submodel, then π(U) = U ∩ M ∈ M , and
M = Lα[U ].) Let θ be a cardinal such that U ∈ Lθ[U ] and let us consider
the model (Lθ[U ],∈, U) where U is regarded as a constant. This model has
a definable well-ordering, hence definable Skolem functions, and so we can
talk about Skolem hulls of subsets of Lθ[U ].
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Lemma 19.16. Assume that in L[D], D is a normal measure on κ. Let A be
a set of ordinals of size at least κ+ and let θ be a cardinal such that D ∈ Lθ[D]
and A ⊂ Lθ[D]. Let M ≺ (Lθ[D],∈, D) be the Skolem hull of κ ∪ A. Then
M contains all subsets of κ in L[D].

For every X ⊂ κ in L[D] there is a Skolem term t such that for some
α1, . . . , αn < κ and γ1, . . . , γm ∈ A,

Lθ[D] � X = t[α1, . . . , αn, γ1, . . . , γm, D].

Proof. Let π be the transitive collapse of M . We have π(M) = Lα[D] for
some α, and since A ⊂ M , we have necessarily α ≥ κ+. By Lemma 19.2,
every X ⊂ κ in L[D] is in Lκ+ [D], and since π is the identity on κ, we have
X ∈ M for all X ⊂ κ in L[D]. ��

The following is the key lemma in the proof of uniqueness of L[D]:

Lemma 19.17. Let D ⊂ P (κ) be such that D ∈ L[D] and

L[D] � D is a normal measure on κ.

For each α, let Ult(α)
D (L[D]) denote the αth iterated ultrapower, constructed

inside L[D]. Let i0,α be the corresponding elementary embedding. Let λ be
a regular cardinal greater than κ+, and let F be the closed unbounded filter
on λ. Then:

(i) i0,λ(D) = F ∩ Ult(λ)
D (L[D]);

(ii) Ult(λ)
D (L[D]) = L[F ].

Proof. First, we have i0,λ(κ) = λ by Lemma 19.15(i) because λ > κ+ ≥
(κ+)L[D] = (2κ)L[D]. Let D(λ) = i0,λ(D) and let M = Ult(λ)

D (L[D]). If X ∈
D(λ), then by (19.5), X contains a closed unbounded subset and hence X ∈ F .
Since D(λ) is an ultrafilter in M and F is a filter, it follows that D(λ) = F∩M .

As for (ii) we have

M = Ult(λ)(L[D]) = L[D(λ)] = L[F ∩ M ] = L[F ]. ��

We shall now prove parts (i) and (ii) of Kunen’s Theorem. We already
know by Lemma 19.4 that in L[D], κ is the only measurable cardinal. Thus
(i) and (ii) follow from this lemma:

Lemma 19.18. Let D1, D2 ⊂ P (κ) be such that D1 ∈ L[D1], D2 ∈ L[D2]
and

L[Di] � Di is a normal measure on κ (i = 1, 2).

Then D1 = D2.
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Proof. Let D1, D2 ⊂ P (κ) be such that L[Di] � Di is a normal measure on κ,
for i = 1, 2; we want to show that D1 = D2. By symmetry, it suffices to show
that if X ⊂ κ is in D1, then X ∈ D2.

Let λ be a regular cardinal greater than κ+ and let F be the closed
unbounded filter on λ. Let us consider the λth iterated ultrapowers Mi =
Ult(λ)

Di
(L[Di]) (i = 1, 2), and the corresponding embeddings i10,λ, i20,λ.

By Lemma 19.17, M1 = M2 = L[F ], and i10,λ(D1) = i20,λ(D2) = F ∩L[F ].
Let G = F ∩ L[F ].

Let A be a set of ordinals, |A| = κ+, such that all γ ∈ A are greater than λ
and that i10,λ(γ) = i20,λ(γ) for all γ ∈ A; such a set exists by Lemma 19.15(ii).
Let θ be a cardinal greater than all γ ∈ A such that i10,λ(θ) = i20,λ(θ) = θ.

Now let X be a subset of κ such that X ∈ D1. By Lemma 19.16, X belongs
to the Skolem hull of κ∪A in (Lθ[D1],∈, D1). Thus there is a Skolem term t
such that for some α1, . . . , αn < κ and γ1, . . . , γm ∈ A,

(19.8) Lθ[D1] � X = t[α1, . . . , αn, γ1, . . . , γm, D1].

Let Y ∈ Lθ[D2] be such that

(19.9) Lθ[D2] � Y = t[α1, . . . , αn, γ1, . . . , γm, D2].

We shall show that Y ∈ D2 and Y = X , hence X ∈ D2.
First we observe that i10,λ(X) = i20,λ(Y ): Let Z1 = i10,λ(X) and Z2 =

i20,λ(Y ). We have i10,λ(α) = α, i10,λ(γ) = γ, i10,λ(θ) = θ, and i10,λ(D1) = G; and
thus when we apply i10,λ to (19.8), we get

(19.10) Lθ[G] � Z1 = t[α1, . . . , αn, γ1, . . . , γm, G].

Similarly, when we apply i20,λ to (19.8), we get (19.10) with Z2 instead of Z1.
Thus Z1 = Z2.

Now, by Lemma 19.8(ii), we have X = Z1 ∩ κ and Y = Z2 ∩ κ. Hence
X = Y .

Finally, since i20,λ(Y ) ∈ F , it follows that i20,λ(Y ) ∈ i20,λ(D2) and hence
Y ∈ D2. Thus X ∈ D2 and this completes the proof of D1 = D2. ��

The key lemma in the proof of Theorem 19.14(iii) is the following:

Lemma 19.19. Let κ, D be such that L[D] � D is a normal measure on κ,
and let γ be an ordinal such that κ < γ < i0,1(κ), where i0,1 is the embedding
of L[D] in UltD(L[D]). Then there is no U ⊂ P (γ) such that L[U ] � U is
a normal measure on γ.

Proof. Let us assume that on the contrary there is such a U . Let j be the
canonical embedding of L[U ] in UltU (L[U ]). Let λ = |γ|++, and let F be the
closed unbounded filter on λ. Let G = F ∩ L[F ].

Since L[U ] � GCH, we have j(λ) = λ (see the remark following Lem-
ma 19.15). In L[U ], G is the λth iterate of U , and in L[j(U)], G is the
j(λ)th iterate of j(U); hence j(G) = G.
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Let f : κ → κ be a function in L[D] such that f represents γ in UltD(L[D]).
Since D is normal, the diagonal d(α) = α represents κ, and thus we have
(i0,1(f))(κ) = γ. Let i0,λ be the embedding of L[D] in Ult(λ)

D (L[D]) = L[G].
It is clear that (i0,λ(f))(κ) = γ.

Now let A be a set of ordinals such that |A| = κ+, that all ξ ∈ A are
greater than λ, and that i0,λ(ξ) = ξ and j(ξ) = ξ for all ξ ∈ A. Let θ be
a cardinal greater than all ξ ∈ A, such that i0,λ(θ) = θ and j(θ) = θ.

By Lemma 19.16, the function f is definable in Lθ[D] from A ∪ κ ∪ {D};
thus i0,λ(f) is definable in Lθ[G] from A ∪ κ ∪ {G}. Hence γ is definable
in Lθ[G] from A ∪ κ ∪ {G} ∪ {κ}, and so there is a Skolem term t such that

(19.11) Lθ[G] � γ = t[α1, . . . , αn, ξ1, . . . , ξm, G, κ].

for some α1, . . . , αn < κ and ξ1, . . . , ξm ∈ A.
Now we apply the elementary embedding j to (19.11); and since j(θ) = θ,

j(G) = G, j(ξ) = ξ for ξ ∈ A, and j(α) = α for all α < γ (hence j(κ) = κ),
we have

Lθ[G] � j(γ) = t[α1, . . . , αn, ξ1, . . . , ξm, G, κ].

which is a contradiction because j(γ) > γ. ��

Proof of Theorem 19.14(iii). Let κ1 < κ2 and let D1, D2 be such that L[Di] �
D is a normal measure on κi (i = 1, 2). Let i0,α denote the embedding of
L[D1] in Ult(α)

D1
(L[D1]) and let α be the unique α such that i0,α(κ1) ≤ κ2 <

i0,α+1(κ1). By Lemma 19.19 (if we let κ = i0,α(κ1), D = i0,α(D1), and
γ = κ2), it is necessary that κ2 = i0,α(κ1). Now the statement follows from
the uniqueness of i0,α(D1). ��

Thus we have proved that the model V = L[D] (where D is a normal
measure on κ) is unique, has only one measurable cardinal and only one
normal measure on κ, and it satisfies the Generalized Continuum Hypothesis.
The next lemma completes the characterization of L[D] by showing that for
every κ-complete nonprincipal ultrafilter U on κ, L[U ] is equal to L[D].

Lemma 19.20. Let U be a nonprincipal κ-complete ultrafilter on κ. Then
L[U ] = L[D] where D is the normal measure on κ in L[D].

Proof. By the absoluteness of L[D], we have L[D] ⊂ L[U ] because L[U ] sat-
isfies that κ is measurable. Thus it suffices to prove that U ∩ L[D] ∈ L[D].
Let j = jU be the canonical embedding j : V → UltU (V ), and let γ = j(κ).
Let d(α) = α be the diagonal function and let δ be the ordinal represented
in UltU (V ) by d; thus

(19.12) X ∈ U if and only if δ ∈ j(X)

for all X ⊂ κ.
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Since L[j(D)] � j(D) is a normal measure on γ, there exists an α such
that γ = i0,α(κ), j(D) = i0,α(D), and L[j(D)] = Ult(α)

D (L[D]). We shall show
that for every X ⊂ κ in L[D],

(19.13) j(X) = i0,α(X).

This, together with (19.12), gives

(19.14) U ∩ L[D] = {X ∈ L[D] : X ⊂ κ and δ ∈ i0,α(X)}
and therefore U ∩ L[D] ∈ L[D].

The proof of (19.13) uses Lemma 19.16 again. We let A be a set of size κ+

of ordinals greater than α such that i0,α(ξ) = j(ξ) = ξ for all ξ ∈ A, and let
θ be a cardinal greater than all ξ ∈ A, such that i0,λ(θ) = j(θ) = θ.

If X ⊂ κ is in L[D], then there is a Skolem term t such that

Lθ[D] � X = t[α1, . . . , αn, ξ1, . . . , ξm, D].

for some α1, . . . , αn < κ and ξ1, . . . , ξm ∈ A. Since i0,α and j agree on
κ ∪ A ∪ {θ}, and i0,α(D) = j(D), it follows that i0,α(X) = j(X). ��

The proof of Lemma 19.20 gives additional information about κ-complete
ultrafilters in L[D]. Let us assume that V = L[D] and let U be a nonprincipal
κ-complete ultrafilter on κ. By (19.14), we have

(19.15) U = {X ⊂ κ : δ ∈ i0,α(X)}
where α is such that j(κ) = i0,α(κ), and δ < j(κ). Note that for any β ≥ α,
we also have U = {X ⊂ κ : δ ∈ i0,β(X)}. Now a simple observation gives the
following characterization of κ-complete ultrafilters on κ in L[D]:

Lemma 19.21. Assume V = L[D]. If U is a nonprincipal κ-ultrafilter on κ,
then there exists some δ < i0,ω(κ) such that

U = {X ⊂ κ : δ ∈ i0,ω(X)}.
Proof. Let j = jU be the canonical embedding of V = L[D] in UltU . We have
j(κ) = i0,α(κ) for some α. We shall show that α is a finite number; then the
lemma follows by (19.15).

First we note that because V = L[D] = L[U ], we have Ult(α)
D = UltU =

L[i0,α(D)] = L[j(U)]. Now if α ≥ ω, then in Ult(α)
D , i0,ω(κ) is an inaccessible

cardinal (because it is measurable in Ult(ω)
D ), while in UltU , i0,ω(κ) has cofi-

nality ω (because it has cofinality ω in V and UltU contains all ω-sequences
of ordinals). Hence α < ω. ��
Corollary 19.22. If V = L[D], there are exactly κ+ nonprincipal κ-complete
ultrafilters on κ.

Proof. If κ is measurable, then it is easy to obtain 2κ nonprincipal κ-complete
ultrafilters on κ (because there are 2κ subsets of κ of size κ such that |X∩Y | <
κ for any two of them). By Lemma 19.21, if V = L[D], there are at most
|i0,ω(κ)| = κ+ of them. ��
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Indiscernibles for L[D]

If there exist two measurable cardinals, κ < λ, then it is possible to prove
analogous theorems for the model L[D] as we did in Chapter 18 for L under
the assumption of one measurable cardinal. More specifically, one can prove
the existence of a closed unbounded set I ⊂ κ and a closed unbounded class J
of ordinals bigger than κ, such that I ∪ J contains all uncountable cardinals
except κ, that every X ∈ L[D] is definable in D from I ∪ J , and that the
elements of I ∪J are indiscernibles for L[D] in the following sense: The truth
value of

L[D] � ϕ[α1, . . . , αn, β1, . . . , βm]

is independent of the choice of α1 < . . . < αn ∈ I and β1 < . . . < βm ∈ J . In
analogy with Silver indiscernibles, the above situations can be described by
means of a certain set of formulas ϕ(x1, . . . , xn, y1, . . . , ym), which is called 0†

(zero-dagger).
If 0† exists, then one can prove the consistency of the theory ZFC +

“there exists a measurable cardinal;” and hence one cannot prove the relative
consistency of “0† exists” with ZFC + “there exists a measurable cardinal.”

We shall not give details of the theory of indiscernibles for L[D]. Instead,
let us present an argument showing that if there exist two measurable car-
dinals, κ < λ, then there is a proper class of cardinals that are inaccessible
in L[D].

Let U be a normal measure on λ and let for each α, i0,α be the elementary
embedding of V in Ult(α)

U ; let iα,β : Ult(α) → Ult(β). Let C be the class of all
cardinals α such that cf α > λ and γλ < α for all γ < α. By Lemma 19.15, if
α ∈ C, then i0,α(κ) = α and i0,α(β) = β for all β ∈ C greater than α. Hence
if α, β ∈ C, then iα,β(α) = β and iα,β(γ) = γ for all γ ∈ C that are greater
than β or less than α.

Now if D is a normal measure on κ, then because κ < λ, we have iα,β(D) =
D for all α, β ∈ C. Thus each iα,β (α, β ∈ C), restricted to L[D], is an
elementary embedding of L[D] in L[D] such that iα,β(α) = β and iα,β(γ) = γ
for all γ ∈ C below α or above β. Using these embeddings iα,β (as in the
proof of Lemma 18.26), one shows that the elements of C are indiscernibles
for the model L[D].

Since some elements of C are regular cardinals, and some are limit cardi-
nals, it follows that all elements of C are inaccessible cardinals in L[D].

In the above argument, it was not necessary that κ be a measurable
cardinal, only that κ be measurable in L[D]. Thus we have proved:

Lemma 19.23. Let κ be a measurable cardinal, and assume that :

(19.16) For some γ < κ, there exists a D ⊂ P (γ) such that L[D] � D is
a normal measure on γ.

Then there are arbitrarily large successor cardinals that are inaccessible
in L[D].
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We have proved in Lemma 19.21 that if U is a nonprincipal κ-complete
ultrafilter on κ, then jU (κ) < i0,ω(κ), where i0,ω is the embedding of L[D] in
Ult(ω)

D (L[D]). We can prove a stronger statement:

Lemma 19.24. If there is a κ-complete nonprincipal ultrafilter U on κ such
that jU (κ) ≥ i0,ω(κ), then (19.16) holds.

Proof. Let us work in the model M = UltU (V ). The cardinal j(κ) is mea-
surable while i0,ω(κ) has cofinality ω, and so i0,ω(κ) < j(κ). Let F be the
collection of all subsets X of i0,ω(κ) such that X ⊃ {i0,n(κ) : n ≥ n0} for
some n0. Using Lemma 19.10, we proceed as in the proof of Lemma 19.17 to
show that

L[F ] � F ∩ L[F ] is a normal measure on i0,ω(κ).

Thus (19.16) holds in M for j(κ). Since j is an elementary embedding,
(19.16) holds in V for κ. ��

Corollary 19.25. If κ is a measurable cardinal and 2κ > κ+, then (19.16)
holds. Consequently, it is impossible to prove the consistency of “κ is mea-
surable and 2κ > κ+” relative to ZFC + “κ is a measurable cardinal.”

Proof. On the one hand, |i0,ω(κ)| = (κ+)L[D] ≤ κ+; on the other hand, if
U is any κ-complete ultrafilter on κ, we have jU (κ) > 2κ > κ+. ��

General Iterations

We shall now describe two generalizations of iterated ultrapowers. The first
deals with iteration of ultrapowers of transitive models by ultrafilters that
are not necessarily members of the model.

Let M be a transitive model of set theory. In fact, it is not necessary
for the theory of iterated ultrapowers to assume that M satisfies all axioms
of ZFC. It is enough to assume that M is a model of ZFC−, set theory without
the Power Set Axiom. Thus M can be a set (e.g., (Lα,∈) is a model of ZFC−

when α is a regular uncountable cardinal in L).
Let κ be a cardinal in M , and let U be an M -ultrafilter on κ (Defini-

tion 18.21).

Definition 19.26. An M -ultrafilter U on κ is iterable if

(19.17) {α < κ : Xα ∈ U} ∈ M whenever 〈Xα : α < κ〉 ∈ M .

We shall consider normal iterable M -ultrafilters, i.e., M -ultrafilters that
are nonprincipal, κ-complete, normal (as in Definition 18.21) and iterable.

Let U be a normal iterable M -ultrafilter on κ. Using functions in M , we
form an ultrapower UltU (M), which may or may not be well-founded. Let
j = jU be the canonical elementary embedding j : M → UltU (M).
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Lemma 19.27. If UltU (M) is well-founded, and N is the transitive collapse
of the ultrapower, then

(i) PM (κ) = PN (κ).
(ii) j“U is a normal iterable N -ultrafilter on j(κ).

Proof. (i) It is a routine verification by induction that j(α) = α for all α < κ.
For every X ∈ PM (κ), we have X = j(X) ∩ κ, and therefore X ∈ PN (κ),
verifying PM (κ) ⊂ PN(κ).

If Y ∈ PN (κ), let f ∈ M be such that Y ∈ [f ]U . Then Y ∈ PM (κ) follows
(by (19.17)) because for all α < κ,

α ∈ Y if and only if {ξ < κ : α ∈ f(ξ)} ∈ U.

(ii) Let W = j“U . To verify that N and W satisfy (19.17), let 〈Xα :
α < j(κ)〉 ∈ N be represented in the ultrapower by f ∈ M . We may assume
that for each α, Xα ⊂ j(κ), and that f(ξ) = 〈Xξ

η : η < κ〉 for each ξ < κ.
By (19.17), we have {(ξ, η) : Xξ

η ∈ U} ∈ M . Thus if we define g(ξ) = {η < κ :
Xξ

η ∈ U}, we have g ∈ M . Now it is routine to show that [g]U = {α < j(κ) :
Xα ∈ W}. ��

If j is an elementary embedding j : M → N with critical point κ, and
if PM (κ) = PN (κ), then the M -ultrafilter {X : κ ∈ j(X)} is iterable; see
Exercise 19.8.

Let U be a normal iterable M -ultrafilter on κ. If the ultrapower UltU (M)
is well-founded, let M1 be its transitive collapse, let j : M → M1 be the
canonical elementary embedding, and let U (1) = j“U ; U (1) is a normal iter-
able M1-ultrafilter on κ(1) = j(κ). We can now proceed with the iteration
as when M = V and U ∈ M , as long as the iterated ultrapowers are well-
founded. At limit stages we take direct limits, and use the following lemma
that is quite routine to verify:

Lemma 19.28. Let α be a limit ordinal, and let for each β < α, U (β) be
a normal iterable Mβ-ultrafilter on κ(β), and assume that the direct limit
of {(Mβ,∈, U (β)), iβ,γ : β, γ < α} is well-founded. If (Mα,∈, U (α)) is the
transitive direct limit then U (α) is a normal iterable Mα-ultrafilter on κ(α) =
limβ→α κ(β). ��

The Representation Lemma 19.13 holds true in the present context as well.
The M -ultrafilters Uα are defined as before, starting with M -ultrafilters Un

on PM (κn):

(19.18) X ∈ Un+1 if and only if {ξ < κ : X(ξ) ∈ Un} ∈ U

where X(ξ) = {〈ξ1, . . . , ξn〉 : 〈ξ, ξ1, . . . , ξn〉 ∈ X}. By induction on n one
proves that each Un is an iterable M -ultrafilter on κn.

To define the ultrafilters Uα and the ultrapowers UltUα(M), we restrict
ourselves, as before, to sets Z ⊂ κα and functions f on κα with finite support,
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with the additional restriction imposed by M : If E = {α1, . . . , αn} with
α1 < . . . < αn is the support of Z or f then the restriction of Z or f to κE

is such that its isomorph Z̄ ⊂ κn or f̄ : κn → M is an element of M .
In general, iterated ultrapowers of M by an M -ultrafilter need not be

well-founded. If, however, all countable iterations are well-founded then all
iterations are well-founded (Exercise 19.9). An important sufficient condi-
tion for well-foundedness of iterated ultrapowers is the following (external
σ-completeness):

(19.19) For any {Xn}n∈ω ⊂ U ,
⋂∞

n=0 Xn is nonempty

(see Exercise 19.10).
The other generalization deals with iterated ultrapowers of an inner model

where each successor step α + 1 of the iteration is obtained as an ultrapower
of Mα by an arbitrary measure in Mα.

Definition 19.29. An iterated ultrapower of an inner model M is a sequence
〈Mγ : γ ≤ λ〉 constructed as follows:

(i) M0 = M .
(ii) Mγ+1 = UltU(γ)(Mγ) where U (γ) ∈ Mγ is a κγ-complete ultrafilter

on κγ , and the ultrapower is constructed in Mγ ; iγ,γ+1 : Mγ → Mγ+1

is the canonical embedding, and for all α < γ, iα,γ+1 = iγ,γ+1 ◦ iα,γ .
(iii) If γ is a limit ordinal, then Mγ is the direct limit of {Mα, iα,β : α ≤

β < γ}.

Theorem 19.30 (Mitchell). Let M be an inner model of ZFC. Every it-
erated ultrapower of M is well-founded.

Proof. First we outline the proof of the theorem for M = V . The idea is to
represent each iterated ultrapower Mγ as an ultrapower by an ultrafilter Uγ .
The ultrafilters Uγ are defined by induction on γ. For each γ we define an
ordinal function kγ (that represents κγ in the ultraproduct by Uγ), the set Dγ

(the domain of kγ), the algebra Pγ of subsets of Dγ , the class Fγ of functions
on Dγ and the ultrafilter Uγ on Pγ .

The domain Dγ of kγ is the set

{p ∈ Ordγ : ∀α < γ p(α) < kα(p�α)}.

The algebra Pγ and the class Fγ are

Pγ = {X ⊂ Dγ : X has finite support},
Fγ = {f ∈ V Dγ : f has finite support}.

If γ is a limit ordinal, we let Uγ =
⋃

α<γ Uα. If γ = α + 1, then assume that
Mα is transitive and isomorphic to UltUα(V ). Let kα ∈ Fα be a function
that represents κα, and let g ∈ Fα be a function that represents U (α), in
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the ultrapower Mα, i.e., [kα]Uα = κα, [g]Uα = U (α). Thus for Uα-almost all
p ∈ Dα, gα(p) is an ultrafilter on kα(p). For X ∈ Pα+1 we let

X ∈ Uα+1 if and only if {p ∈ Dα : X(p) ∈ g(p)} ∈ Uα

where X(p) = {ξ < kα(p) : p ∪ {(α, ξ)} ∈ X}. It is now routine to verify that
UltUα+1(V ) is isomorphic to UltU(α)(Mα).

The proof that each UltUα(V ) is well-founded uses the argument presented
in Exercise 19.10.

Now if M is an arbitrary inner model, and 〈Mγ : γ ≤ λ〉 is an iterated
ultrapower that is not necessarily defined inside M , we use an absoluteness
argument. We can still use the representation of Mγ by UltUα(M); in this
case the functions p ∈ Ordγ , the sets X ⊂ Dγ and the functions f ∈ V Dγ

are all assumed to be members of M .
If E ⊂ γ is a finite set, then PE and FE denote the subsets of Pγ and Fγ ,

respectively, of those sets or functions whose support is E. Let UE be the
restriction of Uγ to PE , and let ME be the ultrapower of M mod UE (using
functions in FE). For E ⊂ E′, let iE,E′ be the canonical elementary embed-
ding of ME in ME′ and let iE,γ be the embedding of ME in Mγ .

If some iterated ultrapower of M is not well-founded, then, as in Exer-
cise 19.9, one can show that there is a countable λ such that an iterated
ultrapower 〈Mγ : γ ≤ λ〉 is not well-founded. Let κ be the supremum of all
the κγ , γ ≤ λ, in this iteration. Let {an}n<ω be a decreasing sequence of ordi-
nals in Mλ, and let E0 ⊂ E1 ⊂ . . . ⊂ En ⊂ . . . be a sequence of finite subsets
of λ such that

⋃∞
n=0 En = λ, and that each En is a support for (a function

representing) an. For each n, let bn ∈ MEn be such that an = iEn,λ(bn). Let
η be sufficiently large so that bn ∈ V M

η for all n. Thus there exists a sequence
{(En, Mn, bn)}∞n=0 such that E0 ⊂ E1 ⊂ . . . ⊂ En ⊂ . . . are finite subsets
of λ, that each Mn is an iterated ultrapower of M indexed by En, bn is an
ordinal in Mn = UltEn(M), and for each n, Mn+1 � iEn,En+1(bn) > bn+1.

As each Mn is a finite iteration, it is clear that it is a class in M . Consider,
in M , the set of all triples (E, N, b) such that E is a finite subset of λ, N is
a finite ultrapower iteration indexed by E and using measures on ordinals ≤
κ, and b is an ordinal in N represented by a function in Vη. Let (E′, N ′, b′) <
(E, N, b) if E′ ⊃ E and if N ′ � iE,E′(b) > b′. We have established that
this relation < is not well-founded (in the universe). Thus by absoluteness
of well-foundedness, this relation is not well-founded in M . However, that
means that there is an iterated ultrapower constructed in M that is not well-
founded, contrary to the result of the first part of this proof. ��

The Mitchell Order

Definition 19.31. Let κ be a measurable cardinal. If U1 and U2 are normal
measures on κ, let

U1 < U2 if and only if U1 ∈ UltU2(V ).
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The relation U1 < U2 is called the Mitchell order.

The Mitchell order is transitive, and by Lemma 17.9(ii) is irreflexive.
Moreover, it is well-founded:

Lemma 19.32. The Mitchell order is well-founded.

Proof. Toward a contradiction, let κ be the least measurable cardinal on
which the Mitchell order is not well-founded, and let U0 > U1 > . . . > Un >
. . . be a descending sequence of normal measures on κ. Let M = UltU0(V )
and let j : V → M be the canonical elementary embedding. As κ < j(κ),
and j(κ) is the least measurable cardinal in M on which the Mitchell order
is not well-founded, we reach a contradiction once we show that U1 > U2 >
. . . > Un > . . . is a descending sequence in M .

The measures Un, n ≥ 1, are in M , and so is the sequence {Un}∞n=1, so
we need to verify that Un+1 < Un still holds in M . Since Un+1 ∈ UltUn(V ),
Un+1 is represented in the ultrapower by a function f = 〈uα : α < κ〉. As
PM (κ) = P (κ) and Mκ ⊂ M , the function f is in M , and represents Un+1

in the ultrapower UltM
Un

(M). Hence M � Un+1 < Un. ��

Definition 19.33. If U is a normal measure on κ, let o(U), the order of U ,
denote the rank of U in <. Let o(κ), the order of κ, denote the height of <.

Lemma 19.34. Let o be the function 〈o(α) : α < κ〉. If U is a normal
measure on κ then o(U) = [o]U .

Proof. Clearly, [o]U = oM (κ) where M = UltU (V ). The set {U ′ : U ′ < U}
is the set of all normal measures in M , and since < is absolute for M (see
Lemma 19.32), the order of U in V is the order of κ in M . ��

Thus o(U) > 0 if and only if U -almost all α < κ are measurable. If
κ is a measurable cardinal of order ≥ 2 then κ has a normal measure that
concentrates on measurable cardinals α < κ. Thus the consistency strength
of o(κ) ≥ 2 is more than measurability. Measurable cardinals of higher order
provide a hierarchy of large cardinal axioms. A consequence of Lemma 19.34
is that |o(U)| ≤ 2κ and therefore o(κ) ≤ (2κ)+. In particular, if GCH holds,
then o(κ) ≤ κ++ for every measurable cardinal κ.

There exist canonical inner models for measurable cardinals of higher
order, analogous to the model L[U ]. We shall now outline the theory of these
inner models.

The key technical device is the technique of coiteration. It is the method
used in the proof of Lemma 19.35 below. Let U be a set of normal measures
(on possibly different cardinals). U is closed if for every measure U ∈ U
on κ, every normal measure on κ in jU (U) is in U . If U is a closed set of
normal measures and U, W ∈ U , let U <U W mean that U ∈ jW (U). As
<U is a suborder of the Mitchell order it is well-founded and we define oU (U)
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and oU (κ) accordingly. The length of U , l(U), is the least ϑ such that κ < ϑ
for all κ with oU (κ) > 0.

Let M and N be inner models of ZFC, and let U ∈ M and W ∈ N be
closed sets of normal measures in M and N , respectively. We say that U is
an initial segment of W if

(i) l(U) ≤ l(W),
(ii) for every α < l(U), oU (α) = oW (α),
(iii) for every κ < l(U), if U ∈ M and W ∈ N are on κ and

oU (U) = oW (W ), then U ∩ M ∩ N = W ∩ M ∩ N .

(19.20)

Lemma 19.35. Let M and N be inner models of ZFC and let U and W be
closed sets of measures in M and N , respectively. Then there exist iterated
ultrapowers i0,λ : M → Mλ and j0,λ : N → Nλ, using measures in U and W ,
respectively, such that either i0,λ(U) is an initial segment of j0,λ(W), or vice
versa.

Proof. By induction on γ, we define iterated ultrapowers Mγ and Nγ , and
the embeddings iβ,γ : Mβ → Mγ and jβ,γ : Nβ → Nγ . We let M0 = M
and N0 = N , and if λ is a limit ordinal, Mλ and Nλ are direct limits of
{Mγ , iβ,γ : β, γ < λ} and {Nγ , jβ,γ : β, γ < λ}, respectively.

If at stage γ, Uγ = i0,γ(U) and Wγ = j0,γ(W) are not initial segments
of one another, then there exist ordinals αγ and δγ such that αγ < l(Uγ),
αγ < Wγ , Uγ�αγ and Wγ�αγ agree on Mγ ∩ Nγ , the measures on αγ of
order < δγ in Uγ and in Wγ agree on Mγ ∩ Nγ , and

either (i) δγ = oUγ (α) < oWγ (α), or
(ii) δγ = oWγ (αγ) < oUγ (αγ), or
(iii) δγ < oWγ (αγ), δγ < oUγ (αγ) and for some Uγ ∈ Uγ and Wγ ∈

Wγ of order δγ there exists an Xγ ∈ Mγ∩Nγ such that Xγ ∈ Uγ

but Xγ /∈ Wγ .

(19.21)

If (i) occurs, let iγ,γ+1 be the identity and jγ,γ+1 : Nγ → Nγ+1 = UltW (Nγ)
where W is any W ∈ Wγ such that oWγ (W ) = δγ . Similarly, if (ii) occurs,
then jγ,γ+1 is the identity and Mγ+1 is an ultrapower. If (iii) occurs, let
iγ,γ+1 : Mγ → Mγ+1 = UltUγ (Mγ) and jγ,γ+1 : Nγ → Nγ+1 = UltWγ (Nγ).

Note that if β < γ then αβ ≤ αγ . Moreover, in cases (i) and (ii) we have
αγ+1 > αγ as oUγ+1(αγ) = oWγ+1(αγ) = δγ , and the measures of order < δγ

agree.
We will show that the process eventually stops. Thus assume the contrary.
For every limit ordinal γ, Mγ is a direct limit, and so there exists some

β = β(γ) < γ such that αγ is in the range of iβ,γ , αγ = iβ,γ(α) for some
α = α(γ) < l(Uβ). There is a stationary class Γ1 of ordinals such that β(γ) is
the same β for all γ ∈ Γ1. Also, there is a stationary class Γ2 ⊂ Γ1 such
that α(γ) is the same α < l(Uβ) for all γ ∈ Γ2. It follows that if β < γ are
in Γ2 then iβ,γ(αβ) = αγ . Similarly there is a stationary class Γ3 ⊂ Γ2 such
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that jβ,γ(αβ) = αγ whenever β < γ are in Γ3. Continuing in this manner,
we find a stationary class Γ ⊂ Γ3 such that for all β < γ in Γ, iβ,γ(αβ , δβ) =
jβ,γ(αβ , δβ) = (αγ , δγ), and (in Case (iii)) iβ,γ(Xβ) = jβ,γ(Xβ).

Let β ∈ Γ and assume that (19.21)(i) occurs. Let γ ∈ Γ be greater than β.
Since iβ,β+1 is the identity, and crit(Uξ) = αξ ≥ αβ+1 > αβ for all ξ > β,
we have iβ,γ(αβ) = αβ , while jβ,γ(αβ) ≥ jβ,β+1(αβ) > αβ , contrary to
iβ,γ(αβ) = jβ,γ(αβ). Thus (i) does not occur, and similarly, (ii) leads to
a contradiction.

Case (iii) gives a contradiction as follows: Let γ > β be in Γ. Since Xβ ∈
Uβ , we have αβ ∈ iβ,γ(Xβ), and since Xβ /∈ Wβ , we have αβ /∈ jβ,γ(Xβ). This
contradicts iβ,γ(Xβ) = jβ,γ(Xβ), and therefore the process must eventually
stop. ��

The Models L[U ]

If Aα, α < θ, is a sequence of sets, let us define the model

(19.22) L〈Aα : α < θ〉

as the model L[A] where A = {(α, X) : X ∈ Aα}. Under this definition,
L〈Aα : α < θ〉 = L[〈Bα : α < θ〉], where Bα = Aα ∩ L〈Aα : α < θ〉 for all
α < θ.

If κα, α < θ, is a sequence of measurable cardinals, and for each α, Uα is
a κα-complete nonprincipal ultrafilter on κα, then in L〈Uα : α < θ〉, each
Uα ∩ L〈Uα : α < θ〉 is again a κα-complete nonprincipal ultrafilter on κα.

More generally, let U be a set of normal measures indexed by pairs of
ordinals (α, β) such that Uα,β is a measure on α. Then L[U ] denotes the
model L〈Uα,β : α, β〉.

The technique described in the preceding section can be used to gener-
alize many results about the model L[U ] to obtain canonical inner models
for measurable cardinals of higher order. We shall illustrate the method by
constructing a model with exactly two normal measures on a measurable
cardinal of order 2.

Definition 19.36. A canonical inner model for a measurable cardinal κ of
order 2 is a model

(19.23) L[U ] = L〈Uα, U0, U1〉α∈A

such that in L[U ]

(i) U1 is a normal measure on κ of order 1.
(ii) U0 is a normal measure on κ of order 0 and U0 < U1.
(iii) A ∈ U1, each Uα is a normal measure on α of order 0, and

〈Uα : α ∈ A〉 represents U0 in the ultrapower by U1.

(19.24)
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If o(κ) ≥ 2 then a canonical model L[U ] is obtained as follows: Let A ⊂ κ
be the set of all measurable cardinals below κ, let U1 be a normal measure
on κ of order 1, let U0 be a normal measure on κ such that U0 < U1,
and let Uα, α ∈ A, be normal measures such that [〈Uα : α ∈ A〉]U1 = U0.
Then L〈Uα, U0, U1〉α∈A is a canonical inner model (with U = 〈Uα ∩ L[U ],
U0 ∩ L[U ], U1 ∩ L[U ]〉α∈A).

The canonical model is unique (for the particular choice of the set A), in
the sense that if W = 〈Wα, W 0, W 1〉α∈A is any other sequence that satis-
fies (19.24), then L[U ] = L[W ]. We prove below a more general result.

Theorem 19.37 (Mitchell). Let A ⊂ κ, and let U = 〈Uα, U0, U1〉α∈A and
W = 〈Wα, W 0, W 1〉α∈A be such that for each α ∈ A, Uα and Wα are normal
measures on α of order 0, U0 and W 0 are normal measures on κ of order 0,
and U1 and W 1 are normal measures on κ of order 1. Then L[U ] = L[W ]
and

(i) Uα ∩ L[U ] = Wα ∩ L[W ] (all α ∈ A),
(ii) Uε ∩ L[U ] = W ε ∩ L[W ] (ε = 0, 1).

(19.25)

Proof. We use Lemma 19.35. Let D be the following set of measures:
The Uα’s, the Wα’s, U1, U0, W 1, W 0, and all the normal measures on κ
in jU1(U ∪W) and jW 1(U ∪W) (so that D is a closed set of measures).

By Lemma 19.35 (applied to D) there exist iterated ultrapowers i = i0,λ :
V → M and j = j0,λ : V → N such that i(D) is an initial segment of j(D).

We have l(i(D)) = i(κ) + 1, and by (19.20), oi(D)(i(κ)) = oj(D)(j(κ)) = 2
and for all α < i(κ), oi(D)(α) = oj(D)(α) = 1 if α ∈ i(A) and oi(D)(α) =
oj(D)(α) = 0 if α /∈ i(A). It follows that i(κ) = j(κ) and i(A) = j(A).

By (19.20)(iii), if D ∈ i(D) and E ∈ j(D) are normal measures on some
α ∈ i(A) then D∩M ∩N = E∩M ∩N ; the same is true if D ∈ i(D) and E ∈
j(D) are measures on i(κ) and oi(D)(D) = oi(D)(E). It follows that L[i(U)] =
L[j(U)] = L[j(W)] = L[i(W)] ⊂ M ∩N , i(Uε) ∩ L[i(U)] = j(Uε) ∩ L[i(U)] =
j(W ε) ∩ L[i(U)] = i(W ε) ∩ L[i(U)] (ε = 0, 1), and for every α ∈ i(A),
(iU)α = (iW)α, where 〈(iU)α, iU0, iU1〉α∈iA = iU = i(〈Uα, U0, U1〉α∈A).
(By induction on γ, one shows that Lγ [i(U)] = Lγ [i(W)]).

Now (19.25) follows since i is an elementary embedding, and i : L[U ] →
L[i(U)], i : L[W ] → L[i(W)]. ��

The analog of Theorem 19.14(i) for L[U ] is the following:

Theorem 19.38 (Mitchell). In L[U ], κ and α ∈ A are the only measurable
cardinals, and Uα, U0 and U1 are the only normal measures.

Proof. For every ordinal γ ≤ κ, let U�γ = 〈Uα : α ∈ A∩γ〉; if γ > κ, U�γ = U .
Toward a contradiction, let γ be the least ordinal such that in L[U�γ] there
are normal measures other than those in U�γ, and let D = U�γ. Let α be the
least cardinal in L[D] that carries a normal measure not in D, and let D be
such a measure of least Mitchell order.
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If α /∈ A ∪ {κ}, let M = L[D], N = UltD(L[D]) = L[jD(D)], and apply
Lemma 19.35 to M , N and (closed) sets of measures D and jD(D). There
are iterated ultrapowers i = i0,λ : M → Mλ and j = j0,λ : N → Nλ such
that i(D) is an initial segment of j(jD(D)) or vice versa. Now because of
the choice of D as a minimal counterexample in L[D] to the theorem, no
proper initial segment of either i(D) or j(jD(D)) can be a counterexample,
and consequently, Mλ = Nλ = L[i(D)] = L[j(jD(D))]. As jD(D)�(α + 1) =
D�(α + 1), we have i(α) = j(α) = α, which contradicts the fact that D ∈ M
but D /∈ N .

The same argument works if α ∈ A and Uα < D, or if α = κ and U1 < D.
If α ∈ A and o(D) = 0, let U = Uα; if α = κ and o(D) = ε (ε = 0, 1), let

U = Uε. Let M = UltU (L[D]) = L[jU (D)] and N = UltD(L[D]) = L[jD(D)].
By Lemma 19.35 there are iterated ultrapowers i : M → Mλ and j : N → Nλ

such that i(jU (D)) is an initial segment of j(jD(D)) or vice versa. Using
the minimality argument again, we get Mλ = Nλ = L[i(jU (D))] = L(E)
where E = i(jU (D)) = j(jD(D)). Again, jU (D)�(α + 1) = jD(D)�(α + 1), so
i(α) = j(α) = α.

To reach a contradiction we show that X ∈ U if and only if X ∈ D,
for every X ⊂ α in L[D]. We proceed as in the proof of Lemma 19.18. If
X ∈ PL[D](α) then X is definable in L[D] from D and ordinals that are not
moved by jU , jD, i or j. As in (19.8)–(19.10) it follows that X = Z∩α where
Z = i(X), that Z = j(Z ∩α) = j(X) and that X ∈ U if and only if α ∈ i(X)
if and only if α ∈ j(X) if and only if X ∈ D. ��

Theorems 19.37 and 19.38 admit a generalization to yield canonical inner
models for measurable cardinals of higher order. We shall state the following
result without proof:

Theorem 19.39 (Mitchell). There exists an inner model L[U ] such that

(i) for every α, oL[U ](α) = oU (α) = min{o(α), (α++)L[U ]};
(ii) U = 〈Uα,β : β < oU (α)〉;
(iii) each Uα,β is in L[U ] a normal measure of order β;
(iv) every normal measure in L[U ] is Uα,β for some α and β;
(v) L[U ] � GCH. ��

Exercises

19.1. Let κ be a measurable cardinal and j : V → M be the corresponding ele-
mentary embedding. Let M0 = V , M1 = M , and for each n < ω, Mn+1 = j(Mn)
and in,n+1 = j�Mn. The direct limit of {Mn, in,m : n, m < ω} is not well-founded.

[i0,ω(κ), i1,ω(κ), . . . , in,ω(κ), . . . is a descending sequence of ordinals in the
model.]

19.2. Show that if m ≤ n, then for each f on κm, im,n([f ]Um ) = [g]Un where g is
the function on κn defined by g(α0, . . . , αn−1) = f(α0, . . . , αm−1).
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19.3. Prove this version of �Loś’s Theorem (for functions with finite support):
(UltUα , Eα) � ϕ([f1], . . . , [fn]) if and only if {t : ϕ(f1(t), . . . , fn(t))} ∈ Uα.

Let Dn be the measure on κn defined from a normal measure D, and let κ(n) =

i0,n(κ) where i0,n : V → Ult
(n)
D .

19.4. The ordinal κ(n−1) is represented in UltDn by the function dn(α1, . . . , αn) =
αn.

19.5. A ∈ Dn if and only if (κ, κ(1), . . . , κ(n−1)) ∈ jDn(A).

19.6. If A ∈ Dn then there exists a B ∈ D such that [B]n ⊂ A.

[Let n = 3. Let B1 = {α1 : (α1, κ, κ(1)) ∈ i0,2(A)}, B2 = {α2 ∈ B1 : (∀α1 ∈ B1∩
α2) (α1, α2, κ) ∈ i0,1(A)} and B = B3 = {α3 ∈ B2 : (∀α2 ∈ B2∩α3)(∀α1 ∈ B2∩α2)
(α1, α2, α3) ∈ A}.]

Compare with Theorem 10.22.

19.7. Assume V = L[D]. If U is a κ-complete nonprincipal ultrafilter on κ and if
U �= D, then there is a monotone function f : κ → κ such that κ ≤ [f ]U < [d]U .
(Hence U does not extend the closed unbounded filter.)

[U satisfies (19.15) for some δ; if δ = κ(n) for some n, then U = D. Let n be

such that κ(n−1) < δ < κ(n); let g : κn → κ represents δ in UltDn . Let f(ξ) =
least α such that g(α1, . . . , αn−1, α) ≥ ξ for some α1 < . . . < αn−1 < α. The
function f is monotone. To show that [f ]U < [d]U , we argue as follows: For almost
all (mod Dn) α1, . . . , αn, g(α1, . . . , αn) > αn; hence for almost all α1, . . . , αn,
f(g(α1, . . . , αn)) < g(α1, . . . , αn). Hence (jDn(f))(δ) < δ, and hence for almost
all ξ (mod U), f(ξ) < ξ. Thus [f ]U < [d]U .]

19.8. If M and N are transitive models of ZFC−, if j : M → N is an elementary
embedding with critical point κ, and if P M (κ) = P N(κ), then {X ∈ P M (κ) : κ ∈
j(X)} is a normal iterable M -ultrafilter.

19.9. If UltUα(M) is well-founded for all α < ω1, then UltUα(M) is well-founded
for all α.

[Assume that UltUα(M) is not well-founded and let f0, f1, . . . , fn, . . . constitute
a counterexample. Each fn has a finite support En. Let β be the order-type of
S∞

n=0 En; we have β < ω1. Produce a counterexample in UltUβ (M).]

19.10. If arbitrary countable intersections of elements of U are nonempty, then
UltUα(M) is well-founded for all α.

[Let f0, f1, . . . , fn, . . . be a counterexample, let Xn = {t ∈ κα : fn(t) �
fn+1(t)}. To reach a contradiction, find t ∈ T∞

n=0 Xn. Construct t by induction
such that for each ν < α if α = ν + η, then t�ν has the property that for all n,
{s ∈ κn : (t�ν)�s ∈ Xn} ∈ Uη : Given t�ν, there is t(ν) such that the condition is
satisfied for t�(ν + 1). Then t ∈ T∞

n=0 Xn.]

19.11. Assume that every constructible subset of ω1 either contains or is disjoint
from a closed unbounded set. Let F be the closed unbounded filter on ω1. Then
D = F ∩ L is an iterable L-ultrafilter and UltDα(L) is well-founded (and hence
equal to L) for all α.

19.12. If L[U ], U = 〈Uα, U0, U1〉α∈A, is a canonical inner model for a measurable
cardinal of order 2, if B ∈ U1 is a subset of A, and if W = 〈Wα, W 0, W 1〉α∈B,
Wα = Uα ∩ L[W], W ε = Uε ∩ L[W], then L[W] is also a canonical inner model.

19.13. If there exist two different normal measures of order 1 on κ, then there
exist canonical inner models L[U ] and L[W] such that U = 〈Uα, U0, U1〉α∈A, W =
〈Wβ, W 0, W 1〉β∈B and such that A = U1 and B = W 1 are disjoint subsets of κ.
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Historical Notes

Most of the results in the first part of Chapter 19 are due to Kunen, who
in [1970] developed the method of iterated ultraproducts invented by Gaifman
(cf. [1964] and [1974]). Kunen found the representation of iterated ultraproducts
(Lemma 19.13) and generalized the construction for M -ultrafilters. Kunen applied
the method to obtain the main results of the model L[D] (Theorem 19.14).

Theorem 19.3 (the proof of the GCH in L[D]) is due to Silver [1971d].
The description of κ-complete ultrafilters on κ in L[D] (Lemma 19.21) is due

to Kunen [1970] and Paris [1969]. Lemma 19.4 was first proved by Solovay. The-
orem 19.7 is due to Gaifman; cf. [1974]. The proof of well-foundedness in Exer-
cise 19.10 is due to Kunen. Lemmas 19.20 and 19.24 are results of Kunen [1970].
0† was formulated by Solovay.

Kunen generalized the basic results on L[D] to the model L〈Dα : α < θ〉
constructed from a sequence of measures (with θ < the least measurable cardinal
in the sequence). Mitchell [1974] and [1983] generalized the theory of L[D] to inner
models for sequences of measures. The definition of o(κ), Theorem 19.30 (well-
foundedness of iterated ultrapowers) as well as the results on L[U ] are all due to
Mitchell.

The results in Exercises 19.9, 19.10 and 19.11 are due to Kunen [1970].
Exercise 19.7: Jech [1972/73].


