
20. Very Large Cardinals

This chapter studies properties of large cardinals that generalize measurabil-
ity. We are particularly interested in the method of elementary embeddings,
and introduce two concepts that have become crucial in the theory of large
cardinals: supercompact and Woodin cardinals.

Strongly Compact Cardinals

In Chapter 9 we proved that weakly compact cardinals are inaccessible car-
dinals satisfying the Weak Compactness Theorem for the infinitary lan-
guage Lκ,ω. If we remove the restriction on the size of sets of sentences in
the model theoretic characterization of weakly compact cardinals, we obtain
a considerably stronger notion. This notion, strong compactness, turns out to
be much stronger than measurability.

Strongly compact cardinals can be characterized in several different ways.
Let us use, as a definition, the property that is a natural generalization of
the Ultrafilter Theorem:

Definition 20.1. An uncountable regular cardinal κ is strongly compact if
for any set S, every κ-complete filter on S can be extended to a κ-complete
ultrafilter on S.

Obviously, every strongly compact cardinal κ is measurable, for any ul-
trafilter on κ that extends the filter {X : |κ − X | < κ} is nonprincipal.

Let us say that the language Lκ,ω (or Lκ,κ) satisfies the Compactness
Theorem if whenever Σ is a set of sentences of Lκ,ω (Lκ,κ) such that every
S ⊂ Σ with |S| < κ has a model, then Σ has a model.

Let A be a set of cardinality greater than or equal to κ. For each x ∈
Pκ(A), let x̂ = {y ∈ Pκ(A) : x ⊂ y}, and let us consider the filter on Pκ(A)
generated by the sets x̂ for all x ∈ Pκ(A); that is, the filter

(20.1) {X ⊂ Pκ(A) : X ⊃ x̂ for some x ∈ Pκ(A)}.

If κ is a regular cardinal, then the filter (20.1) is κ-complete. We call U a fine
measure on Pκ(A) if U is a κ-complete ultrafilter on Pκ(A) that extends the
filter (20.1); i.e., x̂ ∈ U for all x ∈ Pκ(A).
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Lemma 20.2. The following are equivalent, for any regular cardinal κ:

(i) For any set S, every κ-complete filter on S can be extended to a κ-
complete ultrafilter on S.

(ii) For any A such that |A| ≥ κ, there exists a fine measure on Pκ(A).
(iii) The language Lκ,ω satisfies the compactness theorem.

Proof. (i) → (ii) is clear.
(ii) → (iii): Let Σ be a set of sentences of Lκ,ω and assume that every

S ⊂ Σ of size less than κ has a model, say AS . Let U be a fine measure
on Pκ(Σ), and let us consider the ultraproduct A = UltU{AS : S ∈ Pκ(Σ)}.
It is routine to verify that �Loś’s Theorem holds for the language Lκ,ω provided
the ultrafilter is κ-complete; in order to prove the induction step for infinitary
connective

∧
ξ<α ϕξ, one uses the κ-completeness of U . Thus we have, for any

sentence σ of Lκ,ω,

(20.2) A � σ if and only if {S : AS � σ} ∈ U.

Now if σ ∈ Σ, then {σ}∧ ∈ U and since AS � σ whenever S � σ, (20.2) implies
that σ holds in A. Hence A is a model of Σ.

(iii) → (i): Let S be a set and let F be a κ-complete filter on S. Let us
consider the Lκ,ω-language which has a unary predicate symbol Ẋ for each
X ⊂ S, and a constant symbol c. Let Σ be the set of Lκ,ω sentences consisting
of:

(a) all sentences true in (S, X)X⊂S ,
(b) Ẋ(c) for all X ∈ F .

Every set of less than κ sentences in Σ has a model: Take S as the universe,
interpret each Ẋ as X and let c be some element of S that lies in every X
whose name is mentioned in the given set of sentences; since F is κ-complete,
such c exists.

Hence Σ has a model A = (A, XA, c)X⊂S . Let us define U ⊂ P (S) as
follows:

X ∈ U if and only if A � Ẋ(c).

It is easy to verify that U is a κ-complete ultrafilter and that U ⊃ F :
For instance, U is κ-complete because if α < κ and X =

⋂
ξ<α Xξ, then

A satisfies the sentence
∧

ξ<α Ẋξ(c) → Ẋ(c). ��

Every strongly compact cardinal is measurable, but not every measurable
cardinal is strongly compact (although it is consistent that there is exactly one
measurable cardinal which is also strongly compact). We shall show that the
existence of strongly compact cardinals is a much stronger assumption than
the existence of measurable cardinals. We start with the following theorem:

Theorem 20.3 (Vopěnka-Hrbáček). If there exists a strongly compact
cardinal, then there is no set A such that V = L[A].
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Proof. Let us assume that V = L[A] for some set A. Since there is a set of
ordinals A′ such that L[A] = L[A′], we may assume that A is a set of ordinals.
Let κ be a strongly compact cardinal, and let λ ≥ κ be a cardinal such that
A ⊂ λ. There exists a κ-complete ultrafilter U on λ+ such that |X | = λ+ for
every X ∈ U (let U extend the filter {X : |λ+ − X | ≤ λ}).

Since U is κ-complete, the ultrapower UltU (V ) is well-founded, and thus
can be identified with a transitive model M . As usual, if f is a function
on λ+, then [f ] denotes the element of M represented by f . Let j = jU be
the elementary embedding of V into M given by U .

Let us now consider another version of ultrapower. Let us consider only
those functions on λ+ that assume at most λ values. For these functions, we
still define f =∗ g (mod U) and f ∈∗ g (mod U) in the usual way, and there-
fore obtain a model of the language of set theory, which we denote Ult−U (V ).
�Loś’s Theorem holds for this version of ultrapower too: If f , . . . are functions
on λ+ with | ran(f)| ≤ λ, then

(20.3) Ult− � ϕ(f, . . .) if and only if {α : ϕ(f(α), . . .)} ∈ U.

(Check the induction step for ∃.) Hence Ult− is a model of ZFC, elementarily
equivalent to V . Also, since U is κ-complete, Ult− is well-founded and thus
is isomorphic to a transitive model N . Every element of N is represented by
a function f on λ+ such that | ran(f)| ≤ λ. We denote [f ]− the element of N
represented by f . We also define an elementary embedding i : V → N by
i(x) = [cx]− where cx is the constant function on λ+ with value x.

For every function f on λ+ with | ran f | ≤ λ, we let

(20.4) k([f ]−) = [f ].

It is easy to see that the definition of k([f ]−) does not depend on the choice
of f representing [f ]− in N , and that k is an elementary embedding of N
into M . In fact, j = k ◦ i.

If γ < λ+, then every function from λ+ into γ has at most λ values, and
hence [f ]− = [f ] for all f : λ+ → γ. If f : λ+ → λ+ has at most λ values,
then f : λ+ → γ for some γ < λ+; it follows that i(λ+) = limγ→λ+ i(γ), and
we have k(ξ) = ξ for all ξ < i(λ+).

Similarly, i(A) = j(A), and we have M = L[j(A)] = L[i(A)] = N .
Now we reach a contradiction by observing that j(λ+) > i(λ+): Since

the diagonal function d(α) = α represents in M an ordinal greater than
each j(γ), γ < λ+, we have j(λ+) > limγ→λ+ j(γ). While N thinks that
i(λ+) is the successor of i(λ), M thinks that j(λ+) is the successor of j(λ)
(and j(λ) = i(λ)). Thus M �= N , a contradiction. ��

The following theorem shows that the consistency strength of strong com-
pactness exceeds the strength of measurability:

Theorem 20.4 (Kunen). If there exists a strongly compact cardinal then
there exists an inner model with two measurable cardinals.
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Kunen proved a stronger version (and the proof can be so modified): For
every ordinal ϑ there exists an inner model with ϑ measurable cardinals.
This was improved by Mitchell who showed that the existence of a strongly
compact cardinal leads to an inner model that has a measurable cardinal κ
of Mitchell order κ++.

We begin with a combinatorial lemma:

Lemma 20.5. Let κ be an inaccessible cardinal. There exists a family G of
functions g : κ → κ such that |G| = 2κ, and whenever H ⊂ G is a subfamily
of size < κ and {βg : g ∈ H} is any collection of ordinals < κ, then there
exists an α such that g(α) = βg for all g ∈ H.

Proof. Let A be a family of almost disjoint subsets of κ (i.e., |A| = κ for each
A ∈ A and |A ∩ B| < κ for any distinct A, B ∈ A), such that |A| = 2κ. For
each A ∈ A, let fA be a mapping of A onto κ such that for each β < κ, the
set {a ∈ A : fA(a) = β} has size κ. Let sα, α < κ, enumerate all subsets
s ⊂ κ of size < κ.

For each A ∈ A, let gA : κ → κ be defined as follows: If sα ∩ A = {x},
then gA(α) = fA(x); gA(α) = 0 otherwise. Let G = {gA : A ∈ A}.

If A �= B ∈ A, then it is easy to find sα such that gA(α) �= 0 and
gB(α) = 0; hence |G| = 2κ. If H ⊂ A has size < κ and if {βA : A ∈ H} are
given, then for each A ∈ H we choose xA ∈ A such that xA /∈ B for any other
B ∈ H and that fA(xA) = βA. Then if α is such that sα = {xA : A ∈ A}, we
have gA(α) = βA for every A ∈ H. ��
Lemma 20.6. Let κ be a strongly compact cardinal. For every δ < (2κ)+

there exists a κ-complete ultrafilter U on κ such that jU (κ) > δ.

Proof. Let δ < (2κ)+. Let G be a family of functions g : κ → κ of size |δ|
with the property stated in Lemma 20.5; let us enumerate G = {gα : α ≤ δ}.

For any α < β ≤ δ, let Xα,β = {ξ : gα(ξ) < gβ(ξ)}. Using the property
of G from Lemma 20.5, we can see that any collection of less than κ of
the Xα,β has a nonempty intersection and hence F = {X : X ⊃ Xα,β for
some α < β ≤ δ} is a κ-complete filter on κ. There exists a κ-complete
ultrafilter U extending F . It is clear that if α < β ≤ δ, then gα < gβ mod U ,
and hence jU (κ) > δ. ��

Combining Lemma 20.6 with Lemmas 19.23 and 19.24, we already have
a strong consequence of strong compactness.

We shall apply the technique of iterated ultrapowers to construct an inner
model with two measurable cardinals.

Let D be a normal measure on κ, and let i0,α denote, for each α, the
elementary embedding i0,α : V → Ult(α); let κ(α) = i0,α(κ) and D(α) =
i0,α(D).

First recall (19.5): If λ is a limit ordinal, then X ∈ Ult(λ) belongs to D(λ)

if and only if X ⊃ {κ(γ) : α ≤ γ < λ} for some α < λ. Let

(20.5) C = {ν : ν is a strong limit cardinal, ν > 2κ, and cf ν > κ}.
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By Lemma 19.15, if ν ∈ C then κ(ν) = ν, and i0,α(ν) = ν for all α < ν. Thus
if γ0 < γ1 < . . . < γn < . . . are elements of the class C, and if λ = limn→∞ γn,
then κ(λ) = λ, and X ∈ Ult(λ) belongs to D(λ) just in case X ⊃ {γn : n0 ≤ n}
for some n0.

If A is a set of ordinals of order-type ω, A = {γn : n ∈ ω}, we define
a filter F (A) on λ = sup A as follows:

(20.6) X ∈ F (A) if and only if ∃n0 (∀n ≥ n0) γn ∈ X.

The above discussion leads us to this: If A ⊂ C has order-type ω, and if
λ = sup A, then for every X ∈ Ult(λ), X ∈ D(λ) if and only if X ∈ F (A). In
other words,

(20.7) D(λ) = F (A) ∩ Ult(λ).

Hence F (A) ∩ Ult(λ) ∈ Ult(λ); and so, L[F (A)] = L[D(λ)]. Thus F (A) ∩
L[F (A)] = D(λ) ∩ L[D(λ)], and we have

(20.8) L[F (A)] � F (A) ∩ L[F (A)] is a normal measure on λ.

The only assumption needed to derive (20.8) is that κ is measurable and
A is a subset of the class C. We shall now use Lemma 20.6 and a similar
construction to obtain a model with two measurable cardinals.

Suppose that A = {γn : n ∈ ω} is as above, and that A′ = {γ′
n : n ∈ ω}

is another subset of C of order-type ω, such that γ′
0 > λ = sup A; let λ′ =

sup A′. Let F = F (A) and F ′ = F (A′). Our intention is to choose A and A′

such that the model L[F, F ′] has two measurable cardinals, namely λ and λ′,
and that F ∩ L[F, F ′] and F ′ ∩ L[F, F ′] are normal measures on λ and λ′,
respectively.

The argument leading to (20.8) can again be used to show that F∩L[F, F ′]
is a normal measure on λ in L[F, F ′]. This is because we have again

D(λ) = F ∩ Ult(λ);

moreover, i0,λ(γ′
n) = γ′

n for each n, and hence i0,λ(A′) = A′ and we have

(20.9) i0,λ(F ′) = F ′ ∩ Ult(λ).

Therefore
L[F, F ′] = L[D(λ), F ′] = L[D(λ), i0,λ(F ′)]

and

(20.10) F ∩ L[F, F ′] = D(λ) ∩ L[D(λ), i0,λ(F ′)],

which gives

(20.11) L[F, F ′] � F ∩ L[F, F ′] is a normal measure on λ.

In order to find A, A′ so that F ′ also gives a normal measure in L[F, F ′], let
us make the following observation: Let us think for a moment that A ⊂ κ and
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A′ ⊂ C. Then i0,λ′(A) = A and D(λ′) = F ′ ∩Ult(λ
′), and the same argument

as above shows that

(20.12) L[F, F ′] � F ′ ∩ L[F, F ′] is a normal measure on λ′.

We shall use this observation below.
Let us define the following classes of cardinals (compare with (18.29)):

(20.13) C0 = C, Cα+1 = {ν ∈ Cα : |Cα ∩ ν| = ν},
Cγ =

⋂
α<γ

Cα (γ limit).

Each Cα is nonempty; in fact each Cα is unbounded and δ-closed for all δ of
cofinality > κ.

Now we let

(20.14) γn = the least element of Cn,

A = {γn : n ∈ ω}, λ = limn→∞ γn

and let A′ = {γ′
n : n ∈ ω} be a subset of Cω+1.

Let us consider the model L[A, A′], and let for each n ≤ ω

(20.15) Mn = the Skolem hull of Cn in L[A, A′]

= the class of all x ∈ L[A, A′] such that

L[A, A′] � x = t[ν1, . . . , νk, γ0, . . . , γk, γ′
0, . . . , γ

′
k, A, A′]

where t is a Skolem term and ν1, . . . , νk ∈ Cn.

(Let us not worry about the problem whether (20.15) is expressible in the
language of set theory; it can be shown that it is, similarly as in the case
of ordinal definable sets. Alternatively, we can consider the model Lθ[A, A′]
where θ is some large enough cardinal in Cω+1.)

Each Mn is an elementary submodel of L[A, A′]; let πn be the transi-
tive collapse of Mn; then πn(Mn) = L[πn(A), πn(A′)] and jn = π−1

n is an
elementary embedding

jn : L[πn(A), πn(A′)] → L[A, A′].

Lemma 20.7. For each n < ω, πn(γn) < (2κ)+.

Proof. By induction on n. First let n = 0. Let α < γ0 be in M0. Then
α = t(ν1, . . . , νk, A, A′) for some Skolem term t and some ν1, . . . , νk ∈ C0.
Let i0,α be the elementary embedding into Ult(α)

U for some U on κ. Since γ0 is
the least element of C0, we have α < ν for all ν ∈ C0 and hence i0,α(ν) = ν
for all ν ∈ C0. Hence also i0,α(A) = A and i0,α(A′) = A′ and it follows that
i0,α(α) = α. Now i0,α(α) = α is possible only if α < κ. Hence each α < γ0

in M0 is less than κ and therefore π0(γ0) ≤ κ.
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Now let us assume that πn(γn) < (2κ)+ and let us show that πn+1(γn+1) <
(2κ)+. By Lemma 20.6 there exists a U such that jU (κ) > πn(γn). We shall
show that πn(α) < jU (κ) for all α < γn+1 in Mn+1; since πn+1(α) ≤ πn(α)
it follows that πn+1(γn+1) = sup{πn+1(α) : α < γn+1 and α ∈ Mn+1} ≤
jU (κ) < (2κ)+.

First notice that it follows from the definition of Cn+1 in (20.13) that
πn(ν) = ν for all ν ∈ Cn+1. Note also that γm ∈ Cn+1 for all m ≥ n + 1, and
A′ ⊂ Cn+1.

Let α < γn+1 be in Mn+1. Then (in L[A, A′]),

α = t(γ0, . . . , γn, ν1, . . . , νk, A, A′)

where t is some Skolem term and ν1, . . . , νk ∈ Cn+1. Hence (in L[πn(A),
πn(A′)])

πn(α) = t(πn(γ0), . . . , πn(γn), ν1, . . . , νk, πn(A), A′).

Now we argue inside the model UltU (V ) (which contains both πn(A) and A′):
Consider the αth iterated ultrapower (modulo some measure on jU (κ)). Since
πn(γ0), . . . , πn(γn) are all less than jU (κ), we have i0,α(πn(γi)) = πn(γi) for
all i = 0, . . . , n. We also have i0,α(ν) = ν for each ν ∈ Cn+1 (because α < ν
for each ν ∈ Cn+1 and Cn+1 ⊂ C). It follows that i0,α(πn(α)) = πn(α). Now
(because πn(α) ≤ α) this is only possible if πn(α) < jU (κ). ��

We can now complete the proof of Theorem 20.4. Let us consider the
model Mω, the Skolem hull in L[A, A′] of Cω. Let πω be the transitive collapse
of Mω and B = πω(A). Since A′ ⊂ Cω+1, we have πω(A′) = A′, and jω = π−1

ω

is an elementary embedding

jω : L[B, A′] → L[A, A′].

By Lemma 20.7, πω(γn) ≤ πn(γn) < (2κ)+ for all n, and hence πω(λ) <
(2κ)+. Let U be a κ-complete ultrafilter on κ such that jU (κ) > πω(λ).

In UltU , B is a subset of jU (κ) and A′ is a subset of the class C. Thus we
can apply (20.12) and get

UltU � (L[F (B), F (A′)] � F (A′) ∩ L[F (B), F (A′)] is
a normal measure on λ′).

Hence

L[B, A′] � (L[F (B), F (A′)] � F (A′) ∩ L[F (B), F (A′)] is
a normal measure on λ′),

and applying jω, we get

L[A, A′] � (L[F (A), F (A′)] � F (A′) ∩ L[F (A), F (A′)] is
a normal measure on λ′).

Therefore F ′∩L[F, F ′] is (in L[F, F ′]) a normal measure on λ′. This completes
the proof of Theorem 20.4. ��
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The following theorem provides further evidence of the effect of large
cardinals on cardinal arithmetic.

Theorem 20.8 (Solovay). If κ is a strongly compact cardinal, then the
Singular Cardinal Hypothesis holds above κ. That is, if λ > κ is a singu-
lar cardinal, then 2cf λ < λ implies λcf λ = λ+. (Consequently, if λ > κ is
a singular strong limit cardinal, then 2λ = λ+.)

We shall prove the theorem in a sequence of lemmas. An ultrafilter on λ
is uniform if every set in the ultrafilter has size λ.

Lemma 20.9. If κ is a strongly compact cardinal and λ > κ is a regular
cardinal, then there exists a κ-complete uniform ultrafilter D on λ with the
property that almost all (mod D) ordinals α < λ have cofinality less than κ.

Proof. Let U be a fine measure on Pκ(λ). Since U is fine, every α < λ belongs
to almost all (mod U) x ∈ Pκ(λ). Let us consider the ultrapower UltU (V )
and let f be the least ordinal function in UltU greater than all the constant
functions cγ , γ < λ:

(20.16) [f ] = limγ→λ jU (γ).

We note first that f(x) < λ for almost all x: Let g : Pκ(λ) → λ be the
function g(x) = supx. If γ < λ, then γ ≤ g(x) for almost all x and hence
j(γ) ≤ [g]; thus [f ] ≤ [g] ≤ j(λ).

Let D be the ultrafilter on λ defined as follows:

(20.17) X ∈ D if and only if f−1(X) ∈ U (X ⊂ λ).

It is clear that D is κ-complete, and since f is greater than the constant
function, D is nonprincipal. For the same reason, the diagonal function d(α) =
α is greater (in UltD) than all the constant functions cγ , γ < λ, and since λ is
regular, D is uniform. In order to show that almost all (mod D) α < λ have
cofinality < κ, it suffices by (20.17), to show that cf(f(x)) < κ for almost
all x (mod U).

That will follow immediately once we show that for almost all x (mod U),

(20.18) f(x) = sup{α ∈ x : α < f(x)}.

We clearly have ≥ in (20.18). To prove ≤, consider the function h(x) =
sup{α ∈ x : α < f(x)}. For each γ < λ, γ is in almost every x and hence γ ≤
h(x) almost everywhere. Thus [h] ≥ jU (γ) for all γ < λ and so f(x) ≤ h(x)
almost everywhere. ��

Lemma 20.10. If κ is strongly compact and λ > κ is a regular cardinal,
then there exist a κ-complete nonprincipal ultrafilter D on λ and a collection
{Mα : α < λ} such that

(i) |Mα| < κ for all α < λ,
(ii) for every γ < λ, γ belongs to Mα for almost all α (mod D).

(20.19)
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(An ultrafilter D that has a family {Mα : α < λ} with property (20.19)
is called (κ, λ)-regular.)

Proof. Let D be the ultrafilter on λ constructed in Lemma 20.9. It follows
from the construction of D that [d]D = limγ→λ jD(γ). For almost all α
(mod D), there exists an Aα ⊂ α of size less than κ and cofinal in α. If
cf α ≥ κ, let Aα = ∅. Let A be the set of ordinals represented in UltD(V ) by
the function 〈Aα : α < λ〉. The set A is cofinal in the ordinal represented by
the diagonal function d; and since [d] = limγ→λ jD(γ), it follows that for each
η < λ there is η′ > η such that A ∩ {ξ : jD(η) ≤ ξ < jD(η′)} is nonempty.

We construct a sequence 〈ηγ : γ < λ〉 of ordinals < λ as follows: Let
η0 = 0 and ηγ = limδ→γ ηδ if γ is limit; let ηγ+1 be some ordinal such that
there exists ξ ∈ A such that jD(ηγ) ≤ ξ < jD(ηγ+1).

In other words, if we denote Iγ the interval {ξ : ηγ ≤ ξ < ηγ+1}, then
for every γ, the interval Iγ has nonempty intersection with almost every Aα.
Thus if we let

Mα = {γ < λ : Iγ ∩ Aα �= ∅}
for each α < λ, then {Mα : α < λ} has property (20.19)(ii). To see that
Mα has property (i) as well, notice that |Aα| < κ for all α and that since
the Iγ are mutually disjoint, each Aα intersects less than κ of them. ��

Lemma 20.11. If κ is strongly compact and λ > κ is a regular cardinal,
then there exists a collection {Mα : α < λ} ⊂ Pκ(λ) such that

(20.20) Pκ(λ) =
⋃

α<λ

P (Mα).

Consequently, λ<κ = λ.

Proof. Let {Mα : α < λ} be as in Lemma 20.10. If x is a subset of λ of
size less than κ, then by (20.19)(ii) and by κ-completeness of D, x ⊂ Mα for
almost all α. Hence x ∈ P (Mα) for some α < λ. This proves (20.20); since
κ is inaccessible, it follows that |Pκ(λ)| = λ. ��

Proof of Theorem 20.8. Let κ be a strongly compact cardinal. If λ > κ is an
arbitrary cardinal, then we have, by Lemma 20.11

λ<κ ≤ (λ+)<κ = λ+.

In particular, we have λℵ0 ≤ λ+ for every λ > κ. This implies that the
Singular Cardinal Hypothesis holds for every λ > κ. ��

Supercompact Cardinals

We proved in Lemma 20.2 that a strongly compact cardinal κ is characterized
by the property that every Pκ(A) has a fine measure. If we require the fine
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measure to satisfy a normality condition, then we obtain a stronger notion—
a supercompact cardinal. Ultrapowers by normal measures on Pκ(A) induce
elementary embeddings that can be used to derive strong consequences of su-
percompact cardinals. For instance, Theorems 20.3 and 20.4 become almost
trivial if the existence of a strongly compact cardinal is replaced by the exis-
tence of a supercompact cardinal. It is consistent to assume that a strongly
compact cardinal is not supercompact, or that every strongly compact car-
dinal is supercompact, but it is not known whether supercompact cardinals
are consistent relative to strongly compact cardinals.

Definition 20.12. A fine measure U on Pκ(A) is normal if whenever f :
Pκ(A) → A is such that f(x) ∈ x for almost all x, then f is constant on a set
in U . A cardinal κ is supercompact if for every A such that |A| ≥ κ, there
exists a normal measure on Pκ(A).

Let λ ≥ κ be a cardinal and let us consider the ultrapower UltU (V ) by
a normal measure U on Pκ(λ); let j = jU be the corresponding elementary
embedding. Clearly, a set X ⊂ Pκ(λ) belongs to U if and only if [d] ∈ j(X),
where d, the diagonal function, is the function d(x) = x.

Lemma 20.13. If U is a normal measure on Pκ(λ), then [d] = {j(γ) : γ <
λ} = j“λ, and hence for every X ⊂ Pκ(λ),

(20.21) X ∈ U if and only if j“λ ∈ j(X).

Proof. On the one hand, if γ < λ, then γ ∈ x for almost all x and hence
j(γ) ∈ [d]. On the other hand, if [f ] ∈ [d], then f(x) ∈ x for almost all x and
by normality, there is γ < λ such that [f ] = j(γ). ��

It follows from (20.21) that if f and g are functions on Pκ(λ), then

[f ] = [g] if and only if (jf)(j“λ) = (jg)(j“λ).

and
[f ] ∈ [g] if and only if (jf)(j“λ) ∈ (jg)(j“λ).

Consequently,

(20.22) [f ] = (jf)(j“λ)

for every function f on Pκ(λ).
For each x ∈ Pκ(λ), let us denote

(20.23) κx = x ∩ κ, and

λx = the order-type of x.

Note that the order-type of j“λ is λ and hence by (20.22), λ is represented
in the ultrapower by the function x �→ λx. Also, since λx < κ for all x, we
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have j(κ) > λ. By the κ-completeness of U , we have j(γ) = γ for all γ < κ;
and since κ is moved by j, it follows that j“λ ∩ j(κ) = κ and therefore κ is
represented by the function x �→ κx.

This gives the following characterization of supercompact cardinals:

Lemma 20.14. Let λ ≥ κ. A normal measure on Pκ(λ) exists if and only if
there exists an elementary embedding j : V → M such that

(i) j(γ) = γ for all γ < κ;
(ii) j(κ) > λ;
(iii) Mλ ⊂ M ; i.e., every sequence 〈aα : α < λ〉 of elements of M

is a member of M .

(20.24)

A cardinal κ is called λ-supercompact if it satisfies (20.24).

Proof. (a) Let U be a normal measure on Pκ(λ). We let M = UltU (V ) and
let j be the canonical elementary embedding j : V → Ult. We have already
proved (i) and (ii). To prove (iii), it suffices to show that whenever 〈aα :
α < λ〉 is such that aα ∈ M for all α < λ, then the set {aα : α < λ} belongs
to M . Let fα, α < λ, be functions representing elements of M : [fα] ∈ M . We
consider the function f on Pκ(λ) defined as follows: f(x) = {fα(x) : α ∈ x};
we claim that [f ] = {aα : α < λ}.

On the one hand, if α < λ, then α ∈ x for almost all x and hence [fα] ∈ [f ].
On the other hand, if [g] ∈ [f ], then for almost all x, g(x) = fα(x) for some
α ∈ x. By normality, there exists some γ < λ such that g(x) = fγ(x) for
almost all x, and hence [g] = aγ .

(b) Let j : V → M be an elementary embedding that satisfies (i), (ii),
and (iii). By (iii), the set {j(γ) : γ < λ} belongs to M and so the following
defines an ultrafilter on Pκ(λ):

(20.25) X ∈ U if and only if j“λ ∈ j(X).

A standard argument shows that U is a κ-complete ultrafilter. U is a fine
measure because for every α ∈ λ, {x : α ∈ x} is in U . Finally, U is normal: If
f(x) ∈ x for almost all x, then (jf)(j“λ) ∈ j“λ. Hence (jf)(j“λ) = j(γ) for
some γ < λ, and so f(x) = γ for almost all x. ��

We have seen several examples how large cardinals restrict the behavior of
the continuum function (e.g., if κ is measurable and 2κ > κ+, then 2α > α+

for cofinally many α < κ). This is more so for supercompact cardinals:

Lemma 20.15. If κ is λ-supercompact and 2α = α+ for every α < κ, then
2α = α+ for every α ≤ λ.

Proof. Let j : V → M witness that κ is λ-supercompact. If α ≤ λ, then
because λ < j(κ) and by elementarity, (2α)M = (α+)M . Now Mλ ⊂ M
implies that PM (α) = P (α) and so 2α ≤ (2α)M = (α+)M = α+. ��
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See Exercises 20.5–20.7 for a more general statement.

Lemma 20.16. If κ is supercompact, then there exists a normal measure D
on κ such that almost every α < κ (mod D) is measurable. In particular, κ is
the κth measurable cardinal.

Proof. Let λ = 2κ and let j : V → M witness the λ-supercompactness of κ.
Let D be defined by D = {X : κ ∈ j(X)}, and let jD : V → UltD be the
corresponding elementary embedding. Let k : UltD → M be the elementary
embedding defined in Lemma 17.4:

k([f ]D) = (jf)(κ).

Note that k(κ) = κ.
Now, P (κ) ⊂ M and every subset of M of size λ is in M ; hence every

U ⊂ P (κ) is in M and it follows that in M , κ is a measurable cardinal. Since
k is elementary and k(κ) = κ, we have UltD � κ is a measurable cardinal,
and the lemma follows. ��

In contrast to Lemma 20.16, it is consistent that the least strongly com-
pact cardinal is the least measurable. The following lemma and corollary also
show that strongly compactness and supercompactness are not equivalent.

Lemma 20.17. Let κ be a measurable cardinal such that there are κ strongly
compact cardinals below κ. Then κ is strongly compact.

Proof. Let F be a nonprincipal κ-complete ultrafilter on κ such that C ∈ F
where C = {α < κ : α is strongly compact}. Let A be such that |A| ≥ κ; we
shall show that there is a fine measure on Pκ(A).

For each α ∈ C, let Uα be a fine measure on Pα(A), and let us define
U ⊂ Pκ(A) as follows:

X ∈ U if and only if {α ∈ C : X ∩ Pα(A) ∈ Uα} ∈ F.

It is easy to verify that U is a fine measure on Pκ(A). ��

Corollary 20.18. If there exists a measurable cardinal that is a limit of
strongly compact cardinals, then the least such cardinal is strongly compact
but not supercompact.

Proof. Let κ be the least measurable limit of compact cardinals. By Lem-
ma 20.17, κ is strongly compact. Let us assume that κ is supercompact. Let
λ = 2κ and let j : V → M be an elementary embedding such that κ is the
least ordinal moved, and that Mλ ⊂ M . If α < κ is strongly compact, then
M � j(α) is strongly compact, but j(α) = α and therefore M � κ is a limit of
strongly compact cardinals. Since every U ⊂ P (κ) is in M , κ is measurable
in M and hence in M , κ is a measurable limit of strongly compact cardinals.
This is a contradiction because M thinks that j(κ) is the least measurable
limit of strongly compact cardinals. ��



20. Very Large Cardinals 377

The assumption of Corollary 20.18 holds if there are extendible cardinals
(defined in the next section). There is also a consistency proof showing that
not every strongly compact cardinal is supercompact. (And another consis-
tency proof gives a model that has exactly one strongly compact cardinal and
the cardinal is supercompact.)

The construction of a normal measure from an elementary embedding
in (20.25) yields a commutative diagram analogous to (17.3). Let j : V → M
be an elementary embedding with critical point κ such that j(κ) > λ and
Mλ ⊂ M , cf. (20.24). Let

U = {X ∈ Pκ(λ) : j“λ ∈ j(X)}

be the normal measure defined from j. Let Ult = UltU (V ), and jU : V → Ult.
For each [f ] ∈ Ult, let

(20.26) k([f ]) = (jf)(j“λ).

As in Lemma 17.4, one verifies that k : Ult → M is an elementary embedding,
and j = k ◦ jU .

We claim that

(20.27) k(α) = α for all α ≤ λ.

To prove (20.27), let α ≤ λ, and let us denote, for each x ∈ Pκ(λ),

αx = the order-type of x ∩ α

(compare with (20.23)). Since the order-type of jU“λ ∩ jU (α) is α, it follows
from (20.22) that the function f(x) = αx represents α in the ultrapower:
[f ] = (jUf)(j“λ) = the order-type of jU“λ∩ jU (α) = α. Now (20.27) follows:

k(α) = k([f ]) = (jf)(j“λ) = the order-type of j“λ ∩ j(α) = α.

Lemma 20.19.

(i) If λ ≥ κ and if κ is µ-supercompact, where µ = 2λ<κ

, then for every
X ⊂ P (Pκ(λ)) there exists a normal measure on Pκ(λ) such that X ∈
UltU (V ).

(ii) If κ is 2κ-supercompact, then for every X ⊂ P (κ) there exists a normal
measure D on κ such that X ∈ UltD(V ).

Proof. (i) Assume on the contrary that there exists some X ⊂ P (Pκ(λ)) such
that ϕ(X , κ, λ) where ϕ is the statement

(20.28) X /∈ UltU for every normal measure U on Pκ(λ).

Let j : V → M be a witness to the µ-supercompactness of κ. As Mµ = M ,
the ultrapowers by normal measures on Pκ(λ) are correctly computed in M ,
and so M � ∃X ϕ(X , κ, λ).
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Let U = {X ∈ Pκ(λ) : j“λ ∈ j(X)} and let k : UltU → M be such
that j = k ◦ jU . By (20.27), k(κ) = κ and k(λ) = λ, and since k : Ult →
M is elementary, we have Ult � ∃X ϕ(X , κ, λ). Let X ∈ Ult be such that
Ult � ϕ(X , κ, λ). By (20.27) again, k(α) = α for all α ≤ λ, and it follows
that k(X ) = X . By elementarity again, M � ϕ(k(X ), k(κ), k(λ)) and so
M � ϕ(X , κ, λ). This contradicts (20.28) because X ∈ UltU .

(ii) Similar, using (17.3). ��

Corollary 20.20.

(i) If κ is supercompact then there are 22κ

normal measures on κ.
(ii) If κ is supercompact then for every λ ≥ κ there are 22λ<κ

normal
measures on Pκ(λ).

(iii) If κ is supercompact then the Mitchell order of κ is (2κ)+ ≥ κ++.

Proof. (i) If D is a normal measure on κ and X ⊂ P (κ) is in UltD, then
X is represented by a function f on κ such that f(α) ⊂ P (α) for all α < κ.
Since the number of such functions is 2κ, it follows that UltD contains only
2κ subsets of P (κ). However, by Lemma 20.19(ii), each X ⊂ P (κ) is contained
in some ultrapower UltD where D is a normal measure on κ, and therefore
there must exist 22κ

normal measures on κ.
(ii) Similar, using Lemma 20.19(i).
(iii) There is an increasing chain of length (2κ)+ of normal measures on κ

in the Mitchell order: Given at most 2κ such measures, one can code them as
some X ⊂ P (κ). By Lemma 20.19(ii) there exists a normal measure U on κ
such that X ∈ UltU . ��

We conclude this section with the following theorem reminiscent of the
Diamond Principle.

Theorem 20.21 (Laver). Let κ be a supercompact cardinal. There exists
a function f : κ → Vκ such that for every set x and every λ ≥ κ such that λ ≥
|TC(x)| there exists a normal measure U on Pκ(λ) such that jU (f)(κ) = x.

(Such an f is called a Laver function.)

Proof. Assume that the theorem is false. For each f : κ → Vκ, let λf be the
least cardinal λf ≥ κ for which there exists an x with |TC(x)| ≤ λx such
that jU (f)(κ) �= x for every normal measure U on Pκ(λf ). Let ν be greater
than all the λf and let j : V → M be a witness to the ν-supercompactness
of κ.

Let ϕ(g, δ) be the statement that for some cardinal α, g : α → Vα and
δ is the least cardinal δ ≥ α for which there exists an x with |TC(x)| ≤ δ
such that there is no normal measure U on Pα(δ) with (jUg)(α) = x. (Let λg

denote this δ.) Since Mν ⊂ M , we have M � ϕ(f, λf ), for all f : κ → Vκ.
Let A be the set of all α < κ such that ϕ(g, λg) holds for all g : α → Vα.

Clearly, κ ∈ j(A).
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Now we define f : κ → Vκ inductively as follows. If α ∈ A, we let f(α) =
xα where xα witnesses ϕ(f�α, λf�α); otherwise, f(α) = ∅.

Let x = (jf)(κ). It follows from the construction of f that x witnesses
ϕ(f, λf ) in M , and hence in V . Let U = {X ∈ Pκ(λ) : j“λ ∈ j(X)}; we
shall reach a contradiction by showing that (jUf)(κ) = x. Let k : UltU → M
be the elementary embedding from (20.26) such that j = k ◦ jU . By (20.27),
k(x) = x, and therefore

(jUf)(κ) = k−1((jf)(κ)) = k−1(x) = x. ��

Beyond Supercompactness

Elementary embeddings can be used to define large cardinals that are stronger
than supercompact.

Definition 20.22. A cardinal κ is extendible if for every α > κ there exist
an ordinal β and an elementary embedding j : Vα → Vβ with critical point κ.

Lemma 20.23. Let λ ≥ κ be a regular cardinal and let κ be λ-supercompact.
Let α < κ. If α is γ-supercompact for all γ < κ, then α is λ-supercompact.

Proof. Let U be a normal measure on Pκ(λ), and let us consider jU : V →
UltU . Since j(α) = α, we have Ult � (α is γ-supercompact for all γ < j(κ)); in
particular, Ult � α is λ-supercompact. Hence there is D such that Ult � D is
a normal measure on Pα(λ). Now, |Pα(λ)| = λ and Ultλ ⊂ Ult, and hence
every subset of Pα(λ) is in Ult. It follows that D is a normal measure on Pα(λ).

��

Theorem 20.24.

(i) If κ is extendible, then κ is supercompact.
(ii) If κ is extendible, then there is a normal measure D on κ such that

{α < κ : α is supercompact} ∈ D.

Proof. (i) Let α > κ be a limit cardinal with the property that if Vα � (κ is
λ-supercompact for all λ), then κ is supercompact. (Such an α exists by the
Reflection Principle.) Thus it suffices to show that κ is λ-supercompact for
all regular λ < α.

Let j : Vα → Vβ be such that κ is the critical point. Consider the sequence
κ0 = κ, κ1 = j(κ), . . . , κn+1 = j(κn), . . . , as long as j(κn) is defined. First
we note that by Exercise 17.8 either there is some n such that κn < α ≤ j(κn)
or α = limn→∞ κn. Therefore, it is sufficient to prove, by induction on n, that
κ is λ-supercompact for each regular λ < κn (if λ < α).

Clearly, κ is λ-supercompact for each λ < κ1. Thus let n ≥ 1 and let
us assume that κ is λ-supercompact for all λ < κn. Applying j, we get:
Vβ � (j(κ) is λ-supercompact for all regular λ < κn+1). Now we also have
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Vβ � (κ is γ-supercompact for all γ < j(κ)) and we can apply Lemma 20.23
(in Vβ) to conclude that Vβ � (κ is λ-supercompact for all regular λ < κn+1).
This completes the induction step.

(ii) Let α be some limit ordinal greater than κ and let j : Vα → Vβ be
such that κ is the critical point. Let D = {X ⊂ κ : κ ∈ j(X)}. By (i),
κ is supercompact, and so Vβ � (κ is γ-supercompact for all γ < j(κ)).
Hence A ∈ D, where A = {α < κ : α is γ-supercompact for all γ < κ}. By
Lemma 20.23, every α ∈ A is supercompact. ��

Let us consider now the following axiom schema called Vopěnka’s Prin-
ciple (VP):

(20.29) Let C be a proper class of models of the same language. Then
there exist two members A, B of the class C such that A can be
elementarily embedded in B.

Lemma 20.25. If Vopěnka’s Principle holds, then there exists an extendible
cardinal.

Proof. Let A be the class of all limit ordinals α such that cf α = ω and that for
every κ < α, if Vα � (κ is extendible), then κ is extendible; and for κ < γ < α,
if there is an elementary embedding j : Vγ → Vδ with critical point κ, then
Vα � (there is an elementary embedding). Using the Reflection Principle, we
see that A is a proper class. Let C consist of the models (Vα+1,∈), for α ∈ A.

By Vopěnka’s Principle, there exist α, β ∈ A and an elementary embed-
ding j : Vα+1 → Vβ+1. Since j(α) = β, j moves some ordinal; its critical
point is measurable and so it is not α (which has cofinality ω). Let κ be the
critical point.

Now Vα � (κ is extendible) because for every γ < α, j�Vγ reflects to
a witness to extendibility. By definition of A, κ is extendible. ��

A similar argument shows that Vopěnka’s Principle implies existence of
arbitrarily large extendible cardinals.

Definition 20.26. A cardinal κ is huge if there exists an elementary em-
bedding j : V → M with critical point κ such that M j(κ) ⊂ M .

“Huge” is expressible in ZF: see Exercise 20.11.

Lemma 20.27. If κ is a huge cardinal, then Vopěnka’s Principle is consis-
tent : (Vκ,∈) is a model of VP.

Proof. We shall show that if C is a set of models and rank(C) = κ, then
there exist two members A, B ∈ C and an elementary embedding h : A → B.

Let j : V → M be such that κ is the least cardinal moved and that
M j(κ) ⊂ M . Since rank(C) = κ, there exists an A0 ∈ j(C) such that A0 /∈ C.
It follows that j(A0) �= A0.
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Let e0 = j�A0; it is easy to see that e0 is an elementary embedding of A0

into j(A0), and since |A0| < j(κ), we have e0 ∈ M . Hence

M � there exists an A ∈ j(C), A �= j(A0), and there
exists an elementary e : A → j(A0);

and so there exists some A ∈ C, A �= A0, and there exists an elementary
e : A → A0. Let A, e be such; clearly,

M � e is an elementary embedding of A into A0,

and because rank(A) < κ, we have A = j(A), and hence A ∈ j(C), and so

M � there exist distinct A, B ∈ j(C), and there exists
an elementary h : A → B.

It follows that there exist distinct A, B ∈ C, and an elementary embedding
h : A → B. ��

While the least huge cardinal is greater than the least measurable cardinal
(see Exercise 20.13), it is smaller than the least supercompact cardinal (if
both exist) even though the consistency of “there exists a huge cardinal” is
stronger than the consistency of “there exists a supercompact cardinal.” See
Exercise 20.12.

Finally, consider the following axiom:

(20.30) There exists a nontrivial elementary embedding j : Vλ → Vλ where
λ is a limit ordinal.

Let κ be the critical point of an elementary embedding j : Vλ → Vλ. The
necessarily λ ≥ κn for each n (where κn are as in Theorem 17.7), and it
follows from Exercise 17.8 that λ = limn→∞ κn. It is easily seen that κ is
huge (by Exercise 20.11), in fact n-huge for all n; see Exercise 20.15.

In view of Kunen’s Theorem 17.7, axiom (20.30) (and its variants) is the
strongest possible large cardinal axiom.

Extenders and Strong Cardinals

In this section we show how elementary embeddings can be analyzed using
direct limits of ultrapowers. An elementary embedding can be approximated
by a system of measures called extenders. The theory of extenders plays
a crucial role in the inner model theory. While this theory is too weak to
describe supercompactness, it is strong enough to describe a weak version of
it that is considerably stronger than measurability.

Definition 20.28. A cardinal κ is a strong cardinal if for every set x there
exists an elementary embedding j : V → M with critical point κ such that
x ∈ M .
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Clearly, every supercompact cardinal is strong. Strong cardinals have
more consistency strength than measurable cardinals, and allow some of the
techniques associated with supercompactness; see Exercises 20.16–20.19.

It follows from the theory of extenders below that “strongness” is express-
ible in ZF. As with supercompactness, one can also define local versions of
strongness: κ is λ-strong, where λ ≥ κ, if there exists some j : V → M with
critical point κ such that j(κ) > λ and Vλ ⊂ M . A cardinal κ is strong if and
only if it is λ-strong for all λ ≥ κ.

Let j : V → M be an elementary embedding with critical point κ and let
κ ≤ λ ≤ j(κ). We shall define the (κ, λ)-extender derived from j.

For every finite subset a ⊂ λ, let Ea be the measure on [κ]<ω defined as
follows:

(20.31) X ∈ Ea if and only if a ∈ j(X);

note that Ea concentrates on [κ]|a|. The (κ, λ)-extender derived from j is the
collection

(20.32) E = {Ea : a ∈ [λ]<ω};

κ is the critical point of E and λ is the length of the extender.
Let a ∈ [λ]<ω. The measure Ea on [κ]<ω is κ-complete; let UltEa denote

the ultrapower of V by Ea and let ja : V → UltEa be the corresponding ele-
mentary embedding. If for each equivalence class [f ] of a function f on [κ]<ω

we let

(20.33) ka([f ]) = j(f)(a),

then ka is an elementary embedding ka : UltEa → M and ka ◦ ja = j.
The measures Ea, a ∈ [λ]<ω , are coherent, in the following sense: Let

a ⊂ b, where b = {α1, . . . , αn} with α1 < . . . < αn. Then πb,a : [λ]|b| → [λ]|a|

is defined by

(20.34) πb,a({ξ1, . . . , ξn}) = {ξi1 , . . . , ξim}, (ξ1 < . . . < ξn)

where a = {αi1 , . . . , αim}, and

(20.35) X ∈ Ea if and only if {s : πb,a(s) ∈ X} ∈ Eb.

(Compare with Lemma 19.12.)
It follows that ia,b : UltEa → UltEb

defined by

ia,b([f ]Ea) = [f ◦ πb,a]Eb

is an elementary embedding, and

(20.36) {UltEa , ia,b : a ⊂ b ∈ [λ]<ω}

is a directed system. The direct limit UltE of (20.36) is well-founded: Note
that the embeddings ka have a direct limit k : UltE → M such that k◦jE = j
where jE is the elementary embedding jE : V → UltE .
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There is another description of the direct limit UltE : The elements of UltE

are equivalence classes [a, f ]E where a ∈ [λ]<ω and f : [κ]|a| → V . Here
(a, f) and (b, g) are equivalent if {s ∈ [κ]|a∪b| : f̃(s) = g̃(s)} ∈ Ea∪b, where
f̃ = f ◦πa∪b,a and g̃ = g ◦πa∪b,b. The embedding jE : V → UltE is defined by
jE(x) = [∅, cx] where cx is the constant function with value x. The embedding
k : UltE → M is defined by

(20.37) k([a, f ]) = j(f)(a).

Now k ◦ jE = j follows.

Lemma 20.29.

(i) k(α) = α for all α < λ.
(ii) jE has critical point κ and jE(κ) ≥ λ.
(iii) UltE = {jE(f)(a) : a ∈ [λ]<ω , f : [κ]<ω → V }.

Proof. For each a ∈ [λ]<ω , let ja,∞ : UltEa → UltE be the direct limit
embedding such that ja,∞ ◦ ja = jE ; then k ◦ ja,∞ = ka. If x ∈ UltE then
x = ja,∞([f ]) for some [f ] ∈ UltEa , and

k(x) = k(ja,∞([f ])) = ka([f ]) = j(f)(a)

(see also (20.37)). Hence

(20.38) k“ UltE = {j(f)(a) : a ∈ [λ]<ω , f ∈ [κ]<ω → V }.

(i) By letting f be the identity function, we get from (20.38) that a ∈
k“ UltE , for each a ∈ [λ]<ω. Hence λ ⊂ k“ UltE , and therefore k(α) = α for
all α < λ.

(ii) This follows from (i), because j = k ◦ jE .
(iii) Since k(a) = a for every a ∈ [λ]<ω, it follows from (20.38) that for

every x ∈ UltE , k(x) = j(f)(a) = k(jE(f))(k(a)) = k(jE(f)(a)) for some a
and f , and hence x = jE(f)(a). ��

Hence jE is an elementary embedding, jE : V → UltE , with critical
point κ. Since j = k ◦ jE and since k(a) = a for all a ∈ [λ]<ω, it follows that
for all X ∈ [κ]|a|, a ∈ jE(X) if and only if a ∈ j(X). Hence E is the extender
derived from jE .

Extenders can be defined directly, without reference to an embedding j.
The following, somewhat technical, properties guarantee that the (κ, λ)-
extender is derived from the direct limit embedding jE : Let κ ≤ λ, and
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let E = {Ea : a ∈ [λ]<ω}. E is a (κ, λ)-extender if

(i) Each Ea is a κ-complete measure on [κ]|a|, and
(a) at least one Ea is not κ+-complete,
(b) for each α ∈ κ, at least one Ea contains the set {s ∈ [κ]|a| :

α ∈ s}.
(ii) (Coherence) The Ea’s are coherent, i.e., satisfy (20.35).
(iii) (Normality) If {s ∈ [κ]|a| : f(s) ∈ max s} ∈ Ea, then for some

b ⊃ a, {t ∈ [κ]|b| : (f ◦ πb,a)(t) ∈ t} ∈ Eb.
(iv) The limit ultrapower UltE is well-founded.

(20.39)

We leave out the verification that the extender derived from some j satis-
fies (20.39), and that the properties (20.39) suffice to prove (ii) and (iii) of
Lemma 20.29, and that E is derived from jE .

An immediate consequence of the above technique is the following char-
acterization of strong cardinals:

Lemma 20.30. A cardinal κ is strong if and only if for every λ ≥ κ there
is a (κ, |Vλ|+)-extender E such that Vλ ⊂ UltE and λ < jE(κ). ��

Hence “strongness” is expressible in ZFC.
We conclude by introducing a large cardinal property that was isolated

by Woodin and that has played a central role in the study of determinacy
and inner models:

Definition 20.31. A cardinal δ is a Woodin cardinal if for all A ⊂ Vδ there
are arbitrarily large κ < δ such that for all λ < δ there exists an elementary
embedding j : V → M with critical point κ, such that j(κ) > λ, Vλ ⊂ M ,
and A ∩ Vλ = j(A) ∩ Vλ.

Being a Woodin cardinal is expressible in ZFC, in terms of extenders. Ev-
ery supercompact cardinal is Woodin, and below a Woodin cardinal δ, there
are δ cardinals that are λ-strong for every λ < δ. While Woodin cardinals are
inaccessible (and Mahlo), the least Woodin cardinal is not weakly compact,
as δ being Woodin is a Π1

1 property of (Vδ,∈).

Exercises

20.1. If κ is strongly compact then Lκ,κ satisfies the Compactness Theorem.
[Verify �Loś’s Theorem]

20.2. If κ is strongly compact, λ ≥ κ, and A ⊂ λ, then λ+ is an ineffable cardinal
in L[A].

[Let U be as in Theorem 20.3, let M = UltU (L[A]), N = Ult−U (L[A]), let
j : L[A] → M , i : L[A] → N , and let k : N → M be as there. Again, M = N , and
i(λ+) is the least ordinal moved. By Lemma 17.32, N thinks that i(λ+) is ineffable;
hence λ+ is ineffable in L[A].]
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20.3. The following are equivalent, for κ ≤ λ:

(i) There is a fine measure on Pκ(λ).
(ii) For any set S, every κ-complete filter on S generated by at most λ sets can

be extended to a κ-complete ultrafilter on S.

20.4. If U is a normal measure on Pκ(λ), then every closed unbounded subset
of Pκ(λ) is in U .

[If C ⊂ Pκ(λ) is closed unbounded, then D = {j(x) : x ∈ C} is a directed subset
of j(C) and |D| = λ<κ < j(κ). Hence

S

D ∈ j(C), and since
S

D = {j(γ) : γ < λ},
we have C ∈ U .]

20.5. Let λ ≥ κ and let U be a normal measure on Pκ(λ). The ultraproduct
UltU{(Vλx ,∈) : x ∈ Pκ(λ)} is isomorphic to (Vλ,∈).

20.6. If κ is inaccessible then Vκ ≺Σ1 V .

20.7. If κ is supercompact then Vκ ≺Σ2 V .
[Let x ∈ Vκ such that ∃y ϕ(x, y) where ϕ is Π1. Let j : V → M be such that

y ∈M ∩ Vj(κ). In M , Vj(κ) � ∃y ϕ(x, y), hence Vκ � ∃y ϕ(x, y).]

Let κ be supercompact and let λ ≥ κ be a cardinal. A normal measure D
on Pκ(λ) is strongly normal if there exists X ∈ D such that for every function f
on X, if for each nonempty x ∈ X, f(x) is in X, f(x) ⊂ x and f(x) �= x, then f is
constant on some Y ∈ D.

20.8. The following are equivalent:

(i) D is strongly normal.
(ii) There is X ∈ D such that if {Zx : x ∈ X} ⊂ D, then �x∈X Zx ∈ D where

�x∈X Zx = {y : y ∈ Zx for each x ⊂ y such that x �= y and x ∈ X}.
(iii) D has this partition property: If F : [Pκ(λ)]2 → {0, 1} is a partition, then

there is X ∈ D such that F is constant on {{x, y} ∈ [X]2 : x � y or y � x}.
(iv) There is X ∈ D such that if x, y ∈ X, x �= y and x ⊂ y, then λx < κy .

[(i)→ (ii): Let X ∈ D be a witness to strong normality. Prove by contradiction
that D is closed under �x∈X Zx.

(ii) → (iii): Let F : [Pκ(λ)]2 → {0, 1}; for each x, let Fx : x̂ → {0, 1} be
Fx(y) = F (x, y). For each x there is Zx ⊂ x̂, Zx ∈ D, such that Fx is constant
on Zx. Let X ∈ D be as in (ii) and such that the constant value of Fx is the same
for all x ∈ X. Then X ∩�x∈X Zx is homogeneous for F in the sense of (iii).

(iii)→ (iv): Note that if X ∈ D, then there exist x, y ∈ X such that x � y and
λx < κy .

(iv) → (i): Let X ∈ D be as in (iv) and let f : X → X be such that f(x) ⊂ x
and f(x) �= x for all x. In UltD, if x ∈ jD(X) and x ⊂ j“λ, then |x| < j“λ ∩ κ = κ
and hence x = j(y) for some y ∈ Pκ(λ). Hence (jf)(j“λ) = j(y) for some y and so
f(x) = y for almost all x.]

It has been proved that if κ is supercompact, then every Pκ(λ) has a strongly
normal measure; however, not every normal measure is necessarily strongly normal:

20.9. If λ > κ is measurable, then there is a normal measure U on Pκ(λ) that is
not strongly normal.

[Let j : V → M be elementary, κ least moved, j(κ) > λ, and Mλ ⊂ M . Let D
be a normal measure on λ. Let us define a normal measure U on Pκ(λ) as follows:
X ∈ U if and only if {α < λ : j“α ∈ j(X)} ∈ D. If X ∈ U , then there exist α < β
such that j“α and j“β are in j(X); hence M � ∃x, y ∈ j(X) such that x is an
initial segment of y. Thus ∃x, y ∈ X such that x is an initial segment of y, and so
λx ≥ κy .]
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20.10. If κ is extendible then Vκ ≺Σ3 V .
[Use Exercise 20.7, and show that there are arbitrarily large inaccessible λ > κ

such that Vκ ≺ Vλ.]

20.11. A cardinal κ is huge, with j : V → M and j(κ) = λ if and only if there is
a normal κ-complete ultrafilter U on {X ⊂ λ : order-type(X) = κ}.

[X ∈ U if and only if j“λ ∈ j(X).]

20.12. Let κ be the least huge cardinal and let µ be the least supercompact car-
dinal. Then κ < µ.

[If κ = µ then by 20.27, 20.25, 20.24, and 20.23 we get: Vµ � VP, Vµ � (∃ super-
compact α), there is a supercompact α < µ, a contradiction. If κ < µ, let j : V →M

with λ = j(κ) and Mλ ⊂ M . Since µ is supercompact, let i : V → N be such that
i(µ) > λ and Vλ+2 ⊂ N . If U is a normal measure witnessing the hugeness of κ,
then U ∈ N , and hence N � (∃ huge cardinal below i(µ)). Thus there exists a huge
cardinal below µ, a contradiction.]

20.13. The least huge cardinal is greater than the least measurable cardinal.
[Show that M � κ is measurable; hence there exists a measurable cardinal less

than κ.]

A cardinal κ is n-huge if there exists an elementary j : V → M with critical

point κ such that M jn(κ) ⊂M .

20.14. If κ is (n + 1)-huge then there is a normal measure D on κ such that
{α < κ : α is n-huge} ∈ D.

20.15. If there exists an elementary j : Vλ → Vλ with critical point κ then κ is
n-huge for every n.

20.16. If there is a strong cardinal, then V �= L[A] for any set A.

20.17. If κ is strong then o(κ) = (2κ)+.
[As in Corollary 20.20(iii).]

20.18. If κ is strong then Vκ ≺Σ2 V .
[As in Exercise 20.7.]

20.19. If κ is strong, then there exists a function g : κ→ Vκ such that for every x
and every λ ≥ κ such that λ ≥ |TC(x)| there exists a (κ, λ)-extender E such that
jE(g)(κ) = x.

20.20. A (κ, λ)-extender {Ea : a ∈ [λ]<ω} has well-founded limit ultrapower if
and only if for every 〈am : m ∈ ω〉 and every sequence 〈Xm : m ∈ ω〉 such that
Xm ∈ Eam , there exists a function h :

S

m∈ω am → κ such that h“am ∈ Xm for
all m.

Historical Notes

Strongly compact cardinals were introduced by Keisler and Tarski in [1963/64];
supercompact cardinals were defined by Reinhardt and Solovay. Theorem 20.3 is
due to Vopěnka and Hrbáček [1966]; Theorem 20.4 is due to Kunen [1971b].
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Solovay discovered that the Singular Cardinal Hypothesis holds above a compact
cardinal (Theorem 20.8); see [1974].

Menas and Magidor obtained several results on the relative strength of compact
and supercompact cardinals. Menas in [1974/75] showed that it is consistent (rela-
tive to existence of compact cardinals) that there is a compact cardinal that is not
supercompact. Magidor in [1976] improved Menas’ result by showing that it is pos-
sible that the least measurable cardinal is strongly compact (while by Lemma 20.16
it is not supercompact) and also showed that it is consistent (relative to supercom-
pact cardinals) that there exists just one compact cardinal and is supercompact.

Kunen’s proof of Theorem 20.4 uses a lemma of Ketonen (Lemma 20.5); Lemmas
20.9 and 20.10 which Solovay used in his proof of Theorem 20.8, are also due to
Ketonen; see [1972/73].

Most results on supercompact cardinals (e.g., Lemmas 20.16 and 20.19) are due
to Solovay; see Solovay, Reinhardt, and Kanamori [1978]; Magidor’s paper [1971a]
gives a number of normal measures on Pκ(λ) (Corollary 20.20(ii)). The example of
a strongly compact nonsupercompact cardinal (Lemma 20.17 and Corollary 20.18)
is due to Menas [1974/75]. Theorem 20.21 is due to Laver [1978].

Extendible cardinals were introduced by Reinhardt; he proved that extendible
cardinals are supercompact; see [1974]. The present proof of Theorem 20.24, as well
as Lemmas 20.23 and 20.25 are due to Magidor [1971b].

Lemma 20.27: Powell [1972].
A good source for further results on very large cardinals is the paper [1978] of

Kanamori and Magidor, as well as Kanamori’s book [1994].
Strong cardinals were used by Mitchell [1979a] to develop a theory of inner mod-

els for weak versions of supercompactness, and further studied by Baldwin [1986].
Extenders were introduced by Jensen and Dodd; see Dodd [1982].

Woodin cardinals were introduced by Woodin in 1984. They were used, among
others, in the proof of projective determinacy by Martin and Steel [1989].

Exercises 20.7, 20.10, 20.11, 20.14, and 20.15: Solovay, Reinhardt and Kanamori
[1978].

Exercise 20.9: Solovay.
Exercise 20.12: Morgenstern [1977].
Exercise 20.19: Gitik and Shelah [1989].


