
22. Saturated Ideals

One of the key concepts in the theory of large cardinals is saturation of ideals.
In this chapter we investigate σ-saturated, κ-saturated and κ+-saturated κ-
complete ideals on κ.

Let κ be a regular uncountable cardinal. Let I be a κ-complete ideal on κ
containing all singletons; thus X ∈ I whenever X ⊂ κ is such that |X | < κ.
We shall be using the following terminology: X has measure zero if X ∈ I,
measure one if κ − X ∈ I, and positive measure if X /∈ I; the phrase almost
all α means that the set of all contrary α’s has measure 0.

Let us consider the Boolean algebra B = P (κ)/I. Recall that if λ is
a cardinal, then B is called λ-saturated if every pairwise disjoint family of
elements of B has size less than λ; sat(B) is the least λ such that B is
λ-saturated. Let us say that I is λ-saturated if B is λ-saturated and let

sat(I) = sat(B).

In other words, I is λ-saturated just in case there exists no collection W of
size λ of subsets of κ such that X /∈ I for all X ∈ W and X ∩Y ∈ I whenever
X and Y are distinct members of W . If sat(I) is finite, then κ is the union
of finitely many atoms of I; if sat(I) is infinite, then it is uncountable and
regular, by Theorem 7.15. If λ ≤ κ, then I is λ-saturated if and only if there
is no disjoint collection W of size λ of subsets X of κ such that X /∈ I (see
Exercise 22.1). Clearly, every I on κ is (2κ)+-saturated. Thus if I is atomless,
then sat(I) is a regular cardinal and

ℵ1 ≤ sat(I) ≤ (2κ)+.

Since I is κ-complete, it follows that B = P (κ)/I is a κ-complete Boolean
algebra.

Real-Valued Measurable Cardinals

By Ulam’s Theorem 10.1, if there exists a nontrivial σ-additive measure then
either there exists a measurable cardinal or there exists a real-valued mea-
surable cardinal.

In this section we prove the following theorems:
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Theorem 22.1 (Solovay).

(i) If κ is a real-valued measurable cardinal, then there is a transitive
model of set theory in which κ is measurable.

(ii) If κ is a measurable cardinal, then there exists a generic extension in
which κ = 2ℵ0 and κ is real-valued measurable.

Theorem 22.2 (Prikry). If 2ℵ0 is real-valued measurable, then 2λ = 2ℵ0

for all infinite λ < 2ℵ0 .

If µ is a κ-additive real-valued measure on κ, then the ideal Iµ of all sets
of measure 0 is a σ-saturated κ-complete ideal on κ. We have proved that if
an uncountable cardinal κ carries a σ-saturated κ-complete ideal, then κ is
weakly inaccessible.

We shall prove Theorem 22.1(i) and Theorem 22.2 for this generalization
of real-valued measurability, namely under the assumption that κ is uncount-
able and carries a σ-saturated κ-complete ideal. Thus let κ be an uncountable
cardinal and let I be a σ-saturated κ-complete ideal. Thus let κ be an un-
countable cardinal and let I be a σ-saturated κ-complete ideal on κ.

Let us call A ⊂ κ an atom if A has positive measure and is not the union
of two disjoint sets of positive measure. I is atomless if it has no atoms. What
we proved in Lemma 10.9(ii) can be formulated as follows: If I is atomless,
then κ ≤ 2ℵ0 . It follows that if 2ℵ0 < κ, then every set X of positive measure
contains an atom A ⊂ X , and hence there exists an at most countable disjoint
collection W of atoms such that κ =

⋃
{A : A ∈ W}.

We start with the following analog of Theorem 10.20. We recall that a κ-
complete ideal on κ is normal if every function f : S → κ regressive on a set
S ⊂ κ of positive measure is constant on some T ⊂ S of positive measure.
A real-valued measure µ is normal if Iµ is normal.

Lemma 22.3.

(i) If I is a σ-saturated κ-complete ideal on an uncountable cardinal κ,
then there exists a function f : κ → κ such that

J = f∗(I) = {X ⊂ κ : f−1(X) ∈ I}

is a normal σ-saturated κ-complete ideal on κ.
(ii) If µ is a κ-additive real-valued measure on κ, then there exists a func-

tion f : κ → κ such that ν = f∗(µ) defined by

ν(X) = µ(f−1(X)) (X ⊂ κ)

is a normal κ-additive real-valued measure on κ.

Proof. We shall prove (i) and leave the completely analogous proof of (ii) to
the reader. Let us say that a function g : S → κ is unbounded on a set S of
positive measure if there is no γ < κ and no T ⊂ S of positive measure such
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that g(α) < γ for all γ ∈ T . Let us consider the family F of all functions g
into κ defined on a set of positive measure and unbounded on its domain.
Let us define g < h if dom(g) ⊂ dom(h) and if g(α) ≤ h(α) everywhere on
dom(g). Let us also define g ≤ h if dom(g) ⊂ dom(h) and if g(α) ≤ h(α)
everywhere on dom(g). Let us call g ∈ F minimal if there is no h ∈ F such
that h < g.

We shall first show that there exists a minimal g ∈ F . Otherwise, for
every g ∈ F there is h ∈ F such that h < g. Thus let g ∈ F be arbitrary.
Let W be a maximal collection of elements of F such that h < g for each
h ∈ W , and that dom(h1) ∩ dom(h2) = ∅ whenever h1 and h2 are distinct
elements of W . Since I is σ-saturated, W is at most countable and by our
assumption, the set dom(g) −

⋃
{dom(h) : h ∈ W} has measure zero. Thus

if we let f =
⋃
{h : h ∈ W}, we have dom(g) − dom(f) ∈ I, and f < g.

Since g was arbitrary, we can construct a countable sequence g0 > g1 > . . . >
gn > . . . such that dom(gn) − dom(gn+1) ∈ I for each n. It follows that⋂∞

n=0 dom(gn) has positive measure and we get a contradiction since for any
α ∈

⋂∞
n=0 dom(gn) we would have g0(α) > g1(α) > . . ..

The same argument shows that for every h ∈ F there exists a minimal
g ∈ F such that g ≤ h. Thus if W is a maximal family of minimal functions
g ∈ F such that dom(g1) ∩ dom(g2) = ∅ whenever g1 and g2 are distinct
elements of W , W is at most countable and

⋃
{dom(g) : g ∈ W} has measure

one. Thus if we let f =
⋃
{g : g ∈ W}, then dom(f) has measure one and

f is a least unbounded function: On the one hand, if γ < κ, then there is no
S ⊂ κ of positive measure such that f(α) < γ everywhere on S; on the other
hand, if S is a set of positive measure and g is a function on S such that
g(α) < f(α) everywhere on S, then g is constant on some T ⊂ S of positive
measure. We can clearly assume that dom(f) = κ.

Let f : κ → κ be a least unbounded function; we shall show that J =
f∗(I) is a normal σ-saturated κ-complete ideal on κ. It is obvious that J is
a κ-complete ideal. For every γ ∈ κ, f−1({γ}) has measure zero and hence
{γ} ∈ J . If X /∈ J , then f−1(X) /∈ I, and if X ∩ Y = ∅, then f−1(X) ∩
f−1(Y ) = ∅, and hence J is σ-saturated because I is σ-saturated.

To show that J is normal, let S /∈ I, and let g(α) < α for all α ∈ S. Then
g(f(ξ)) < f(ξ) for all ξ ∈ f−1(S) and since f is a least unbounded function,
g(f(ξ)) is constant on some X ⊂ f−1(S) of positive I-measure. Hence g is
constant on f(X) and f(X) /∈ J . ��

Lemma 22.4. Let I be a normal σ-saturated κ-complete ideal on κ. If S is
a set of positive measure and f : S → κ is regressive on S, then f is bounded
almost everywhere on S; that is, there exists γ < κ such that {α ∈ S :
f(α) ≥ γ} ∈ I.

Proof. For every X ⊂ S of positive measure there exists Y ⊂ X of positive
measure such that f is constant on Y . Thus let W be a maximal disjoint
family of sets X ⊂ S of positive measure such that f is constant on X . Let
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T =
⋃
{X : X ∈ W}. The family W is at most countable and hence there

is γ such that f(α) < γ for all α ∈ T . Clearly, S − T has measure 0. ��

Corollary 22.5. If κ is real-valued measurable (or if κ carries a σ-saturated
κ-complete ideal), then κ is a weakly Mahlo cardinal.

Proof. Let I be a normal σ-saturated κ-complete ideal on κ. Since I is normal,
every closed unbounded set has I-measure one (see Lemma 8.11). Because
κ is weakly inaccessible, it suffices to show that the set of all regular cardinals
α < κ has measure one.

Let us assume that the set S of all limit ordinals α < κ such that cf α < α
has positive measure. Considering the regressive function α �→ cf α, we find
a set T of positive measure and some λ < κ such that cf α = λ for all α ∈ T .
For each α ∈ T , let 〈αν : ν < λ〉 be an increasing λ-sequence with limit α.

For each ν < λ, the function α �→ αν is regressive on T and so, by
Lemma 22.4 there is γν such that αν < γν for almost all α ∈ T . Let γ =
sup{γν : ν < λ}. Since λ < κ, we conclude, by κ-completeness of I, that for
almost all α ∈ T , αν < γ of all ν < λ. But this means that for almost all
α ∈ T , α = limν αν ≤ γ. This is a contradiction since T is unbounded. ��

Since every closed unbounded set has measure one (if I is a normal σ-
saturated κ-complete ideal on κ), every set of positive measure is stationary.
It can even be proved that if S has positive measure, then S ∩α is stationary
in α for almost all α. Then it follows that κ is the κth weakly Mahlo cardinal,
κth cardinal which is a limit of weakly Mahlo cardinals, etc. We shall return
to this subject later in this chapter.

We shall now show that every real-valued measurable cardinal is a Row-
bottom cardinal; we shall show that the statement of Lemma 17.36 for
a measurable cardinal holds under the weaker assumption that κ carries a σ-
saturated κ-complete ideal.

Lemma 22.6. Let I be a normal σ-saturated κ-complete ideal on κ, and let λ
be an infinite cardinal less than κ. Let A = (A, . . .) be a model of a language L
such that |L| ≤ λ, and let A ⊃ κ. If P ⊂ A is such that |P | < κ, then A has
an elementary submodel B = (B, . . .) such that B ∩ κ has measure one and
|P ∩ B| ≤ λ. Moreover, if X ⊂ A has size at most λ, then we can find B
such that X ⊂ B.

The proof of Lemma 22.6 uses Skolem functions and arguments similar to
those in Theorem 17.27 and Lemma 17.36. The key ingredient is the following
lemma:

Lemma 22.7. Let I be a normal σ-saturated κ-complete ideal on κ, let γ < κ
and let f : [κ]<ω → γ be a partition. Then there exists H ⊂ κ of measure one
such that the image of [H ]<ω under f is at most countable.
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Proof. We proceed as in the proof of Theorem 10.22. It suffices to show that
for each n = 1, 2, . . . there is Hn of measure one such that f([H ]n) is at
most countable; then we take H =

⋂∞
n=1 Hn.

We prove, by induction on n, that for every partition of [κ]n into less
than κ pieces there is H ⊂ κ of measure one such that f([H ]n) is at most
countable. For n = 1, let f : κ → γ and γ < κ; let W be a maximal
pairwise disjoint family of subsets X ⊂ κ such that X has positive measure
and f is constant on X . Let H =

⋃
{X : X ∈ W}. Since |W | ≤ ℵ0, we have

|f(H)| ≤ ℵ0, and since γ < κ and I is κ-complete, we clearly have κ−H ∈ I.
Let us assume that the assertion is true for n and let us prove that it

holds also for n + 1. Let f : [κ]n+1 → γ where γ < κ. For each α < κ, we
define fα on [κ − {α}]n by fα(x) = f({α} ∪ x). By the induction hypothesis,
there exists for each α < κ a set Xα of measure one such that fα([Xα]n) is
at most countable; let Aα be the image of [Xα]n under fα. Let X be the
diagonal intersection

X = {α < κ : α ∈
⋂

ξ<α

Xξ}

The set X has measure one since I is normal; also if α < α1 < . . . <
αn are in X , then {α1, . . . , αn} ∈ [Xα]n and so f({α, α1, . . . , αn}) =
fα({α1, . . . , αn}) ∈ Aα.

For each α ∈ X , let Aα = {aα,n : n < ω}. For each n, consider the
function gn : X → γ defined by gn(α) = aα,n. There exists a set Hn ⊂ X of
measure one such that gn(Hn) is at most countable. Thus let H =

⋂∞
n=0 Hn;

the set H has measure one, and moreover
⋃
{Aα : α ∈ H} =

⋃∞
n=0 gn(H) is

at most countable. It follows that f([H ]n+1) is at most countable. ��

We can now proceed as in Theorem 19.3 and prove that if I is a normal
σ-saturated κ-complete ideal on κ and V = L[I], then GCH holds. In fact,
if D denotes the filter dual to I, that is, the filter of all sets of I-measure
one, then the proof of Theorem 19.3 goes through in the present context (use
P = {Y ⊂ λ : Y ≤L[D] X}).

Now we recall the results of Chapter 18: If κ carries a σ-saturated κ-
complete ideal then either κ ≤ 2ℵ0 or κ is measurable. Thus we conclude:
If I is a normal σ-saturated κ-complete ideal on κ and V = L[I], then κ is
measurable.

Proof of Theorem 22.1(i). Let κ be real-valued measurable. Then there is
a normal κ-additive measure µ on κ by Lemma 22.3. Let I be the ideal of
sets of measure zero. I is a normal σ-saturated κ-complete ideal on κ. Let
J = I ∩ L[I]. We have L[J ] = L[I], and in L[I], J is a normal ℵ1-saturated
κ-complete ideal on κ. (If we could assume that ℵL[I]

1 = ℵ1, it would now
follow that κ is a measurable cardinal in L[I].)

Since we are not able to show directly that if I is σ-saturated, then I ∩ L[I]
is σ-saturated in L[I], let us consider a somewhat more general situation.
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Let ν be a regular uncountable cardinal less than κ, and let us consider
ν-saturated κ-complete ideals on κ.

Lemmas 22.3 and 22.4 hold again; in Lemma 22.7 we have to replace “at
most countable” by “of size less than ν.” Lemma 22.6 holds for all λ ≥ ν and
the analog of Theorem 19.3 is: If V = L[I] and I is normal, then 2<ν = ν
and 2λ = λ+ for all λ ≥ ν.

Lemma 10.9 can also be generalized, and we get: If I is atomless, then
κ ≤ 2<ν . Hence if V = L[I], every set of positive measure contains a subset
that is an atom, and therefore κ is the union of a disjoint family W of atoms
such that |W | < ν.

Lemma 22.8. Let ν < κ be a regular uncountable cardinal, and let I be
a normal ν-saturated κ-complete ideal on κ; let F be the dual filter. Then
in L[F ], F ∩ L[F ] is a normal measure on κ (and L[F ] is the model L[D] of
Chapter 19 ).

Proof. It is easy to verify that L[F ] = L[I], and that in L[F ], I ∩ L[I] is
a normal ν-saturated κ-complete ideal on κ. Thus we may assume that V =
L[F ]; we want to show that F is an ultrafilter.

We know that κ is the union of a disjoint family W of atoms. (What we
want to show is that W has only one element.) For A ∈ W , let

FA = {X ⊂ κ : X ∩ A has positive measure}.

Since A is an atom, FA is a filter, and FA is in fact a normal measure on κ.
Hence FA ∩ L[FA] is the unique normal measure D in L[FA], and L[FA] is
the model L[D].

We shall now show that F ∩L[D] = D. Let X ∈ L[D] be a subset of κ. If
X ∈ F , then X ∈ FA for all A ∈ W and hence X ∈ FA∩L[FA] = D. If X /∈ F ,
then there is A ∈ W such that X /∈ FA and hence X /∈ FA ∩ L[FA] = D. It
follows that F ∩ L[D] = D and so F ∩ L[D] ∈ L[D].

Consequently, L[F ] = L[D]; since we assumed that V = L[F ] and because
F ∩ L[D] = D, we have F = D. ��

Proof of Theorem 22.1(ii). Let κ be a measurable cardinal, and let λ ≥ κ be
a cardinal such that λℵ0 = λ. We shall construct a generic extension in which
2ℵ0 = λ and κ is real-valued measurable.

Let F be a σ-algebra of sets and let µ be a measure on F . Let I ⊂ F be the
ideal of sets of measure 0 and let us consider the Boolean algebra B = F/I.
That is, the members of B are equivalence classes [X ] where X ∈ F and
where X ≡ Y if and only if µ(X 
 Y ) = 0.

Since both F and I are countably complete, it follows that B is countably
saturated and

∑∞
n=0[Xn] = [

⋃∞
n=0 Xn]. Since µ is a measure, I is countably

saturated and so B satisfies the countable chain condition. Now a Boolean
algebra that is both σ-complete and σ-saturated is complete, and so B is
a complete Boolean algebra.
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For [X ] ∈ B, let us define m([X ]) = µ(X). Clearly, the definition of m
does not depend on the particular choice of X , and furthermore, m has the
following properties:

(i) m is a real-valued function on B;
(ii) m(0) = 0, m(a) > 0 if a �= 0, and m(1) = 1;
(iii) if a ≤ b, then m(a) ≤ m(b);
(iv) if an, n = 0, 1, . . . , are pairwise disjoint, then

m
( ∞∑

n=0
an

)
=

∞∑
n=0

m(an).

(22.1)

A Boolean algebra B with a measure m (satisfying (22.1)) is called a measure
algebra; a set S with a field of sets F and a measure µ on F is called a measure
space.

We need from measure theory the following basic fact about products of
measure spaces. Let I be a set (of indices), and for each i ∈ I let (Si,Fi, µi)
be a measure space. Let us consider the product S =

∏
i∈I Si, and let us

consider the following σ-algebra of subsets of S: Let E be a finite subset of I,
and for each i ∈ E, let Zi ∈ Fi. Let Z ⊂ S be as follows: If t ∈

∏
i∈I Si, then

(22.2) t ∈ Z if and only if t(i) ∈ Zi for all i ∈ E.

Let F be the least σ-algebra of subsets of S such that F contains every Z ⊂ S
of the form (22.2), for any finite E ⊂ I and any Zi ∈ Fi, i ∈ E.

There exists a unique measure µ on F (the product measure) such that
for every Z of the form (22.2), µ(Z) is the product of µi(Zi), i ∈ E. (In case
of the product S = S1 ×S2, the measure of a “rectangle” Z1 ×Z2 is equal to
µ(Z1) · µ(Z2).)

We shall use the following simple example of a product measure space (cf.
Example 15.31). Let I be an infinite set, and for each i ∈ I let us consider
the space {0, 1} of two elements. We give measure 1/2 to both {0} and {1}:

(22.3) Si = {0, 1}, Fi = P (Si),

µi({0}) = µi({1}) = 1/2, µi(∅) = 0, µi({0, 1}) = 1.

Let S =
∏

i∈I Si, and let µ be the product measure on F , the least σ-algebra
of subsets of S containing the sets {t ∈ {0, 1}I : t(i) = 0} for all i ∈ I.

Let M be a transitive model of ZFC (the ground model). In M let λ be
an infinite cardinal such that λℵ0 = λ. Let (S,F , µ) be the product measure
space {0, 1}I defined above, where I = λ × ω. Let B be the corresponding
measure algebra F/the ideal of sets of measure 0.

Let G be an M -generic ultrafilter on B. Since B satisfies the countable
chain condition, the generic extension M [G] preserves cardinals. We shall
show that in M [G], 2ℵ0 = λ.
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On the one hand, an easy computation gives |F| = λ (because λℵ0 = λ)
and since B satisfies the c.c.c., we get |B| = λ. Therefore

(2ℵ0)M [G] ≤ (|B|ℵ0)M = λ

and we have (2ℵ0)M [G] ≤ λ.
On the other hand, we shall exhibit λ distinct subsets of ω in M [G]. For

each α < λ and each n < ω, let uα,n = [Uα,n], where Uα,n is as follows:

(22.4) Uα,n = {t ∈ {0, 1}λ×ω : t(α, n) = 1}.

For α < λ, let ẋα be the B-valued subset of ω such that

(22.5) ‖n ∈ ẋα‖ = uα,n (n < ω).

Let xα be the G-interpretation of ẋα.
We shall show that xα �= xβ whenever α �= β, and in fact that

‖ẋα = ẋβ‖ = 0. Let k be any natural number. Then

‖ẋα ∩ k = ẋβ ∩ k‖ = [Nα,β,k],

where
Nα,β,k = {t : t(α, n) = t(β, n) for all n < k}.

It is easy to verify that for each k, µ(Nα,β,k) = 1/2k. But ‖ẋα = ẋβ‖ =∏∞
k=0[Nα,β,k] = [

⋂∞
k=0 Nα,β,k] = 0 since µ(

⋂∞
k=0 Nα,β,k) = 0. This completes

the proof that 2ℵ0 = λ in M [G].
Now let us assume that κ is a measurable cardinal in the ground model,

and let λ ≥ κ be such that λℵ0 = λ. We construct a generic extension M [G]
of M , using the measure algebra described above. In M [G], we have 2ℵ0 = λ,
and we show that κ is real-valued measurable in M [G]. This follows from this
general lemma:

Lemma 22.9. Let κ be a measurable cardinal in the ground model M , let
B be (in M) a measure algebra, and let G be an M -generic ultrafilter on B.
Then in M [G], there exists a nontrivial κ-additive measure on κ.

Proof. Let U be a κ-complete nonprincipal ultrafilter on κ. Let B be a com-
plete Boolean algebra and let m be a measure on B. We shall define a B-
valued name µ̇ and show that if G is a generic ultrafilter, then the G-
interpretation of µ̇ is a nontrivial κ-additive measure on κ.

Let a be a nonzero element of B, and let Ȧ ∈ MB be a B-valued name
such that a � Ȧ ⊂ κ. For each α < κ, we let

(22.6) fa(Ȧ, α) =
m(a · ‖α ∈ Ȧ‖)

m(a)
.
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Since U is a κ-complete, there is a unique real number r such that fa(Ȧ, α) =
r for almost all α (mod U). Thus let

(22.7) µa(A) = the unique r such that fa(A, α) = r almost everywhere
(mod U).

Note that if a � Ȧ = Ȧ′, then µa(Ȧ) = µa(Ȧ′). Also, if a � Ȧ1 ⊂ Ȧ2,
then µa(Ȧ1) ≤ µa(Ȧ2). If X ⊂ κ is in M , then fa(X̌, α) = 1 for all α ∈ X
and fa(X̌, α) = 0 for all α /∈ X . Hence µa(X̌) = 1 if X ∈ U and µa(X̌) = 0
if X /∈ U .

Let γ < κ and let Ȧξ, ξ < γ, be such that a � Ȧξ ⊂ κ for all ξ < γ, and
that a � Ȧξ ∩ Ȧη = ∅ whenever ξ �= η. Let Ȧ be such that a � Ȧ =

⋃
ξ<γ Ȧξ.

Then fa(Ȧ, α) =
∑

ξ<γ fa(Ȧξ, α) for all α < κ, and hence (because U is
κ-complete),

(22.8) µa(Ȧ) =
∑
ξ<γ

µa(Ȧξ).

Let r be a real number, 0 ≤ r ≤ 1, and let {an}∞n=0 be a partition of a ∈ B.
If µan(Ȧ) < r for all n, then for almost all α, m(an ·‖α ∈ Ȧ‖) < r ·m(an), and
it follows that for almost all α, m(a · ‖α ∈ Ȧ‖) < r · m(a); hence µa(Ȧ) < r.

As a consequence, we obtain:

(22.9) If for every nonzero b ≤ a there is a nonzero c ≤ b such that
µc(Ȧ) < r, then µa(Ȧ) < r.

(And a similar statement holds when < is replaced by ≤, > or ≥.)
Now if b � Ȧ ⊂ κ, we define

(22.10) µ∗
b(Ȧ) = infa≤b µa(Ȧ).

Again, if b � Ȧ1 ⊂ Ȧ2, then µ∗
b(Ȧ1) ≤ µ∗

b(Ȧ2), and if X ∈ M , then µ∗
b(X̌) = 1

if X ∈ U and µ∗
b(X̌) = 0 if X /∈ U . However, µ∗

b is not additive and we only
have (using (22.8)), for γ < κ:

(22.11) µ∗
b(Ȧ) ≥

∑
ξ<γ

µ∗
b(Ȧξ)

under the assumption that b � Ȧξ ∩ Ȧη = ∅ whenever ξ �= η, and that
b � Ȧ =

⋃
ξ<γ Ȧξ.

Note that if b1 ≤ b2, then µb1(Ȧ) ≥ µb2(Ȧ).
Now we are ready to define µ̇. Let G be a generic ultrafilter; in M [G], we

define µ : P (κ) → [0, 1] as follows:

(22.12) µ(A) = supb∈G µ∗
b(Ȧ)

where Ȧ is a name for A. Let µ̇ be the canonical name for µ (defined in MB

by (22.12) using the canonical Ġ).
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It is clear that µ does not depend on the name Ȧ for A, that A1 ⊂ A2

implies µ(A1) ≤ µ(A2) and that if X ∈ M , then µ(X) = 1 if X ∈ U and
µ(X) = 0 if X /∈ U . It remains to show that µ is κ-additive.

Let r be a real number (in M) such that 0 ≤ r ≤ 1. We claim that

(22.13) µ∗
b (Ȧ) ≥ r if and only if b � µ̇(Ȧ) ≥ ř.

If µ∗
b(Ȧ) ≥ r, then for every generic G such that b ∈ G, µ(A) ≥ r, and hence

b � µ̇(Ȧ) ≥ ř. Thus assume that b � µ̇(Ȧ) ≥ ř. Then

b � ∀q < ř ∃d ∈ Ġ µ∗
d(Ȧ) ≥ q,

that is,

(22.14) ∀q < r ∀c ≤ b ∃d ≤ c µ∗
d(Ȧ) ≥ q.

Let q < r; we claim that µ∗
b (Ȧ) ≥ q. If a ≤ b, then ∀c ≤ a ∃d ≤ c such that

µ∗
d(Ȧ) ≥ q and hence (by a variant of (22.9)), µa(Ȧ) ≥ q. Thus µ∗

b(Ȧ) ≥ q.
Since this holds for any q < r, we have µ∗

b(Ȧ) ≥ r.
Next we show that µ is finitely additive. Let Ȧ, Ȧ1, and Ȧ2 be such that

every condition forces that Ȧ is the disjoint union of Ȧ1 and Ȧ2. If r1 and r2

are real numbers and if b � (µ̇(Ȧ1) ≥ ř1 and µ(Ȧ2) ≥ ř2), then by (22.13)
and (22.11), b � µ̇(Ȧ) ≥ ř1 + ř2; hence µ(A) ≥ µ(A1) + µ(A2). Conversely,
let us assume that µ(A) > µ(A1) + µ(A2). There are reals r1, r2 ∈ M and
b ∈ G such that

b � µ̇(Ȧ1) < ř1, µ̇(Ȧ2) < ř2, and µ̇(Ȧ) ≥ ř1 + ř2.

Since b � µ̇(Ȧ1) < ř1, there is for each c ≤ b some d ≤ c such that
µd(Ȧ1) < r1; hence by (22.9), µb(Ȧ1) < r1. Similarly, µb(Ȧ2) < r2, and so
µ∗

b (Ȧ) ≤ µb(Ȧ) < r1 + r2. This is a contradiction.
Now when we know that µ is finitely additive, it suffices to show that

µ(
⋃

ξ<γ Aξ) ≤
∑

ξ<γ µ(Aξ) for any family {Aξ : ξ < γ} of fewer than κ
subsets of κ. Thus let γ < κ and let Ȧξ, ξ < γ, and Ȧ be such that ‖Ȧ =⋃

ξ<γ Ȧξ‖ = 1, and let us assume that µ(A) >
∑

ξ<γ µ(Aξ). Then there exist
r ∈ M and b ∈ G such that

b �
∑
ξ<γ

µ̇(Ȧξ) < ř and µ̇(Ȧ) > ř.

Let E ⊂ γ be an arbitrary finite set, let AE =
⋃

ξ∈E Aξ. Since ‖µ̇(ȦE) ≤∑
ξ∈E µ̇(Ȧξ)‖ = 1, we have b � µ̇(ȦE) < ř. By (22.9), we get µb(ȦE) < r.
Since µb(ȦE) < r for all finite E ⊂ γ, it follows from (22.8) that

µb(Ȧ) ≤ r. Hence µ∗
b(Ȧ) ≤ r, a contradiction.

This completes the proof that in M [G] µ is a nontrivial κ-additive measure
on κ. ��
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Example 22.10 (A model in which 2ℵ0 carries a σ-saturated ideal).
Let κ be a measurable cardinal, and let λ ≥ κ be a cardinal such that λℵ0 = λ.
We shall construct a generic extension that satisfies 2ℵ0 = λ and such that
there is a σ-saturated κ-complete ideal on κ.

Let P be the notion of forcing that adjoins λ Cohen reals; i.e., a condition
is a finite 0–1 function p with dom(p) ⊂ λ. If G is a generic filter on P , then
V [G] � 2ℵ0 = λ, and all cardinals are preserved in V [G] because P satisfies
the countable chain condition. That κ carries in V [G] a σ-saturated ideal
follows from this lemma:

Lemma 22.11. Let κ be a measurable cardinal and let I be a nonprincipal
κ-complete prime ideal on κ. Let P be a notion of forcing that satisfies the
countable chain condition. Then in V [G], the ideal J generated by I is a σ-
saturated κ-complete ideal on κ.

Proof. Let J be the ideal in V [G] defined as follows:

X ∈ J if and only if X ⊂ Y for some Y ∈ I.

First we show that J is κ-complete. Let X = {Xξ : ξ < γ} be a family of
fewer than κ elements of J ; let Ẋ be a name for X and let p0 ∈ G be such
that p0 � ∀ξ < γ Ẋξ ∈ J̇ .

For each ξ < γ and each p ≤ p0, there exist q ≤ p and some Y ∈ I
such that q � Ẋξ ⊂ Y̌ . Let Wξ be a maximal antichain of q ≤ p0 for which
there is Yξ,q such that q � Ẋξ ⊂ Y̌ξ,q. Since P satisfies the countable chain
condition, each Wξ is countable, and hence Y =

⋃
{Yξ,q : ξ < γ and q ∈ Wξ}

belongs to I. Now it is easy to verify that p0 �
⋃

ξ<γ Ẋξ ⊂ Y̌ and hence⋃
X ∈ J .
To prove that J is countably saturated, let us assume that X = {Xξ :

ξ < ω1} is a family of pairwise disjoint sets of positive J-measure. Let Ẋ be
a name for X and let p ∈ G be such that p � Ẋξ /∈ J̇ , for each ξ < ω1, and
p � Ẋξ ∩ Ẋη = ∅ for all ξ �= η.

For each ξ < ω1, let Yξ = {α < κ : some q ≤ p forces α ∈ Ẋξ}. Clearly
p � Ẋξ ⊂ Y̌ξ, and so Yξ /∈ I. By the κ-completeness of I, we have Y =⋂

ξ<ω1
Yξ /∈ I. Thus Y �= ∅, and let α be some element of Y . For each ξ < ω1,

let qξ ≤ p be such that qξ � α ∈ Ẋξ. Since P satisfies the countable chain
condition, there are ξ, η such that qξ and qη are compatible. Let q be stronger
than both qξ and qη; then q � α ∈ Ẋξ ∩ Ẋη, a contradiction. ��

Proof of Theorem 22.2. We shall prove that if 2ℵ0 carries a σ-saturated 2ℵ0-
complete ideal then 2λ = 2ℵ0 for all λ < 2ℵ0 . Let λ be a regular cardinal; two
functions f , g on λ are almost disjoint if there is γ < λ such that f(α) �= g(α)
for all α ≥ γ.

Lemma 22.12. Let κ carry a σ-saturated κ-complete ideal, and let λ < κ be
a regular uncountable cardinal. If F is a family of almost disjoint functions
f : λ → κ, then |F| ≤ κ.
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Proof. If |F| > κ, then because every f : λ → κ is bounded by some β < κ,
there exist some G ⊂ F and some β < κ such that |G| = κ and every f ∈ G
is bounded by β.

Let F : [G]2 → λ be the following partition: F ({f, g}) = some γ such that
f(α) �= g(α) for all α ≥ γ. By Lemma 22.7, there exists H ⊂ G of size κ
such that the image A of [H]2 under F is at most countable. Let α > sup(A).
Then f(α) �= g(α) whenever f, g ∈ H, which is a contradiction since |H| = κ
and f(α) < β for all f ∈ H. ��

Now we are ready to prove the theorem. Let κ = 2ℵ0 . We prove 2λ = κ
by induction on λ < κ. If λ is a singular cardinal and 2ν = κ for all ν < λ,
then 2λ = κ by Corollary 5.17. Thus let λ < κ be regular and let us assume
that 2ν = κ for all ν < λ.

For each X ⊂ λ, let fX = 〈X ∩ α : α < λ〉. If X �= Y , then fX and fY

are almost disjoint. For each α < λ, the set {fX(α) : X ⊂ λ} has size κ, and
hence {fX : X ⊂ λ} yields a family F of 2λ almost disjoint functions from λ
into κ. By Lemma 22.12 we get |F| ≤ κ and therefore 2λ = κ. ��

Generic Ultrapowers

We shall now introduce a powerful method for dealing with ideals on regu-
lar uncountable cardinals. The method is a generalization of the method of
ultrapowers from Chapter 10.

Let κ be a regular uncountable cardinal and let I be an ideal on κ. Let
us view the universe as a ground model, let us denote this ground model M
and let us consider the generic extension of M given by the completion of
the Boolean algebra P (κ)/I. In other words, consider the notion of forcing
(P,⊂), where P is the collection of all subsets of κ of positive measure:

(i) X ∈ P if and only if X /∈ I;
(ii) X is stronger than Y if and only if X ⊂ Y

(22.15)

Let G be a generic filter on P .

Lemma 22.13.

(i) G is an M -ultrafilter on κ extending the filter dual to I.
(ii) If I is κ-complete in M , then G is a κ-complete M -ultrafilter.
(iii) If I is normal, then G is normal.

Proof. (i) If X ⊂ κ has measure one, then {Y ∈ P : Y ⊂ X} is dense in P
and hence X ∈ G. That G is an M -ultrafilter is obvious.

(ii) If {Xα : α < γ}, γ < κ, is (in M) a partition of κ, then by the κ-
completeness of I, the set {Y ∈ P : Y ⊂ some Xα} is dense in P and hence
Xα ∈ G for some α.
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(iii) If X ∈ G and if f ∈ M is a regressive function on X , then {Y ⊂ X :
f is constant on Y } is dense below X , and hence f is constant on some
Y ∈ G. ��

From now on assume that I is a κ-complete ideal on κ containing all
singletons. Then G is a nonprincipal κ-complete M -ultrafilter on κ. Note
that if I is atomless, then G /∈ M (if I is prime, then G is the dual of I and
so G ∈ M).

Let us consider (in M [G]) the ultrapower UltG(M); let us call this ultra-
power a generic ultrapower. The generic ultrapower is a model of ZFC, but
is not necessarily well-founded. We have the analog of �Loś’s Theorem, in this
form

(22.16) UltG(M) � ϕ([f1], . . . , [fn])

if and only if {α : M � ϕ(f1(α), . . . , fn(α))} ∈ G

whenever f1, . . . , fn ∈ M are functions defined on a set X ∈ G. In particu-
lar, we have an elementary embedding, the canonical embedding jG : M →
UltG(M), defined by

jG(x) = [cx]

where cx is the constant function on κ with value x, and [cx] is its equivalence
class in the ultrapower.

Let us denote the generic ultrapower by N and jG = j. The ordinal
numbers of the model N form a linearly ordered class, not necessarily well-
ordered, but we shall show that (because I is κ-complete), OrdN has an
initial segment of order-type κ. If x ∈ OrdN , let us call the order-type of x
the order-type of the set {y ∈ OrdN : y <N x}. If the order-type of x is an
ordinal number, we take the liberty of identifying x with this ordinal.

Lemma 22.14.

(i) For every γ < κ, j(γ) = γ; hence OrdN has an initial segment of
order-type κ.

(ii) j(κ) �= κ.
(iii) If I is normal, then there exists x ∈ OrdN such that x = κ; in fact

[d] = κ where d is the diagonal function d(α) = α.

Proof. G is κ-complete, nonprincipal, and if I is normal then G is normal. ��

Let us mention again the fact that we already mentioned and that is fairly
easy to verify: If P is the notion of forcing (22.15) then B(P ) = B(P (κ)/I);
the mapping X �→ [X ] gives the natural correspondence.

To illustrate the method of generic ultrapowers we present two examples.
The first is (a modification of) Silver’s proof of Theorem 8.12; the other is
a theorem of Jech and Prikry.
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Example 22.15 (Proof of Silver’s Theorem 8.12). Let us consider this
typical special case: Let κ be a singular cardinal of cofinality ℵ1, and assume
that 2λ = λ+ for all λ < κ. We shall show that 2κ = κ+, using a generic
ultrapower.

Let I be the ideal of nonstationary subsets of ω1, let P be the correspond-
ing notion of forcing (i.e., forcing conditions are stationary sets) and let G be
a generic filter on P . Note that since |P | = 2ℵ1 < κ (in M), all cardinals ≥ κ
remain cardinals in M [G].

Let us work in M [G]. G is a normal σ-complete M -ultrafilter on ωM
1 . Let

N = UltG(M) be the generic ultrapower and let j : M → N be the canonical
elementary embedding. N is not necessarily well-founded.

Let 〈κα : α < ω1〉 be (in M) an increasing continuous sequence of cardi-
nals converging to κ. Let e be the cardinal number in N represented by the
function e(α) = κα. Let e+ denote the successor cardinal of e in N .

For each X ⊂ κ in M let fX be the function on ωM
1 defined by fX(α) =

X ∩ κα. Clearly, each fX represents in N a subset of e. Moreover, if X �= Y ,
then fX and fY are almost disjoint and hence represent distinct subsets of e.
It follows that |PM (κ)| ≤ |PN (e)|, where PN (e) denotes the collection of all
subsets of e in N .

Now N � 2e = e+ (because M � 2κα = κ+
α for all α), which means that

in the model N there is a one-to-one correspondence between the power set
of e and e+. It follows that there is a one-to-one correspondence between
PN (e) and the set ext(e+) = {x ∈ OrdN : x <N e+}. Thus we have so far
|PM (κ)| ≤ | ext(e+)|.

Next we observe that e = sup{j(κγ) : γ < ωM
1 }. This is because if f rep-

resents an ordinal less than e, then there is a set of limit ordinals X ∈ G such
that f(α) < κα for all α ∈ X ; thus f(α) < κγ(α) for some γ(α) < α, and
by normality of G, there is γ such that [f ] <N κγ . Now for each γ < ωM

1 ,
| ext(j(κγ))| ≤ |(κℵ1

γ )M | < κ, and therefore | ext(e)| ≤ κ.
If x <N e+, then there is in N a one-to-one mapping of x into e, and

therefore, | ext(x)| ≤ | ext(e)| ≤ κ. Thus ext(e+) is a linearly ordered set
whose each initial segment has size at most κ. Therefore | ext(e+)| ≤ κ+, and
we have

|PM (κ)| ≤ κ+.

We have argued so far in M [G]; in other words, we have proved that
|PM (κ)|M [G] ≤ (κ+)M [G]. But since all cardinals ≥ κ in M remain cardi-
nals in M [G], it is necessary that |PM (κ)|M ≤ (κ+)M ; in other words we
have proved that 2κ = κ+ (in M). ��

Theorem 22.16. Let I be a σ-complete ideal on ω1. If 2ℵ0 < ℵω1 then
2ℵ1 ≤ 2ℵ0 · sat(I).

Corollary 22.17. If there exists an ℵ2-saturated ideal on ω1, then

(i) 2ℵ0 = ℵ1 implies 2ℵ1 = ℵ2;
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(ii) ℵ1 < 2ℵ0 < ℵω1 implies 2ℵ0 = 2ℵ1 . ��

Proof of Theorem 22.16. Let 2ℵ0 = ℵγ < ℵω1 and let I be a σ-complete
λ-saturated ideal on ω1. We shall show that 2ℵ1 ≤ ℵγ · λ.

Let P be the notion of forcing corresponding to I, and let G be generic
on P . Since sat(P ) = sat(I) ≤ λ, all cardinals ≥ λ in M are cardinals
in M [G].

Let us work in M [G], and let N = UltG(M) and j = jG : M → N . For
each X ⊂ ω1 in M let fX be the function on ωM

1 defined by fX(α) = X ∩ α.
Each fX represents in N a subset of the countable ordinal d represented by
the function d(α) = α; moreover, if X = Y , then fX and fY are almost
disjoint and hence [fX ] �= [fY ]. It follows that |PM (ωM

1 )| ≤ |PN (d)|. Let e
be the cardinal number in N such that N � 2ℵ0 = e (we recall that ωN = ω).
Since N � |P (d)| = e, we have |PN (d)| = | ext(e)| and so

(22.17) |PM (ωM
1 )| ≤ | ext(e)|.

Next we shall compute the size of ext(e). Since M � 2ℵ0 = ℵγ and j :
M → N is elementary, we have e = j(ωγ). We shall now prove by induction
on γ < ωM

1 that

(22.18) | ext(j(ωM
γ ))| ≤ λ · |ωM

γ |.

Let us denote j(ωM
γ ) = eγ for all γ < ωM

1 . By Lemma 22.14, the ordinals
of N have an initial segment of order-type ωM

1 ; thus the infinite cardinals
of N also have an initial segment of order-type ωM

1 , namely {eγ : γ < ωM
1 }.

If γ = 0, then eγ = ω and (22.18) is true. If γ is a limit ordinal, then
eγ = sup{eδ : δ < γ} and (22.18) is again true provided it is true for all
δ < γ. If γ = 1, then ext(e1) is a linearly ordered set whose each initial
segment is countable, and hence | ext(e1)| ≤ ℵ1. Since λ is a cardinal (now
we are in M [G]), we have ℵ1 ≤ λ, and (22.18) holds.

Let us assume that (22.18) holds for γ and let us show that it also
holds for γ + 1. Every function f : ω1 → ωγ+1 in M is bounded by some
constant function, and therefore j(ωγ+1) = sup{j(ξ) : ξ < ωγ+1}. Hence
the linearly ordered set ext(eγ+1) has a cofinal set of order-type ωM

γ+1 and
each its initial segment has size ≤ λ · |ωM

γ | (because if ξ < ωγ+1, then
| ext(j(ξ))| ≤ | ext(eγ)| ≤ λ · |ωM

γ |). It follows that | ext(eγ+1)| ≤ λ · |ωM
γ+1|.

Now we put (22.17) and (22.18) together and get

|PM (ωM
1 )| ≤ λ · ℵM

γ .

This we proved in M [G]; but since all cardinals ≥ λ in M remains cardinals
in M [G], the same must be true in M . Hence (in M)

2ℵ1 ≤ λ · ℵγ . ��
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Precipitous Ideals

In an early application of generic ultrapowers, Solovay proved that if I is
κ+-saturated then the generic ultrapower is well-founded (see Lemma 22.22
in the next section). It has been recognized that this property of ideals is
important enough to single out and study such ideals.

Definition 22.18. A κ-complete ideal on κ is precipitous if the generic ul-
trapower UltG(M) is well-founded.

We give below several necessary and sufficient (combinatorial) conditions
on I to be precipitous.

Let I be a κ-complete ideal on κ containing all singletons. Let S be a set
of positive measure. An I-partition of S is a maximal family W of subsets
of S of positive measure such that X ∩ Y ∈ I for any distinct X, Y ∈ W . An
I-partition W1 of S is a refinement of an I-partition W2 of S, W1 ≤ W2, if
every X ∈ W1 is a subset of some Y ∈ W2. A functional on S is a collection F
of functions such that WF = {dom(f) : f ∈ F} is an I-partition of S and
dom(f) �= dom(g) whenever f �= g ∈ F .

We define F < G for two functionals on S to mean that:

(i) each f ∈ F ∪ G is a function into the ordinals;
(ii) WF ≤ WG; and
(iii) if f ∈ F and g ∈ G are such that dom(f) ⊂ dom(g), then f(α) < g(α)

for all α ∈ dom(f).

The reason we define functionals is that they represent functions in the
Boolean-valued model MB (and so are canonical representatives for elements
of UltG(M)): Let ḟ ∈ MB be such that

(22.19) S � ḟ is a function with dom(ḟ) ∈ Ġ and ḟ ∈ M .

Then there is an I-partition W of S, and for each X ∈ W a function fX on X
such that for all X ∈ W , X � ḟ�X̌ = f̌X . Thus the functional {fX : X ∈ W}
represents the Boolean-valued ḟ on S.

Conversely, if F is functional on S, then there is some ḟ ∈ MB such that
(22.19) holds; and for each f ∈ F , if X = dom(f), then X � ḟ�X̌ = f̌ .

Note also that if F < G are functionals on S and ḟ , ġ are corresponding
Boolean-valued names, then

(22.20) S � ḟ , ġ ∈ M and dom(ḟ) ⊂ dom ġ and ḟ(α) < ġ(α) for all α ∈
dom(ḟ).

Conversely, if ḟ and ġ satisfy (22.20), then there are functionals F and G
that represent ḟ and ġ, and F < G.

Lemma 22.19. The following are equivalent :
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(i) I is precipitous.
(ii) Whenever S is a set of positive measure and {Wn : n < ω} are I-

partitions of S such that W0 ≥ W1 ≥ . . . ≥ Wn ≥ . . ., then there exists
a sequence of sets X0 ⊃ X1 ⊃ . . . ⊃ Xn ⊃ . . . such that Xn ∈ Wn for
each n, and

⋂∞
n=0 Xn is nonempty.

(iii) For no set S of positive measure is there a sequence of functionals
on S such that F0 > F1 > . . . > Fn > . . ..

Proof. In view of the preceding discussion on functionals, (ii) is equivalent
to (i): If F0 > F1 > . . . are functionals on S, and ḟ0, ḟ1, . . . , the corresponding
elements of MB, then S forces that [ḟ0], [ḟ1], . . . is a descending sequence of
ordinals in the generic ultrapower. Conversely, if S forces that UltG(M) has
a descending sequence of ordinals, we construct F0, F1, . . . on S such that
F0 > F1 > . . ..

The implication (ii) → (iii) is easy. If F0 > F1 > . . . are functionals
on S, then the partitions WF0 , WF1 , . . . constitute a counterexample: If
X0 ⊃ X1 ⊃ . . . are elements of WF0 , WF1 , . . . , let f0 ∈ F0 be the function with
domain X0, f1 ∈ F1 with domain X1, etc.; now if

⋂∞
n=0 Xn were nonempty,

we would get f0(α) > f1(α) > . . . for α ∈
⋂∞

n=0 Xn.
To show (iii) → (ii), let W0 ≥ W1 ≥ . . . be partitions of some S /∈ I that

fail (ii). We shall construct functionals on S such that F0 > F1 > . . ..
Without loss of generality, let us assume that if X ∈ Wn+1, Y ∈ Wn, and

X ⊂ Y , then X �= Y . Let T =
⋃∞

n=0 Wn; note that the partially ordered set
(T,⊂) is an upside-down tree (of height ω).

For each z ∈ S, let us consider the set Tz = {X ∈ T : z ∈ X}. Since every
descending sequence X0 ⊃ X1 ⊃ . . . in T has empty intersection, it follows
that for every z, Tz has no infinite descending sequence X0 ⊃ X1 ⊃ . . .;
hence the relation ⊂ on Tz is well-founded. Thus there is, for each z, an
ordinal function ρz on T (the rank function) such that ρz(X) < ρz(Y ) when
X ⊂ Y . It is clear that if X ∈ Wn+1, Y ∈ Wn, and z ∈ X ⊂ Y , then
ρz(X) < ρz(Y ).

Thus we define, for each X ∈ T , a function fX on X as follows:

fX(z) = ρz(X) (all z ∈ X).

Now it is clear that if we let Fn = {fX : X ∈ Wn} for each n, then F0, F1, . . .
are functionals on S and F0 > F1 > . . .. ��

Lemma 22.20. Let κ be a regular uncountable cardinal. The ideal I =
{X ⊂ κ : |X | < κ} is not precipitous.

Proof. Let I = {X ⊂ κ : |X | < κ}. A set X ⊂ κ has positive measure just
in case |X | = κ. For each such X , let fX be the unique order-preserving
function from X onto κ.

For each set X of positive measure there exists a set Y ⊂ X of positive
measure such that fY (α) < fX(α) for all α ∈ Y ; namely if we let Y =
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{α ∈ X : fX(α) is a successor ordinal}, then fX(α) = fY (α) + 1 for all
α ∈ Y . Thus for each X /∈ I there is an I-partition WX of X such that for
all Y ∈ WX , fY (α) < fX(α) on Y .

Now we construct I-partitions W0 ≥ W1 ≥ . . . as follows: We let W0 =
{κ}, and for each n, we let Wn+1 =

⋃
{WX : X ∈ Wn}. For each n, we let

Fn be the functional Fn = {fX : X ∈ Wn}. It is clear that F0 > F1 > . . . >
Fn > . . ., and therefore I is not precipitous. ��

An alternate characterization of precipitousness is in terms of infinite
games. GI is the infinite game played by two players, Empty and Nonempty,
who alternately choose sets Sn of positive I-measure such that Sn+1 ⊂ Sn.
Empty plays first and wins if

⋂∞
n=0 Sn = ∅.

Lemma 22.21. I is precipitous if and only if Empty has no winning strategy
in the game GI .

Proof. If I is not precipitous then there is a set S of positive measure and
a sequence of functionals on S such that F0 > F1 > . . . > Fn > . . .. Empty
chooses S0 = S for his first move. When Nonempty plays S2n−1, Empty finds
some f ∈ Fn such that the set X = dom(f)∩S2n−1 has positive measure and
chooses S2n = X for his move. It follows that

⋂∞
n=0 Sn is empty, and hence

Empty wins.
Now suppose that I is precipitous and σ is a strategy for Empty; we will

show that σ is not a winning strategy. Let S0 be Empty’s first move by σ.
Then S0 forces that in M [G] there is an infinite sequence 〈Sn : n ∈ ω〉 of
moves in which Empty follows σ and each Sn ∈ G. If j : M → UltG(M) is
the canonical embedding then 〈j(Sn) : n ∈ ω〉 is an infinite sequence of moves
(of j(GI)) in which Empty follows j(σ) and κ ∈

⋂∞
n=0 j(Sn). Since UltG(M) is

well-founded, there exists (by absoluteness) such a sequence in UltG(M), and
since j is elementary, there exists a sequence 〈Sn : n ∈ ω〉 in M in which
Empty follows σ but for some α < κ, α ∈

⋂∞
n=0 Sn. Thus σ is not a winning

strategy. ��

Saturated Ideals

Results from Chapter 10 and those proved earlier in this chapter establish the
following facts about the existence of a σ-saturated κ-complete ideal on κ:
If κ carries a σ-saturated κ-complete ideal then either κ is measurable, or
κ ≤ 2ℵ0 and κ is weakly inaccessible (Lemma 10.9 and 10.14). If a σ-saturated
ideal exists then there exists a normal one (Lemma 22.3), and its consistency
strength is that of a measurable cardinal (Lemma 22.8). These results gener-
alize easily to ν-saturated ideals for ν < κ; the analog of Lemma 10.9 (with
the same proof) is that either κ is measurable, or κ ≤ 2<ν .

In this section we investigate κ-saturated and κ+-saturated ideals. We
shall employ the technique of generic ultrapowers; this is particularly useful
because the generic ultrapower is well-founded:
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Lemma 22.22. Let κ be a regular uncountable cardinal. Every κ+-saturated
κ-complete ideal on κ is precipitous.

Proof. Let I be a κ+-saturated κ-complete ideal on κ. Let S be a set of
positive measure and let W0 ≥ W1 ≥ . . . be I-partitions of S. We shall find
X0 ⊃ X1 ⊃ . . . in W0, W1, . . . such that

⋂∞
n=0 Xn is nonempty.

We shall first modify each Wn to obtain a new I-partition W ′
n that is

almost like Wn but is disjoint. We proceed by induction on n. Since |W0| ≤ κ,
let W0 = {Xα : α < θ} where θ ≤ κ, and for each α < θ, let X ′

α =
Xα −

⋃
β<α Xβ ; then we let W ′

0 = {X ′ : X ∈ W}. Since I is κ-complete,
we have X − X ′ ∈ I for all X ∈ W0 and thus W ′

0 is an I-partition of S;
moreover, W ′

0 is disjoint, and is a partition of S0 =
⋃

W ′
0 and S − S0 ∈ I.

Having constructed W ′
n, we enumerate Wn+1 = {Xα : α < θ} where θ ≤ κ,

and for each α < θ, let X ′
α = (Xα −

⋃
β<α Xβ) ∩ Z where Z is the unique

Z ∈ W ′
n that is almost all of the unique Y ∈ Wn such that Xα ⊂ Y .

We let W ′
n+1 = {X ′ : X ∈ Wn+1}; W ′

n is a partition of Sn+1 =
⋃

W ′
n+1,

S − Sn+1 ∈ I, and X − X ′ ∈ I for all X ∈ Wn+1.
Since each Sn is almost all of S, the set

⋂∞
n=0 Sn is nonempty; let z be an

element of this intersection. For each n there is a unique Yn ∈ W ′
n such that

z ∈ Yn; let Xn be the unique Xn ∈ Wn such that Yn ⊂ Xn. It is clear that
X0 ⊃ X1 ⊃ . . . ⊃ Xn ⊃ . . ., and

⋂∞
n=0 Xn �= ∅. ��

In the next section we shall generalize Lemma 22.8: We shall prove that
if κ carries a precipitous ideal then it is measurable in an inner model.

Let us first consider κ-saturated ideals. First we observe that the proof
of Lemmas 22.3(i) and 22.4 works as well when I is only κ-saturated, and so
we have:

Lemma 22.23.

(i) If there exists a κ-saturated κ-complete ideal on an uncountable car-
dinal κ, then there exists a normal κ-saturated κ-complete ideal on κ.

(ii) Let I be a normal κ-saturated κ-complete ideal on κ. If S /∈ I and if
f : S → κ is regressive on S, then there is γ < κ such that f(α) < γ
for almost all α ∈ S. ��

Also, the proof of Lemma 10.14 works also for κ-saturated ideals, and so
we have:

Lemma 22.24. If κ carries a κ-saturated κ-complete ideal then κ is weakly
inaccessible. ��

It is consistent (relative to the existence of a measurable cardinal) that
an inaccessible cardinal κ carries an ideal I such that sat(I) = κ. (Such κ
cannot be weakly compact, see Exercise 22.13.)

We shall now prove the main result on κ-saturated ideals, using generic
ultrapowers. First we need a lemma on preservation of stationary sets by
forcing:
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Lemma 22.25. Let κ be a regular uncountable cardinal. Let V [G] be a generic
extension of V by a κ-c.c. notion of forcing. Then every closed unbounded
C ⊂ κ in V [G] has a closed unbounded subset D ∈ V . Consequently, if S ∈ V
is stationary in V , then S remains stationary in V [G].

Proof. Let Ċ be a name such that every condition forces that Ċ is a closed
unbounded subset of κ. Let D = {α : ‖α ∈ Ċ‖ = 1}. Clearly, D is a subset
of C and is closed; we have to prove only that D is unbounded.

Let α0 < κ; we wish to find α > α0 such that every condition forces α ∈ Ċ.
For every p, there is q ≤ p and some β > α0 such that q � β ∈ Ċ. Thus there
is a maximal incompatible set W of conditions, and for each q ∈ W an ordinal
β = βq such that q � β ∈ Ċ. Since |W | < κ, we let α1 = sup{βq : q ∈ W};
we have α1 < κ and

p � (∃β ∈ Ċ) α0 < β ≤ α1

for all conditions p. Similarly, we find α1 < α2 < α3 < . . . such that for
every n and every condition p,

p � (∃β ∈ Ċ) αn < β ≤ αn+1.

If we let α = limn αn, it is clear that ‖α ∈ Ċ‖ = 1. ��

Theorem 22.26 (Solovay). Let κ be a regular uncountable cardinal and
assume that κ carries a κ-saturated ideal.

(i) κ is weakly Mahlo;
(ii) {α < κ : α is weakly Mahlo} is stationary;
(iii) if X ⊂ κ has measure one in a normal κ-saturated ideal, then X ∩

M(X) has measure one, where

M(X) = {α < κ : cf α > ω and X ∩ α is stationary in α}.

Proof. If there exists a κ-saturated ideal on κ, then κ is weakly inaccessi-
ble by Lemma 22.24, and there exists a normal κ-saturated ideal on κ (by
Lemma 22.23). Let I be a normal κ-saturated ideal on κ. We first prove:

Lemma 22.27. If S ⊂ κ is stationary, then for I-almost all α < κ, S ∩ α is
stationary in α.

Proof. If not, then there is a set X of positive measure such that S ∩α is not
stationary in α (or cf α = ω) for all α ∈ X . Let G be a generic ultrafilter on κ
(corresponding to I) such that X ∈ G. Let N = UltG(M). N is a transitive
model. Since I is normal, κ is represented in N by the function d(α) = α.
Since S = j(S) ∩ κ, we have N � S is not stationary.

However, the notion of forcing is κ-saturated and hence κ is a regular
cardinal in M [G], and by Lemma 22.25, M [G] � S is stationary. Now N ⊂
M [G] and so N � S is stationary. A contradiction. ��
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Since I is normal, every set of positive measure is stationary. Thus (iii) fol-
lows since if X has measure one then M(X) has measure one by Lemma 22.27,
and so does X ∩ M(X).

To prove (i), it suffices to show that almost all α < κ are regular cardinals.
Otherwise, let X be a set of positive measure such that all α ∈ X are singular.
Let G � X be generic and let N = UltG(M). Then N � κ is singular, contrary
to the fact that κ is regular in M [G] and N ⊂ M [G].

Now (ii) follows by an application of (iii): Let X = {α < κ : α is regular},
then X ∩ M(X) = {α < κ : α is weakly Mahlo}. ��

As a corollary of Theorem 22.26 we have Solovay’s original proof of The-
orem 8.10:

Let κ be a regular uncountable cardinal and let S be a stationary subset
of κ. We claim that S is the disjoint union of κ stationary subsets.

Otherwise, the ideal I = {X ⊂ κ : X ∩ S is nonstationary} is a normal
κ-saturated ideal. By Lemma 22.27, S − M(S) has measure zero and hence
is nonstationary, which contradicts Lemma 8.9. ��

Now let us consider κ+-saturated ideals.

Lemma 22.28. Let I be a κ+-saturated κ-complete ideal on κ.

(i) There exists a least unbounded function, i.e., a function f : κ → κ such
that for any γ < κ there is no S of positive measure such that f(α) < γ
on S (unbounded) and that for any g : κ → κ, if g(α) < f(α) on a set
of positive measure then g is constant on a set of positive measure.

(ii) There exists a normal κ+-saturated κ-complete ideal on κ.

Proof. By Lemma 22.22 I is precipitous. Since I is κ+-saturated, the Boolean-
valued names for functions on κ in the ground model can be represented
not by functionals but by ordinary functions: Let F be a functional (on κ).
Let W = {dom(f) : f ∈ F}; since I is κ+-saturated, W can be replaced
by a disjoint W ′ such that for each X ∈ W there is X ′ ∈ W ′ such that
X ′ ⊂ X and X − X ′ ∈ I. If we replace each f ∈ F by its restriction to
the corresponding X ′ ∈ W ′, we get a functional F ′ whose elements have
disjoint domains. Then f =

⋃
F ′ is a function, and if ḟ ∈ V B is the name

corresponding to F , then ‖ḟ = f̌‖ = 1.
Let ḟ ∈ V B be such that ‖ḟ represents κ̌ in the generic ultrapower‖ = 1

and let f : κ → κ be such that ‖ḟ = f̌‖ = 1. Then f is the least unbounded
function.

If f is the least unbounded function then f∗(I) = {X ⊂ κ : f−1(X) ∈ I}
is a normal κ-complete ideal and is κ+-saturated. ��

Unlike κ-saturation, the existence of a κ+-saturated ideal on κ does not
imply that κ be a limit cardinal. However, the consistency strength of a κ+-
saturated ideal on a successor cardinal κ is considerably stronger than mea-
surability (while the existence of an ideal I on an inaccessible κ such that
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sat(I) = κ+ is equiconsistent with measurability). It is consistent, relative
to a Woodin cardinal, that the nonstationary ideal on ℵ1 is ℵ2-saturated; we
shall study this problem in Part III. We shall also return to the subject of
saturation of the nonstationary ideal in general in Chapter 23.

Saturated ideals have influence on cardinal arithmetic, similar to measur-
able cardinals:

Lemma 22.29. Let κ be a regular uncountable cardinal and let I be a κ+-
saturated ideal on κ. If 2λ = λ+ for all λ < κ, then 2κ = κ+.

Proof. Let M be the ground model. Let P be the notion of forcing corre-
sponding to I, let G be generic on P , and let N = UltG(M). Since I is
κ+-saturated, N is well-founded and hence we identify it with a transitive
model N ⊂ M [G]. Let j : M → N be the canonical embedding. We have
j(γ) = γ for all γ < κ, and j(κ) > κ. If X ⊂ κ and X ∈ M , then X ∈ N
because X = j(X) ∩ κ. Thus PM (κ) ⊂ PN (κ).

We assume that M � (2λ = λ+ for all λ < κ) and hence N � (2λ = λ+ for
all λ < j(κ)), and in particular, N � |P (κ)| = κ+, where α+ denotes the least
cardinal greater than α. Now (κ+)N ≤ (κ+)M [G]; and because sat(P ) = κ+

(in M), (κ+)M is a cardinal in M [G] and we have also (κ+)M [G] = (κ+)M .
Thus we have, in M [G],

|PM (κ)| ≤ (κ+)M

and since all cardinals above κ+ in M are preserved, the last formula is also
true in M , and we have 2κ = κ+. ��

Lemma 22.30. Let I be an ℵ2-saturated ideal on ω1. Then

(i) If 2ℵ0 = ℵ1, then 2ℵ1 = ℵ2.
(ii) If ℵ1 < 2ℵ0 < ℵω1 , then 2ℵ1 = 2ℵ0 .
(iii) If 2ℵ0 = ℵω1 , then 2ℵ1 ≤ ℵω2 .
(iv) If ℵω1 is strong limit, then 2ℵω1 < ℵω2 .
(v) Let Φ(α) denote the αth member of the class {κ : ℵκ = κ}. If Φ(ω1) is

strong limit, then 2Φ(ω1) < Φ(ω2).

Proof. (i) and (ii) are as in Corollary 22.17.
Let G be a generic ultrafilter on ω1, let N = UltG(M) and let j : M → N .

N is a transitive model, N ⊂ M [G].
Let us denote κ = ωM

1 . We have j(γ) = γ for all γ < κ, and j(κ) > κ.
Thus κ is a countable ordinal in N . Moreover, every f : κ → Ord in M
belongs to N , and so every γ < ωM

2 is countable in N . Since sat(I) = ℵ2,
ωM

2 is a cardinal in M [G], hence in N , and so

j(ωM
1 ) = ωM

2 .

We shall now prove (iii), (iv), and (v). To prove (iii), let us assume that
M � 2ℵ0 = ℵω1 . Since N � |ωM

1 | = ℵ0, and j is elementary, we have M [G] �
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|PM (κ)| ≤ (2ℵ0)N and N � 2ℵ0 = ℵj(κ). Now ℵN
j(κ) ≤ ℵM [G]

j(κ) ; and since
j(κ) = ωM

2 , ℵM [G]
j(κ) is the ωM

2 th cardinal in M [G]. However, all cardinals ≥ ℵM
2

are preserved and hence ℵM [G]
j(κ) = ℵM

ω2
. Thus

|PM (ωM
1 )| ≤ ℵM

ω2

holds in M [G]; and because cardinals above ℵ2 are preserved, this also holds
in M .

To prove (iv) or (v), note that if ℵω1 (or Φ(ω1)) is strong limit, then
2ℵω1 = ℵℵ1

ω1
(2Φ(ω1) = (Φ(ω1))ℵ1). Let λ denote ℵω1 in (iv) and Φ(ω1) in (v).

It is easy to see that j(λ) > λ. Now N � ∀α < j(λ) |ακ| < j(λ), and because
(λκ)M ⊂ (λκ)N , we have M [G] � |(λκ)M | ≤ j(λ).

In case (iv) we have j(λ) ≤ ℵM
ω2

as in (iii); and in case (v) we obtain
similarly j(λ) ≤ Φ(j(κ)) ≤ Φ(ω2). The rest of the proof of either (iv) or (v)
is as before. ��

To conclude this section we prove a generalization of Lemma 22.11; we
show in Lemma 22.32 that for all λ ≤ κ+, if V [G] is a generic extension by
λ-saturated forcing, then a λ-saturated ideal in V generates a λ-saturated
ideal in V [G].

Lemma 22.31. Let I be a κ+-saturated κ-complete ideal on κ. Let G be
a corresponding generic ultrafilter and let N = UltG(M) be the generic ultra-
power. Then every s : κ → M in M [G] is in N .

Proof. Let ṡ be a name for s; for each α < κ, let ṡα be a name such that
‖ṡ(α) = ṡα‖ = 1. Each ṡα is represented by a function fα ∈ M on κ. Let
h : κ → κ be the least unbounded function. Let f be the function on κ
defined by f(α) = 〈fβ(α) : β < h(α)〉. Then f represents ṡ in the generic
ultrapower. ��

Lemma 22.32. Let B be a complete Boolean algebra, let G be a V -generic
ultrafilter on B and let κ be an uncountable regular cardinal. Let λ ≤ κ+ be
regular and assume that sat(B) ≤ λ and sat(B) < κ. If I is a λ-saturated
κ-complete ideal on κ, then in V [G], I generates a λ-saturated κ-complete
ideal.

Proof. Let J ∈ V [G] be the ideal generated by I. Since satB ≤ κ, J is κ-
complete. Let J̇ ∈ V B be the canonical name for J , and let Ċ ∈ V B be the
Boolean algebra Ċ = P (κ̌)/J̇ .

We want to show that V B � Ċ is λ̌-saturated; by Lemma 16.5 it suffices
to show that B ∗ Ċ is λ-saturated because B is λ-saturated. Let D = P (κ)/I.
We shall find in V D a Boolean algebra Ė such that V D � Ė is λ̌-saturated,
and such that D ∗ Ė is isomorphic to B ∗ Ċ. Since D is λ-saturated, it will
follow that D ∗ Ė is λ-saturated and we shall be done.

In V D, consider the generic ultrapower N = UltĠ(V ), where Ġ is the
canonical ultrafilter on Ď. Let j : V → N be the corresponding elementary
embedding. Let Ė = j(B).
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Let sat(B) = ν < κ. Since j is elementary, we have N � sat(j(B̌)) = j(ν);
and since j(ν) = ν and by Lemma 22.31 all ν-sequences in V D are in N , we
have V D � sat(Ė) = ν. Thus V D � Ė is λ-saturated.

It remains to show that B ∗ Ċ and D ∗ Ė are isomorphic. Let ċ ∈ B ∗ Ċ.
Then ċ ∈ V B and ‖ċ ∈ Ċ‖B = 1. Thus there is some Ẋ ∈ V B such that
‖Ẋ ⊂ κ‖B = 1 and that

‖ċ is the equivalence class of Ẋ mod J̇‖B = 1.

Let f : κ → B be the function f(α) = ‖α ∈ Ẋ‖. Since f(α) ∈ B for all
α < κ, f represents in N = UltG(B) ⊂ V D an element ė ∈ j(B̌) = Ė; and
ė ∈ D ∗ Ė. We let h(ċ) = ė.

The proof is completed by verifying that the definition of h(ċ) does not
depend on the choice of Ẋ and that h is an isomorphism. ��

Consistency Strength of Precipitousness

Theorem 22.33.

(i) If κ is a regular uncountable cardinal that carries a precipitous ideal,
then κ is measurable in an inner model of ZFC.

(ii) If κ is a measurable cardinal, then there exists a generic extension in
which κ = ℵ1, and κ carries a precipitous ideal.

The proof of (i) uses the technique of iterated ultrapowers (compare with
(20.5)–(20.8)).

Let κ be a regular uncountable cardinal, and let I be a precipitous ideal
on κ. Let C be the class of all strong limit cardinals ν > 2κ such that
cf ν ≥ sat(I). Let γ0 < γ1 < . . . < γn < . . . (n < ω), be elements of C such
that |γn ∩ C| = γn, let A = {γn : n = 0, 1, . . .} and let λ = sup(A).

Lemma 22.34. There exists an L[A]-ultrafilter W on κ such that W is
nonprincipal, κ-complete normal and iterable, and every iterated ultrapower
Ult(α)

W (L[A]) is well-founded.

Proof. Since I is precipitous, the generic ultrapower is well-founded, and so
the diagonal function d(α) = α represents some ordinal number in UltG(V ).
Thus there is a set S of positive measure, and an ordinal γ such that

(22.21) S � ď represents γ̌ in UltG(V ).

We shall first show that for every X ∈ L[A], X ⊂ κ, either S ∩ X or S − X
has measure 0, and so

(22.22) U = {X ∈ P (κ) ∩ L[A] : X ∩ S has positive measure}

is an L[A]-ultrafilter.
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Let H = HL[A](κ ∪ C ∪ {A}) be the class of all sets definable in L[A]
from elements of κ ∪ C ∪ {A} (this is expressible in ZF similarly to the way
in which ordinal definability is; or we can use Lθ[A] for some large θ). Since
|C ∩ γn| = γn for each n, it follows that if π is the transitive collapse of H ,
then π(A) = A and π(H) = L[A]. Now if X ⊂ κ and X ∈ L[A], then
because π is the identity on κ, we have X = π(Y ) = Y ∩ κ for some Y ∈ H ,
and Y = {ξ : L[A] � ϕ(ξ, E, A)}. Thus for every X ∈ P (κ) ∩ L[A] there is
a formula ϕ and a finite set E ⊂ κ ∪ K such that

(22.23) X = {ξ < κ : L[A] � ϕ(ξ, E, A)}.

We shall now show that (22.22) defines an L[A]-ultrafilter. Recall that
for any generic ultrafilter G on κ, jG is the identity on κ, and moreover,
jG(ν) = ν for all ν ∈ C (this follows from the definition of C).

If X ∈ L[A], and X ∩ S has positive measure, then because X � X̌ ∈ Ġ
and because (22.21) holds, we have

X ∩ S � γ̌ ∈ jG(Ẋ).

Now using (22.23), and the fact that jG(A) = A and jG(E) = E, we have

(22.24) X ∩ S � (L[Ǎ] � ϕ(γ̌, Ě, Ǎ)).

But the formula forced by X ∩S in (22.24) is about V , and thus true. Hence

‖γ̌ ∈ jG(X̌)‖ = 1,

and by (22.21),
S � X̌ ∈ Ġ.

This, however, means that S − X has measure 0.
Since I is κ-complete, it is clear that U is L[A]-κ-complete, and moreover

the intersection of any countable family of elements of U is nonempty. It is
less clear that U is iterable: Let 〈Xα : α < κ〉 ∈ L[A]; it suffices to show
that S � ({α : Xα ∈ U} ∈ L[A]). If G is generic such that S ∈ G, then
{α < κ : Xα ∈ U} = {α < κ : γ ∈ jG(Xα)}, but this is in L[A] because
jG(〈Xα : α < κ〉) ∈ L[jG(A)] and jG(A) = A.

By Exercise 19.10, UltU (L[A]) is well-founded; let f : κ → κ be the
function that represents κ in UltU (L[A]). Let W = f∗(U).

It is easy to verify that W is a normal, L[A]-κ-complete, iterable L[A]-
ultrafilter on κ, and that the intersection of any countable family of elements
of W is nonempty. By Exercise 19.10, every iterated ultrapower Ult(α)

W (L[A])
is well-founded. ��

Proof of Theorem 22.33(i). Let A = {γn : n = 0, 1, . . . } be as above, let
λ = sup(A), and let W be an L[A]-ultrafilter as in Lemma 22.34. Let us
define in L[A]

(22.25) F = {X ⊂ λ : ∃n0 ∀n ≥ n0 γn ∈ X}
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(compare with (20.6)). We claim that D = F ∩ L[F ] is a normal measure
on λ in L[D].

For each α, let i0,α : L[A] → Ult(α)
W (L[A]) be the canonical elementary

embedding. It follows from the definition of the class C that:

(22.26) if α < γn, then i0,α(γn) = γn;

i0,γn(κ) = γn;

if α < λ, then i0,α(λ) = λ.

Hence for all α < λ, i0,α(L[A]) = L[A], i0,α(F ) = F , and i0,α(D) = D.
We shall now prove that D is an ultrafilter in L[D]. Otherwise, let X ⊂ λ

be the least X (in the canonical well-ordering of L[D]) such that X /∈ D and
λ − X /∈ D. Since i0,α(D) = D for all α < λ, we have i0,α(X) = X for all
α < λ; in particular, i0,γn(X) = X for all n. Now for any n, if γn ∈ X , then
i0,γn(κ) ∈ i0,γn(X) and hence κ ∈ X , and vice versa. Hence either all γn are
in X or none, and so either X ∈ F or λ − X ∈ F , a contradiction.

The proof that D is λ-complete (in L[D]) and normal is similar and is
left to the reader.

Thus we have proved that there exists a D in L[A] such that

(22.27) L[D] � D is a normal measure on λ.

The proof will be complete if we find a transitive model M and an elementary
embedding i : M → L[D] such that i(κ) = λ. Then κ is measurable in some
transitive model.

Let us recall that for each α, i0,α is the elementary embedding i0,α :
L[A] → Ult(α)

W (L[A]). As we have seen, if α < λ, then i0,α(λ) = λ and
i0,α(L[A]) = L[A]. Let C1 be a proper class of ordinals, greater than λ such
that i0,λ(ν) = ν for all ν ∈ C1.

Let H = HL[D](κ ∪ {λ} ∪ C1) be the class of all sets definable in L[D]
from elements of κ∪ {λ}∪C1. (As before, the problem of expressibility of H
in ZF can be overcome by replacing L[D] by a suitable large segment Lθ[D].)
H is an elementary submodel of L[D].

If α < λ, then i0,α(ν) = ν for all ν ∈ κ ∪ {λ} ∪ C1; it follows that
i0,α(x) = x for all x ∈ H . Observing that for every ν such that κ ≤ ν < λ
there exists α < λ such that i0,α(ν) > ν, we conclude that H contains no
ordinal ν such that κ ≤ ν < λ. Hence if π is the transitive collapse of H ,
and M = π(H), then π(λ) = κ; thus i = π−1 is an elementary embedding of
some transitive model M into L[D], and i(κ) = λ. ��

The proof of (ii) uses the notion of forcing which collapses all α < κ
onto ω and makes κ = ℵ1 (the Lévy collapse).

Proof of (ii). Let κ be a measurable cardinal. We shall show that if V [G] is
the generic extension by the Lévy collapse such that κ becomes ℵ1, then V [G]
has a precipitous ideal on ℵ1.
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Let P be the set of all functions p such that dom(p) is a finite subset of
κ × ω and such that p(α, n) < α for all (α, n) ∈ dom(p); p is stronger than q
if p ⊃ q. Let G be a V -generic filter on P . In V [G], κ is ℵ1.

Let D be a normal measure on κ, let M = UltD(V ) and let j : V → M be
the elementary embedding j = jD. In V [G], let I be the ideal on κ generated
by the dual of D; i.e.,

(22.28) X ∈ I if and only if X ∩ Y = ∅ for some Y ∈ D.

A routine argument (using satP = κ) shows that I is in V [G] a countably
complete ideal containing all singletons. It can be proved that I is precipitous;
instead, we shall prove a weaker (but sufficient) property, namely that there
exists an S ⊂ ℵ1, S /∈ I, such that I�S = {X ⊂ ℵ1 : X ∩ S ∈ I} is
a precipitous ideal.

For that, it suffices to show that there exists an S /∈ I such that (when
forcing with sets X /∈ I) S forces that the generic ultrapower is well-founded.
In turn, it suffices to construct an extension of V [G] in which there exists
a V [G]-ultrafilter W on κ, generic over V [G] (with respect to forcing with
sets X /∈ I) such that the generic ultrapower UltW (V [G]) is well-founded.

For every ν, let Pν be the set of all p ∈ P such that α < ν whenever
(α, n) ∈ dom(p), and let P ν = {p ∈ P : α ≥ ν for all (α, n) ∈ dom(p)}; P is
isomorphic to the product Pν × P ν .

Let us consider the notion of forcing j(P ). Clearly, (j(P ))κ = P , and thus
j(P ) is isomorphic to P × Q where Q = (j(P ))κ. Every q ∈ Q is represented
in the ultrapower M by a function 〈qα : α < κ〉 such that qα ∈ Pα for all
α < κ.

Let H be a V [G]-generic filter on Q; thus G × H is V -generic on P × Q.
As in Theorem 21.3 we define in V [G × H ] a V [G]-ultrafilter W on κ as
follows:

(22.29) X ∈ W if and only if κ ∈ (j(Ẋ))G×H .

The definition (22.29) does not depend on the choice of the name Ẋ because
p ∈ G implies j(p) ∈ G×H . Let Ẇ be the canonical name for W . As in (21.8)
we have for any p ∈ P , q ∈ Q,

(22.30) (p, q) � Ẋ ∈ Ẇ if and only if for almost all α, p ∪ qα � α̌ ∈ Ẋ

(here Ẋ is a P -valued name and 〈qα : α < κ〉 represents q in M ; “almost all”
refers to the normal measure D).
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First we observe that the ultrapower UltW (V [G]) is well-founded. This is
because the following commutative diagram holds:

UltW (V [G])

V [G] M [G × H ]
j

k
jW

�

�

�
�

�
�

�
���

.

In the diagram, j is the extension of j : V → M defined by

j(x) = (j(ẋ))G×H

and k is defined as follows: If f ∈ V [G] is a function on κ representing [f ]
in UltW (V [G]), then

k([f ]) = (j(f))(κ).

Both j and k are elementary and the diagram commutes.
It remains to show that W is V [G]-generic with respect to forcing with

sets X /∈ I. It suffices to show that if X = {Xi : i < θ} is an I-partition of κ,
then Xi ∈ W for some i. Let Ẋ ∈ V P be a name for X and let Ẋi, i < θ, be
names for the Xi. Let us assume that there are conditions p ∈ G and q ∈ H
such that

p � Ẋ is an İ-partition of κ̌

and for each i < θ,
(p, q) � Ẋi /∈ Ẇ .

We shall derive a contradiction.
Let q be represented in M by 〈qα : α < κ〉. By (22.30) there is for each i

a set Ai ∈ D such that for all α ∈ Ai,

(22.31) p ∪ qα � α /∈ Ẋi.

Let us define (in V [G]),

(22.32) T = {α < κ : qα ∈ G}.

We shall prove that T /∈ I and that T ∩ Xi ∈ I for all i < θ, thus reaching
a contradiction since X is an I-partition.

For each i < θ, if α ∈ T and α ∈ Ai, then p∪qα ∈ G and hence, by (22.31),
α /∈ Xi. It follows that T ∩ Xi ∩ Ai = ∅, and so by (22.28), T ∩ Xi ∈ I.

Let us finally show that T /∈ I. It suffices to show that T ∩Z �= ∅ whenever
Z ∈ D. Thus let Z ∈ D, and let us prove that qα ∈ G for some α ∈ Z. Let

E = {r ∈ P : r ≤ qα for some α ∈ Z}.

It is easy to see that E is dense in P because Z is unbounded and qα ∈ Pα

for each α < κ. Thus E ∩ G �= ∅ and hence T ∩ Z �= ∅. ��
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Exercises

22.1. Let I be a κ-complete ideal and let λ ≤ κ. If I is not λ-saturated then there
exists a family {Zα : α < λ} of pairwise disjoint sets of positive I-measure.

[If {Xα : α < λ} is such that Xα ∩ Xβ ∈ I whenever α �= β, let Zα = Xα −
S

β<α Xβ .]

22.2. Let I be a κ-complete σ-saturated ideal on κ. If g is a minimal unbounded
function then g∗(I) is a normal κ-complete σ-saturated ideal.

22.3. Let ẋα be as in (22.5). Show that xα /∈M .
[Let a ∈M . Show that for each k, ‖ẋα∩k = ǎ∩k‖ = [Dk] where µ(Dk) = 1/2k.]

22.4. Let I be a σ-saturated κ-complete ideal on κ, and let {Yξ : ξ < ω1} be
a family of sets of positive measure. Then there is an uncountable W ⊂ ω1 such
that

T

ξ∈W Yξ is nonempty.
[Assume that {Yξ : ξ < ω1} is a counterexample. For each ν < ω1, let Zν =

T

ξ≥ν (κ− Yξ). Show that Z0 ⊂ Z1 ⊂ . . . ⊂ Zν ⊂ . . . and that
S

ν<ω1
Zν = κ. Hence

there is γ < ω1 such that Z =
S

ν<γ Zν , then κ − Z ∈ I . This is a contradiction
since Yγ ⊂ κ− Z.]

22.5. If I is a σ-saturated κ-complete ideal on κ and P is a σ-saturated notion of
forcing then in V [G], the ideal generated by I is a σ-saturated κ-complete ideal.

[Proceed as in Lemma 22.11 and use Exercise 22.4 to show that J is σ-saturated.]

If κ is measurable and if we adjoin λ ≥ κ Cohen reals, then κ carries a σ-
saturated κ-complete ideal but is not real-valued measurable:

22.6. Show that in V [G] there are functions fα : ω → ω, α < λ, such that whenever
g : ω → ω, then for at most countably many α’s we have fα(n) ≤ g(n) for all n.

[V [G] is also obtained by forcing with the product of λ copies of the notion of
forcing that adjoins a generic function f : ω → ω, thus V [G] = V [〈fα : α < λ〉].
Show that if g : ω → ω, then there is a countable A ⊂ λ such that g ∈ V [〈fα :
α < A〉]; if β /∈ A, use the genericity of fβ over V [〈fα : α < A〉] to show that
fβ(n) > g(n) for some n.]

22.7. In V [G], κ is not real-valued measurable.
[Use Exercise 22.6 and the proof of Lemma 10.16.]

22.8. If I is κ+-saturated, then P (κ)/I is a complete Boolean algebra.
[By Exercise 7.33 it suffices to show that B is κ+-complete. Show that

P

W
exists in B for every incompatible W ⊂ B. Extend W to a partition Z of B;
Z = {[Xα] : α < κ}. Let Yα = Xα −

S

β<α Xβ , and Y =
S{Yα : [Xα] ∈ W}. Show

that [Y ] =
P

W in B.]

22.9. If the GCH holds and B = P (κ)/I is complete, then I is κ+-saturated.
[If B is not κ+-saturated, let W be an incompatible subset of B of size κ+.

For each X ⊂ W let ux =
P

X. It follows that |B| ≥ 2κ+
, but clearly |B| ≤ 2κ;

a contradiction.]

22.10. If I is normal, then P (κ)/I is κ+-complete.
[Let Xα, α < κ, be disjoint subsets of κ such that Xα /∈ I for all α. For each

α < κ let Yα be Xα without the least element of Xα; let Y =
S

α<κ Yα. On the
one hand, [Y ] ≥ [Xα] for all α; on the other hand, if Z ⊂ Y and Z /∈ I , let f be
the function on Z defined such that for all x ∈ Yα, f(x) = the least element of Xα.
Since f is regressive, and I is normal, f is constant on some S /∈ I , and hence
Z ∩ Yα /∈ I for some α. Thus [Y ] =

P

α<κ[Xα].]
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22.11. Let I be a normal κ-complete ideal on κ. If I is not κ+-saturated, then
there exists an almost disjoint family of κ+ sets of positive measure.

[Let Xi, i < κ+, be sets of positive measure such that Xi ∩ Xj has measure
zero. For each i < κ+, enumerate {Xj : j < i} by {Zα : α < κ}, and let Yi be the
diagonal intersection of {Xi − Zα : α < κ}. Now Yi contains almost all elements
of Xi, and Yi ∩ Zα ⊂ α + 1 for every α < κ. Thus any Yi, Yj are almost disjoint.]

22.12. If I is a κ-complete ideal on κ with the property that every regressive
function is bounded almost everywhere (i.e., if f(α) < α for almost all α, then
there is γ < κ such that f(α) < γ for almost all α), then I is κ-saturated (and
normal).

[Otherwise, let Xα, α < κ, be a partition of κ into disjoint sets of positive
measure. For α > 0, let Yα = Xα − {aα} where aα = min Xα, and let Y0 =
X0∪{aα : α > 0}. The function f that has value aα on each Yα is regressive almost
everywhere but is not bounded almost everywhere.]

22.13. If I is an atomless κ-complete κ-saturated ideal on an inaccessible cardi-
nal κ, then κ is not weakly compact.

[Show that κ does not have the tree property. Use I to construct a tree (T,⊃)
whose elements are sets of positive measure. At successor steps, split each X on
the top level into two disjoint sets of positive measure. At limit steps, take all those
intersections along branches that have positive measure. Since I is κ-saturated,
each level has size < κ; each level α < κ is nonempty because κ is inaccessible and
I is κ-complete. Then use sat(I) ≤ κ to show that T has no branch of length κ.]

22.14. If I is a precipitous ideal on κ, then there exists a minimal unbounded
function.

[There is a set X of positive measure and a function f on X such that X forces
that f represents κ in the generic ultrapower.]

Historical Notes

Saturated ideals, a concept introduced by Tarski in [1945], were brought to promi-
nence in Solovay’s work [1971]. Solovay introduced the technique of generic ultra-
powers and proved Theorems 22.1 and 22.26 (as well as Theorem 8.10).

Theorem 22.2 is due to Prikry [1975], and so is the model in Example 22.10 in
which κ carries a σ-saturated ideal [1970]. Theorem 22.16 is due to Jech and Prikry
([1976] and [1979]).

Precipitous ideals were introduced by Jech and Prikry in [1976]; their pa-
per [1979] investigates generic ultrapowers. Lemma 22.21: Jech [1976]. Lemma 22.28:
Solovay [1971]. Lemmas 22.29 and 22.30: Jech and Prikry [1976, 1979].

Kunen’s paper [1978] contains a number of results on saturated ideals. Kunen
constructs several generic extensions with saturated ideals, including a model (using
a huge cardinal) in which ℵ1 carries an ℵ2-saturated ideal. In [1970], Kunen proves
that if κ carries a κ+-saturated ideal then there is an inner model with a measurable
cardinal; in [1971a] Kunen shows that if moreover κ is a successor cardinal then
there is an inner model with many measurable cardinals. Mitchell [1983] improved
this to measurable cardinals of order κ+. Part (i) of Theorem 22.33 is due to Jech
and Prikry and part (ii) was proved by Mitchell; see Jech et al. [1980].

Exercise 22.4: Silver.
Exercises 22.5, 22.6 and 22.7: Prikry [1970].
Exercise 22.8: Smith and Tarski.
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Exercise 22.9: Solovay [1971].
Exercise 22.11: Baumgartner, Hajnal, and Máté [1975].
Exercise 22.12: Kanamori [1976]
Exercise 22.13: Lévy, Silver.


