
24. The Singular Cardinal Problem

In this chapter we use combinatorial methods to prove theorems (in ZFC) on
cardinal arithmetic of singular cardinals. We introduce a powerful theory of
Shelah, the pcf theory, and apply the theory to present a most remarkable
result of Shelah on powers of singular cardinals.

The Galvin-Hajnal Theorem

Following Silver’s Theorem 8.12 on singular cardinals of uncountable cofinal-
ity, Galvin and Hajnal proved a related result:

Theorem 24.1 (Galvin-Hajnal [1975]). Let ℵα be a strong limit singular
cardinal of uncountable cofinality. Then 2ℵα < ℵγ where γ = (2|α|)+.

Note that the theorem gives a nontrivial information only if ℵα is not
a fixed point of the aleph function.

In order to simplify the notation, we consider the special case α = ω1. The
following lemma implies the theorem (as in the proof of Silver’s Theorem).
Two functions f and g on ω1 are almost disjoint if {α : f(α) = g(α)} is at
most countable.

Lemma 24.2. Assume that ℵℵ1
α < ℵω1 for all α < ω1. Let F be an almost

disjoint family of functions

F ⊂
∏

α<ω1

Aα

such that |Aα| < ℵω1 for all α < ω1. Then |F | < ℵγ where γ = (2ℵ1)+.

Proof. We first introduce the following relation among functions ϕ : ω1 → ω1

(24.1) ϕ < ψ if and only if {α < ω1 : ϕ(α) ≥ ψ(α)} is nonstationary.

Since the closed unbounded filter is σ-complete, it follows that there is no
infinite descending sequence

ϕ0 > ϕ1 > ϕ2 > . . . .
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Otherwise, the set {α < ω1 : ϕn(α) ≤ ϕn+1(α) for some n} is nonstationary
and so there is an α such that

ϕ0(α) > ϕ1(α) > ϕ2(α) > . . . ,

a contradiction.
Hence the relation ϕ < ψ is well-founded and we can define the rank ‖ϕ‖

of ϕ in this relation (called the norm of ϕ) such that

‖ϕ‖ = sup{‖ψ‖ + 1 : ψ < ϕ}.

Note that ‖ϕ‖ = 0 if and only if ϕ(α) = 0 for a stationary set of α’s.
Lemma 24.2 follows from

Lemma 24.3. Assume that ℵℵ1
α < ℵω1 for all α < ω1. Let ϕ : ω1 → ω1 and

let F be an almost disjoint family of functions

F ⊂
∏

α<ω1

Aα

such that
|Aα| ≤ ℵα+ϕ(α)

for every α < ω1. Then |F | ≤ ℵω1+‖ϕ‖.

To prove Lemma 24.2 from Lemma 24.3, we let ϕ be such that |Aα| ≤
ℵα+ϕ(α). If ϑ is the length of the well-founded relation ϕ < ψ, then certainly
|ϑ| ≤ 2ℵ1 and so ϑ < (2ℵ1)+. Hence ω1 + ‖ϕ‖ < (2ℵ1)+ for every ϕ and
Lemma 24.2 follows. ��

Proof of Lemma 24.3. By induction on ‖ϕ‖. If ‖ϕ‖ = 0, then ϕ(α) = 0 on
a stationary set and the statement is precisely Lemma 8.16.

To handle the case ‖ϕ‖ > 0, we first generalize the definition of ϕ < ψ.
Let S ⊂ ω1 be a stationary set. We define

(24.2) ϕ <S ψ if and only if {α ∈ S : ϕ(α) ≥ ψ(α)} is nonstationary.

The same argument as before shows that ϕ <S ψ is a well-founded relation
and so we define the norm ‖ϕ‖S accordingly. Note that if S ⊂ T , then ‖ϕ‖T ≤
‖ϕ‖S . In particular, ‖ϕ‖ ≤ ‖ϕ‖S, for any stationary S. Moreover,

(24.3) ‖ϕ‖S∪T = min{‖ϕ‖S, ‖ϕ‖T }

as can easily be verified.
For every ϕ : ω1 → ω1, we let Iϕ be the collection of all nonstationary

sets along with those stationary S such that ‖ϕ‖ < ‖ϕ‖S. If S is stationary
and X is nonstationary, then ‖ϕ‖S∪X = ‖ϕ‖S. This and (24.3) imply that
Iϕ is a proper ideal on ω1.
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If ‖ϕ‖ is a limit ordinal, then

S = {α < ω1 : ϕ(α) is a successor ordinal} ∈ Iϕ

because if S /∈ Iϕ, then ‖ϕ‖ = ‖ϕ‖S = ‖ψ‖S + 1, where ψ(α) = ϕ(α) − 1 for
all α ∈ S. Hence

{α < ω1 : ϕ(α) is a limit ordinal} /∈ Iϕ.

Similarly, if ‖ϕ‖ is a successor ordinal, then

{α < ω1 : ϕ(α) is a successor ordinal} /∈ Iϕ.

Now we are ready to proceed with the induction.
(a) Let ‖ϕ‖ be a limit ordinal, ‖ϕ‖ > 0. Let

S = {α < ω1 : ϕ(α) > 0 and is a limit ordinal}.

It follows that S /∈ Iϕ.
We may assume that Aα ⊂ ℵα+ϕ(α) for every α, and so we have f(α) <

ℵα+ϕ(α) for every f ∈ F . Given f ∈ F , we can find for each α ∈ S some β <
ϕ(α) such that f(α) < ωα+β; call this β = ψ(α). For α /∈ S, let ψ(α) = ϕ(α).
Since S /∈ Iϕ, we have ‖ψ‖ ≤ ‖ψ‖S < ‖ϕ‖S = ‖ϕ‖. We also have f ∈ Fψ,
where

Fψ = {f ∈ F : f(α) < ωα+ψ(α) for all α},
and so

F =
⋃
{Fψ : ‖ψ‖ < ‖ϕ‖}.

By the induction hypothesis, |Fψ | ≤ ℵω1+‖ψ‖ < ℵω1+‖ϕ‖ for every ψ such
that ‖ψ‖ < ‖ϕ‖. Since the number of functions ψ : ω1 → ω1 is 2ℵ1 , and
2ℵ1 < ℵω1 , we have |F | ≤ ℵω1+‖ϕ‖.

(b) Let ‖ϕ‖ be a successor ordinal, ‖ϕ‖ = γ + 1. Let

S0 = {α < ω1 : ϕ(α) is a successor}.

It follows that S0 /∈ Iϕ.
Again, we may assume that Aα ⊂ ωα+ϕ(α) for each α < ω1. First we

prove that for every f ∈ F , the set

Ff = {g ∈ F : ∃S ⊂ S0, S /∈ Iϕ, (∀α ∈ S) g(α) ≤ f(α)}

has cardinality ℵω1+γ . If S ⊂ S0 and S /∈ Iϕ, let

Ff,S = {g ∈ F : (∀α ∈ S) g(α) ≤ f(α)}.

Let ψ : ω1 → ω1 be such that ψ(α) = ϕ(α) − 1 for α ∈ S, and ψ(α) = ϕ(α)
otherwise. Since S /∈ Iϕ, we have ‖ψ‖ ≤ ‖ψ‖S < ‖ϕ‖S = ‖ϕ‖ = γ + 1 and so
‖ψ‖ = γ. Since Ff,S ⊂

∏
α<ω1

Bα, where |Bα| ≤ ℵα+ψ(α) for all α, we use the
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induction hypothesis to conclude that |Ff,S | ≤ ℵω1+γ . Then it follows that
|Ff | ≤ ℵω1+γ .

To complete the proof, we construct a sequence

(24.4) 〈fξ : ξ < ϑ〉

such that ϑ ≤ ℵω1+γ+1 and

(24.5) F =
⋃
{Ffξ

: ξ < ϑ}.

Given fν , ν < ξ, we let fξ ∈ F (if it exists) be such that fξ /∈ Ffν , for all
ν < ξ. Then the set

{α ∈ S0 : fξ(α) ≤ fν(α)}
belongs to Iϕ, and so fν ∈ Ffξ

, for each ν < ξ.
Since |Ffξ

| ≤ ℵω1+γ and Ffξ
⊃ {fν : ν < ξ}, it follows that ξ < ℵω1+γ+1

if fξ exists. Thus the sequence (24.4) has length ϑ ≤ ℵω1+γ+1. Then we have

F =
⋃
{Ffξ

: ξ < ϑ}

and so |F | ≤ ℵω1+γ+1. ��

Ordinal Functions and Scales

The proof of the Galvin-Hajnal Theorem suggests that ordinal functions play
an important role in arithmetic of singular cardinals. We shall now embark
on a systematic study of ordinal functions and introduce Shelah’s pcf theory.

Let A be an infinite set and let I be an ideal on A.

Definition 24.4. For ordinal functions f , g on A, let

f =I g if and only if {a ∈ A : f(a) �= g(a)} ∈ I,

f ≤I g if and only if {a ∈ A : f(a) > g(a)} ∈ I,

f <I g if and only if {a ∈ A : f(a) ≥ g(a)} ∈ I.

If F is a filter on A, then f <F g means f <I g where I is the dual ideal,
and similarly for f ≤F g and f =F g.

The relation ≤I is a partial ordering (of equivalence classes). If S is a set
of ordinal functions on A then g is an upper bound of S if f ≤I g for all
f ∈ S, and g is a least upper bound of S if it is an upper bound and if g ≤I h
for every upper bound h.

The relation <I is also a partial ordering (different from ≤I unless I is
a prime ideal), and if I is σ-complete then <I is well-founded. If I is the
nonstationary ideal on a regular uncountable cardinal κ, then the rank of an
ordinal function f on κ is the (Galvin-Hajnal) norm ‖f‖.

The following lemma shows that for every η < κ+ there is a canonical
function fη on κ of norm η:
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Lemma 24.5. Let κ be a regular uncountable cardinal. There exist ordinal
functions fη, η < κ+, on κ such that

(i) f0(α) = 0 and fη+1(α) = fη(α) + 1, for all α < κ,
(ii) if η is a limit ordinal then fη is a least upper bound of {fξ : ξ < η}

in ≤INS .

The functions are unique up to =INS , and for every stationary set S ⊂ κ,
‖fη‖S = η.

Proof. Let 〈ξν : ν < cf η〉 be some sequence with limit η. If cf η < κ, let
fη(α) = sup{fξν (α) : ν < cf η}, and if cf η = κ, let fη(α) = sup{fξν (α) :
ν < α} (for every limit ordinal α), the diagonal limit of fξ, ξ < η. ��

For η ≥ κ+, canonical functions may or may not exist. The existence of fη

for all ordinals η is equiconsistent with a measurable cardinal. For the relation
between canonical functions and canonical stationary sets, see Exercise 24.10.

A subset A of a partially ordered set (P, <) is cofinal if for every p ∈ P
there exists some a ∈ A such that p ≤ a. The cofinality of (P, <) is the small-
est size of a cofinal set (it need not be a regular cardinal—see Exercise 24.11).
The true cofinality of (P, <) is the least cardinality of a cofinal chain (if it
exists—see Exercise 24.12). The true cofinality is a regular cardinal (or 1 if
P has a greatest element).

Consider again an infinite set A, an ideal I on A, and an indexed set
{γa : a ∈ A} of limit ordinals.

Definition 24.6. A scale in
∏

a∈A γa is a <I -increasing transfinite sequence
〈fα : α < λ〉 of functions in

∏
a∈A γa that is cofinal in

∏
a∈A γa in the partial

ordering <I .

If
∏

a∈A γa has a λ-scale (i.e., a scale of length λ) and λ is a regular
cardinal then it has true cofinality λ, and is λ-directed, i.e., every set B ⊂∏

a∈A γa of size < γ has an upper bound. The ordinal function 〈γa : a ∈ A〉
is the least upper bound of

∏
a∈A γa; moreover, it is an exact upper bound :

Definition 24.7. In a partially ordered set (P, <), g is an exact upper bound
of a set S if S is cofinal in the set {f ∈ P : f < g}.

The following theorem is a precursor of the pcf theory. We note that the
pcf theory shows, among others, that different sequences 〈λn : n < ω〉 with
the same limit will generally result in different cofinalities of

∏
n<ω λn.

Theorem 24.8 (Shelah). Let κ be a strong limit cardinal of cofinality ω.
There exists an increasing sequence 〈λn : n < ω〉 of regular cardinals with
limit κ such that the true cofinality of

∏
n<ω λn modulo the ideal of finite

sets is equal to κ+.
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Proof. Let I be the ideal of finite subsets of ω. We shall find the λn’s and
a κ+-scale in

∏
n λn in the partial ordering <I .

First we choose any increasing sequence κn, n < ω, of regular cardinals
with limit κ. As every subset of

∏
n<ω κn of size κ has an upper bound in

(
∏

n<ω κn, <I), we can construct inductively a <I -increasing κ+-sequence
F = 〈fξ : ξ < κ+〉 of functions in

∏
n κn.

Lemma 24.9. There exists a function g : ω → κ that is an upper bound of F
in <I , and is ≤I-minimal among such upper bounds.

Proof. Let g0 = 〈κn : n < ω〉; we shall construct a maximal transfinite ≤I-
decreasing sequence 〈gν〉ν of upper bounds of F . It suffices to show that the
length of the sequence 〈gν〉ν is not a limit ordinal: Then the last function is
≤I -minimal.

Thus let ϑ be a limit ordinal, and let 〈gν : ν < ϑ〉 be a ≤I-decreasing
sequence of upper bounds for F . We shall find a function g such that g >I fξ

for all ξ < κ+, and g ≤I gν for all ν < ϑ.
First we claim that |ϑ| ≤ 2ℵ0 . Thus assume that |ϑ| ≥ (2ℵ0)+ and consider

the partition G : [ϑ]2 → ω defined as follows (for α < β):

G(α, β) = the least n such that gα(n) > gβ(n).

By the Erdős-Rado Partition Theorem 9.6 there exists an infinite set of or-
dinals α0 < α1 < α2 < . . . such that for some n, gα0(n) > gα1(n) > gα2(n) >
. . ., a contradiction.

Let A =
⋃

ν<ϑ ran(gν) and let S = Aω . Since |ϑ| ≤ 2ℵ0 , we have |S| ≤ 2ℵ0 .
For every g ∈ S, if g is not an upper bound for F , let ξg be such that fξg �<I g.
Since |S| ≤ 2ℵ0 , there is some η < κ+ greater than all the ξg’s. Now let

g(n) = the least γ ∈ A such that γ > fη(n).

The function g is an upper bound for F : If not then fξg �<I g but fξg <I

fη <I g. We complete the proof of the lemma by showing that g ≤I gν for
all ν < ϑ. If ν < ϑ then gν(n) > fη(n) for all but finitely many n and, since
gν(n) ∈ A, we have gν ≥ g. ��

Let g be the function given by Lemma 24.9. We claim that g is an exact
upper bound of F . If not, let f <I g be such that f �<I fξ for all ξ. For
each ξ < κ+, let Aξ be the infinite set of all n such that f(n) > fξ(n).
Since 2ℵ0 < κ, there exists an infinite set A, such that for κ+ many ξ’s,
f(n) > fξ(n) for all a ∈ A. It follows that f�A >I fξ�A for every ξ < κ+,
and therefore the function g′ = f�A∪g�(ω − A) ≤I g is an upper bound of F
but g′ �=I g, a contradiction.

Now, if g is increasing with limit κ and if every g(n) is a regular cardinal,
then we let λn = g(n) and are done. In general, all but finitely many g(n) are
limit ordinals; without loss of generality, all are. For each n, let Yn be a closed
unbounded subset of g(n) whose order-type is a regular cardinal γa. Note that
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supn γn = κ; otherwise, |
∏

n Yn| < κ and hence bounded by some fξ. So let
〈λn : n < ω〉 = 〈γkn : n < ω〉 be an increasing subsequence of 〈γn〉n.

For each f ∈ F , let hf be the function

hf (n) = the least α ∈ Ykn such that α ≥ f(kn).

and let H = {hf : f ∈ F}. For every f ∈
∏

n Yn there exists some h ∈ H such
that f <I h. Also, |H | = κ+ since every smaller set of functions is bounded
by some fξ. Thus we can find in H a <I -increasing transfinite sequence
〈hξ : ξ < κ+〉 such that for every f ∈

∏
n Yn, there is a ξ with f <I hξ.

By copying
∏

n Yn onto
∏

n λn, we get a sequence 〈hξ : ξ < κ+〉 with the
required properties. ��

As an application of Theorem 24.8 we give a short proof of Kunen’s The-
orem 17.7, due to Zapletal [1996].

Assume that j : V → M is elementary, with critical point κ, and let
λ = limn jn(κ). As λ is a strong limit cardinal of cofinality ω, let 〈λn : n < ω〉
be an increasing sequence of regular cardinals with limit λ such that κ < λ0

and that
∏

n λn has a λ+-scale F = 〈fξ : ξ < λ+〉 (modulo finite). Since
j(λ) = λ, we have j(λ+) = λ+, and j(F ) is a λ+-scale in

∏
n j(λn).

Since j“λ+ is cofinal in j(λ+) = λ+, j“F is cofinal in j(F ) and thus
in

∏
n j(λn). However, let g ∈

∏
n j(λn) be the function g(n) = sup j“λn;

we have g(n) < j(λn) because j(λn) is regular. If f ∈
∏

n λn then g >
j(f) pointwise because j(f) = j“f . Hence g is an upper bound for j“F ,
a contradiction. ��

Toward the pcf theory, we shall now prove several results on ordinal func-
tions and scales. Let I be an ideal on A.

Lemma 24.10. If λ > 2|A| is a regular cardinal then every <I-increasing
λ-sequence of ordinal functions on A has an exact upper bound.

Proof. Let F = 〈fα : α < λ〉 be <I-increasing. Let M be an elementary
submodel of Hϑ for a sufficiently large ϑ such that I ∈ M , F ∈ M , |M | = 2|A|

and M |A| ⊂ M . For every α, let

gα(a) = the least β ∈ M such that β ≥ fα(a) (a ∈ A).

Since M |A| ⊂ M , we have gα ∈ M , and since |M | < λ, there exists some
f ∈ M such that f = gα for λ many α’s. Since 〈fα〉α is increasing and f ≥I fα

for λ many α’s, f is an upper bound of F .
To show that whenever h <I f then h <I fα for some α, it is enough to

show this for every h ∈ M . Thus let h ∈ M be such that h <I f .
Let α be any α such that f = gα. For every a ∈ A such that h(a) < gα(a)

we necessarily have h(a) < fα(a) because h(a) ∈ M and gα(a) is the least
β ∈ M such that β ≥ fα(a). Hence h <I fα. ��
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If F is a set of ordinal functions on A and g is an upper bound of F , then
we say that F is bounded below g if it has an upper bound h <I g; F is cofinal
in g if it is cofinal in

∏
a∈A g(a). If X ∈ I+ then f <I g on X , etc., means

f <I�X g where I�X is the ideal generated by I ∪ {A − X}.

Corollary 24.11. If λ > 2|A| is regular, F = 〈fα : α < λ〉 is <I-increasing
and g is an upper bound of F , then either F is bounded below g, or F is
cofinal in g, or A = X ∪ Y with X, Y ∈ I+ such that F is bounded below g
on X and is cofinal in g on Y .

Proof. Let f be an exact upper bound of F and let X = {a ∈ A : f(a) <
g(a)}. ��

Corollary 24.12. Let λ > 2|A| be a regular cardinal, let γa, a ∈ A, be
limit ordinals, and assume that

∏
a∈A γa is λ-directed in <I . Then either∏

a∈A γa is λ+-directed, or has a λ-scale, or A = X ∪Y with X, Y ∈ I+ such
that

∏
a∈A γa has a λ-scale on X and is λ+-directed on Y .

Proof. Assume that
∏

a∈A γa is λ-directed but not λ+-directed, and let S ⊂∏
a∈A γa be such that |S| = λ and S is not bounded. Using the λ-directness,

we construct an increasing sequence F = 〈fα : α < λ〉 such that for every
f ∈ S, there exists an α < λ such that f <I fα. As F is not bounded, there
exists some Z ∈ I+ such that F is a scale on Z.

Now let Z be the collection of all Z ∈ I+ that have a λ-scale, and for
each Z ∈ Z let 〈fZ

α : α < λ〉 be a λ-scale on Z. Let S = {fZ
α : α < λ,

Z ∈ Z}; since 2|A| = λ, we have |S| = λ, and we can construct an increasing
λ-sequence F = 〈fα : α < λ〉 such that for every f ∈ S there is an α < λ
with f ≤I fα.

Either F is a scale, or A = X∪Y such that F is bounded on X and cofinal
on Y . To complete the proof, we show that

∏
a∈A γa is λ+-directed; i.e., that

for every set of size λ is bounded on X . If not, we repeat the argument above
and find a Z ⊂ X that has a scale. This contradicts the fact that S is bounded
on X . ��

Definition 24.13. Let F = 〈fα : α < λ〉, λ regular, be a <I -increasing
sequence of ordinal functions on A and let γ < λ be a regular uncountable
cardinal. F is γ-rapid if for every β < λ of cofinality γ there exists a closed
unbounded set C ⊂ β such that for every limit ordinal α < β, fα >I sC∩α,
where sC∩α is the pointwise supremum of {fξ(a) : ξ ∈ C ∩ α}:

sC∩α(a) = sup{fξ(a) : ξ ∈ C ∩ α} (a ∈ A).

Lemma 24.14. Let F = 〈fα : α < λ〉 be γ-rapid, with γ > |A|. For each
a ∈ A, let Sa ⊂ λ be such that |Sa| < γ. Then there exists an α < λ with the
property that for every h ∈

∏
a∈A Sa, if h >I fα, then h is an upper bound

of F .
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Proof. Assume by contradiction that for every α < λ there exists an
h ∈

∏
a∈A Sa such that h >I fα but h is not an upper bound of F . By

induction, we construct a continuous increasing sequence αξ, ξ < γ, and
functions hξ ∈

∏
a∈A Sa such that for every ξ, fαξ

<I hξ and fαξ+1 �I hξ.
Let β = limξ→γ αξ.

As F is γ-rapid, there exists a closed unbounded C ⊂ β such that fα >I

sC∩α for every α ∈ C. We may assume that αξ ∈ C for every ξ < γ (otherwise
replace {αξ}ξ<γ by its intersection with C).

For each ξ < γ we have sC∩αξ
<I fαξ

<I hξ �I fαξ+1 and so there exists
some aξ ∈ A such that

sC∩αξ
(aξ) < fαξ

(aξ) < hξ(aξ) < fαξ+1(aξ).

As γ > |A|, there exist a set Z ⊂ γ of size γ and some a ∈ A such that aξ = a
for all ξ ∈ Z. Now if ξ and η are in Z, such that ξ+1 < η, then αξ+1 ∈ C∩αη

and we have
hξ(a) < fαξ+1(a) ≤ sC∩αη(a) < hη(a).

This is a contradiction because |Sa| < γ while |Z| = γ. ��

Corollary 24.15. If F = 〈fα : α < λ〉 is γ-rapid, with |A| < γ < λ, and if
f is the least upper bound of F , then cf f(a) ≥ γ for I-almost all a ∈ A.

Proof. Let f be an upper bound of F , and assume that B = {a ∈ A :
cf f(a) < γ} ∈ I+. We shall find an upper bound h of F such that h <I f
on B.

For a ∈ B, let Sa be a cofinal subset of f(a) of size < γ. By Lemma 24.14
there is an α < λ such that for every h ∈

∏
a∈B Sa, h >I fα on B implies

that h is an upper bound of F on B. Given this α, we consider a function
h ∈

∏
a∈B Sa as follows: If fα(a) < f(a), let h(a) ∈ Sa be such that fα(a) <

h(a) < f(a). The function h is an upper bound of F on B, and h <I f
on B. ��

Theorem 24.16 (Shelah). Let κ be a regular uncountable cardinal, and let
I = INS be the nonstationary ideal on κ. Let 〈ηξ : ξ < κ〉 be a continuous
increasing sequence with limit η. Then

∏
ξ<κ ℵηξ+1 has true cofinality ℵη+1

(in <I).

We shall prove this theorem only under the assumption 2κ < ℵη (we only
need the weaker version for the proof of Theorem 24.33). For the general
proof, see Burke and Magidor [1990].

Proof. Let λ = ℵη+1. We wish to find a λ-scale. It is not difficult to see that∏
ξ<κ ℵηξ+1 is λ-directed. By Corollary 24.12 (as we assume 2κ < λ), if there

is no λ-scale then there is a stationary set S ⊂ κ such that
∏

ξ∈S ℵηξ+1 is
λ+-directed.

We shall construct a <I-increasing λ-sequence in
∏

ξ∈S ℵηξ+1 that is γ-
rapid for all regular γ < ℵη. For every limit ordinal β < λ, let Cβ ⊂ β be



466 Part II. Advanced Set Theory

closed unbounded, of size cf β. We construct F = 〈fα : α < λ〉 by induction.
Let α be a limit ordinal. For each limit β > α, let sβ be the pointwise
supremum of {fν : ν ∈ Cβ ∩ α}. For eventually all ξ < κ, sν(ξ) < ℵηξ+1, so
sν ∈

∏
ξ∈S ℵηξ+1. Since

∏
ξ∈S ℵηξ+1 is λ+-directed, we can find fα so that

fα >I sβ on S for all limit β < λ. This guarantees that F is γ-rapid for every
regular uncountable γ < λ.

By Lemma 24.10, F has an exact upper bound g, and without loss of
generality, g(ξ) ≤ ℵηξ+1 for all ξ ∈ S. We claim that g(ξ) ≥ ℵηξ+1 for almost
all ξ ∈ S, and hence F is a scale on S, contrary to the assumption on S. If
g(ξ) < ℵηξ+1 for stationary many ξ, then cf g(ξ) < ℵηξ

, and hence for some
γ < ℵη+1, cf g(ξ) < γ for stationary many ξ. This contradicts Corollary 24.15,
as F is γ-rapid for all γ < λ. ��

The pcf Theory

Shelah’s pcf theory is the theory of possible cofinalities of ultraproducts of
sets of regular cardinals. Let A be a set of regular cardinals, and let D be
an ultrafilter on A.

∏
A =

∏
a∈A{a : a ∈ A} denotes the product {f :

dom(f) = A and f(a) ∈ a}; the ultraproduct
∏

A/D is linearly ordered, and
cof D = cof

∏
A/D is its cofinality.

Definition 24.17. If A is a set of regular cardinals, then

pcf A = {cof D : D is an ultrafilter on A}.

The set pcf A is a set of regular cardinals, includes A (for every a ∈ A
consider the principal ultrafilter given by a), has cardinality at most 22|A|

and satisfies pcf(A1 ∪ A2) = pcf A1 ∪ pcf A2.
We shall investigate the structure of pcf in the next section. In this section

we explore the relation between pcf and cardinal arithmetic. Instead of the
general theory we concentrate on the special case when A = {ℵn}∞n=0. We
prove the following theorem:

Theorem 24.18 (Shelah). If ℵω is a strong limit cardinal then

max(pcf{ℵn}∞n=0) = 2ℵω .

A stronger theorem is true: If 2ℵ0 < ℵω then max(pcf{ℵn}∞n=0) = ℵℵ0
ω ;

again, we refer the reader to Burke and Magidor [1990].
We say that a set of regular cardinals A is an interval if it contains every

regular λ such that min A ≤ λ < sup A.

Lemma 24.19. Let A be an interval of regular cardinals such that min A =
(2|A|)+. Then pcf A is an interval.
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Proof. Let D be an ultrafilter on A and let λ be a regular cardinal such that
min A ≤ λ < cof D. We shall find an ultrafilter E on A such that cof E = λ.

Let {fα : α < cof D} be a D-increasing sequence in
∏

A. Since λ > 2|A|,
the sequence has a least upper bound g in ≤D (by Lemma 24.10). For each
a ∈ A let h(a) = cf g(a) and let Sa be a cofinal subset of g(a) of order-
type h(a). It is easy to see that

∏
a∈A Sa/D has an increasing λ-sequence

cofinal in g, and hence
∏

a∈A h(a)/D has a cofinal sequence {hα : α < λ}.
For D-almost all a, h(a) > 2|A|: This is because the number of functions

from A into 2|A| is less than λ. Thus we may assume that h(a) ∈ A for all
a ∈ A. Let E be the ultrafilter on A defined by

E = {X ⊂ A : h−1(X) ∈ D}.

We now construct, by induction on α, functions gα, α < λ, such that the
sequence {gα ◦h : α < λ} is D-increasing and cofinal in h. Then {gα : α < λ}
is E-increasing and cofinal in

∏
A/E. ��

Corollary 24.20. If ℵω is a strong limit cardinal, then pcf{ℵn}∞n=0 is an
interval and suppcf{ℵn}∞n=0 < ℵℵω .

Proof. Apply Lemma 24.19 to the interval A = [(2ℵ0)+,ℵω), and use
| pcf A| ≤ 22ℵ0

< ℵω. ��

Toward the proof of Theorem 24.18, we assume that ℵω is strong limit
and let

λ = sup pcf{ℵn}∞n=0.

We shall show that 2ℵω = λ. Since cf 2ℵω > ℵω (by König’s Theorem) and
λ < ℵℵω , it follows that 2ℵω is a successor cardinal, and therefore 2ℵω =
max(pcf{ℵn}∞n=0).

Lemma 24.21. There exists a family F of functions in
∏∞

n=0 ℵn, |F | = λ,
such that for every g ∈

∏∞
n=0 ℵn there is some f ∈ F with g(n) ≤ f(n) for

all n.

Proof. For every ultrafilter D on ω choose a sequence 〈fD
α : α < cof D〉 that

is cofinal in
∏∞

n=0 ℵn/D, and let F be the set of all f = max{fD1
α1

, . . . , fDm
αm

}
where {D1, . . . , Dm} is a finite set of ultrafilters and {α1, . . . , αm} a finite set
of ordinals. Since λ > ℵω > 22ℵ0 , we have |F | = λ.

Assume, by contradiction, that there is a g ∈
∏∞

n=0 ℵn that is not ma-
jorized by any f ∈ F . Thus if we let, for every D and every α, XD

α = {n :
g(n) > fD

α (n)}, then the family {XD
α }α,D has the finite intersection property,

and so extends to an ultrafilter U . Then g <U fU
α for some α, a contradic-

tion. ��

Let us fix such a family F of size λ, and let k < ω be such that 2ℵ0 ≤ ℵk

and λ < ℵℵk
. Let ϑ be sufficiently large, and consider elementary submodels of
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(Hϑ,∈, <) where < is some well-ordering of Hϑ. For every countable subset a
of ℵω we shall construct an elementary chain of models Ma

α, of length ωk.
Each Ma

α will have size ℵk and will be such that Ma
α ⊃ a ∪ ωk.

We choose Ma
0 of size ℵk so that Ma

0 ⊃ a∪ωk. If α < ωk is a limit ordinal,
we let Ma

α =
⋃

β<α Ma
β . Given Ma

α, we find Ma
α+1 as follows. Let

(24.6) χa
α(n) = sup(Ma

α ∩ ωn) (all n > k),

the characteristic function of Ma
α. There exists a function fa

α ∈ F such that
fa

α(n) ≥ χa
α(n) for all n > k; let Ma

α+1 be such that fa
α ∈ Ma

α+1.
Then we let Ma =

⋃
α<ωk

Ma
α, and

χa(n) = sup(Ma ∩ ωn) (all n > k).

Lemma 24.22. If a and b are countable subsets of ℵω and if χa = χb, then
Ma ∩ ℵω = M b ∩ ℵω.

Proof. By induction on n we show that Ma ∩ ℵn = M b ∩ ℵn, for all n ≥ k.
This is true for n = k; thus assume that this is true for n and prove it for
n + 1. Both Ma ∩ℵn+1 and M b ∩ℵn+1 contain a closed unbounded subset of
the ordinal χa(n + 1) = χb(n + 1) (of cofinality ℵk), and so there is a cofinal
subset C of this ordinal such that C ⊂ Ma and C ⊂ M b. For every γ ≥ ωn

in C there is a one-to-one function π that maps ωn onto γ. If we let π be the
≺-least such function in Hϑ, then π is both in Ma and in M b. It follows that
γ ∩ Ma = γ ∩ M b. Consequently, ωn+1 ∩ Ma = ωn+1 ∩ M b and the lemma
follows. ��

We shall complete the proof of Theorem 24.18 by showing that the set
{χa : a ⊂ ℵω countable} has size at most λ. Since each Ma has ℵk countable
subsets it will follow that there are at most λ countable subsets of ℵω, and
therefore 2ℵω = λ.

For each a and each n we have

χa(n) = supα<ωk
χa

α(n) = supα<ωk
fa

α(n).

If S is any subset of ωk of size ℵk, then χa(n) = sup{fa
α(n) : α ∈ S} and so

the set {fa
α : α ∈ S} determines χa.

Lemma 24.23. There exists a family Fλ of λ subsets of λ, each of size ℵk,
such that for every subset Z ⊂ λ of size ℵk there exists an X ∈ Fλ such that
X ⊂ Z.

Proof. We prove (by induction on α) that for every ordinal α such that
2ℵk ≤ α ≤ λ there is a family Fα ⊂ [α]ℵk , |Fα| ≤ |α| such that for every
Z ∈ [α]ℵk there is an X ∈ Fα such that X ⊂ Z. This is true for α = 2ℵk . If
α is not a cardinal, then Fα can be obtained by a one-to-one transformation
from F|α|. If α is a cardinal then since α ≤ λ < ℵℵk

, we have cf α �= ℵk, and
it follows that Fα =

⋃
β<α Fβ has the required property. ��
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Now we complete the proof of Theorem 24.18. For each countable subset a
of ℵω let Za = {fa

α : α < ωk}; each Za is a subset of F , and |Z| = ℵk. Apply
Lemma 24.23 to the set F (instead of λ) and obtain a family Fλ ⊂ [F ]ℵk such
that for each a there exists some X ∈ Fλ such that X ⊂ Z. Since |X | = ℵk,
X determines χa. It follows that |{χa : a ⊂ ℵω countable}| ≤ λ. ��

The Structure of pcf

Let A be a set of regular cardinals and let pcf A denote the set of all possible
cofinalities of

∏
A. First we mention some facts about pcf:

(i) A ⊂ pcf A.
(ii) If A1 ⊂ A2 then pcf A1 ⊂ pcf A2.
(iii) pcf(A1 ∪ A2) = pcf A1 ∪ pcf A2.
(iv) | pcf A| ≤ 22|A|

.
(v) sup pcf A ≤ |

∏
A|.

(24.7)

In Lemma 24.19 we showed:

(vi) If A is an interval and 2|A| < min A then pcf A is an interval.

This is true in general, under the assumption |A| < min A (see Shelah [1994]).
In the following Lemma 24.24 we prove

(vii) If | pcf A| < min A then pcf(pcf A) = pcf A.

Finally, Theorem 24.18 is true in general, and under weaker assumptions; we
state this without a proof.

(viii) If A is an interval without a greatest element and (minA)|A| <
sup A, then (supA)|A| = maxpcf A.

For proof, see e.g. Burke and Magidor [1990].

Lemma 24.24. If | pcf A| < min A then pcf(pcf A) = pcf A.

Proof. Let B = pcf A. For each λ ∈ B choose Dλ on A such that cof Dλ = λ,
and let 〈fλ

α : α < λ〉 be cofinal in
∏

A/Dλ. Let µ ∈ pcf B; choose D on B
with cof D = µ, and let 〈gα : α < µ〉 be cofinal in

∏
B/D. Let

E = {X ⊂ A : {λ ∈ B : X ∈ Dλ} ∈ D}.

E is an ultrafilter on A and we shall show that cof E = µ, thus proving
µ ∈ pcf A, and hence pcf B = B.
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For every α < µ, let

hα(a) = supλ∈B fλ
gα(λ)(a) (all a ∈ A).

Since min A > |B|, we have hα(a) < a for all a ∈ A. We will show that for
each h ∈

∏
A, eventually all hα are ≥E h. The we can find a subsequence of

〈hα : α < µ〉 that is cofinal in
∏

A/E.
Let h ∈

∏
A. For each λ ∈ B there exists a g(λ) < λ such that h <Dλ

fλ
g(λ). For eventually all α < µ we have g <D gα, and we claim that whenever

g <D gα then h <E hα.
Let α be such that g <D gα. Let X = {a ∈ A : h(a) < hα(a)}. If λ is such

that g(λ) < gα(λ) then for Dλ-almost all a, h(a) < fλ
g(λ)(a) < fλ

gα(λ)(a) ≤
hα(a) and hence a ∈ X . Thus X ∈ Dλ for D-almost all λ, and so X ∈ E. ��

The fundamental theorem of the pcf theory is the following.

Theorem 24.25 (Shelah). If A is a set of regular cardinals such that 2|A| <
min A, then there exist sets Bλ ⊂ A, λ ∈ pcf A, such that for every λ ∈ pcf A

(a) λ = maxpcf Bλ.
(b) λ /∈ pcf(A − Bλ).
(c)

∏
{a : a ∈ Bλ} has a λ-scale mod Jλ where Jλ is the ideal generated

by the sets Bν , ν < λ.

(To see that Jλ is an ideal, we observe that if X ∈ Jλ then X ⊂ Bν1 ∪
. . . ∪ Bνk

, hence pcf X ⊂ pcf Bν1 ∪ . . . ∪ pcf Bνk
and so by (a), λ /∈ pcf X .

Hence X �= A.)
The theorem is true under the weaker assumption |A| < min A; see She-

lah [1994] or Burke and Magidor [1990].
Note that (a) and (b) can be formulated as follows:

(a) For every ultrafilter D on Bλ, cof D ≤ λ; and there exists some D
on Bλ such that cof D = λ.

(b) For every ultrafilter D on A, if cof D = λ then Bλ ∈ D.

The sets Bλ, λ ∈ pcf A, are called the generators of pcf A. It follows from
(a) and (b) that the cofinality of an ultrafilter on A is determined by which
generators it contains:

(24.8) cof D = the least λ such that Bλ ∈ D.

Corollary 24.26. If 2|A| < min A then | pcf A| ≤ 2|A|.

Proof. The number of generators is at most 2|A|. ��

Corollary 24.27. If ℵω is strong limit then 2ℵω < ℵ(2ℵ0 )+ .

Proof. Corollary 24.26, Corollary 24.20 and Theorem 24.18. ��
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Corollary 24.28. If 2|A| < min A then pcf A has a greatest element.

Proof. Assume that pcf A does not have a greatest element. Then the set
{A − Bλ : λ ∈ pcf A} has the finite intersection property, and so extends to
an ultrafilter D. By (b), Bcof D ∈ D, a contradiction. ��

Proof of Theorem 24.25. We shall apply the results on ordinal functions
proved earlier in this chapter. If I is an ideal on a set A of regular cardi-
nals then we say that I has a λ-scale if

∏
A has a λ-scale in <I ; similarly,

we say that I is λ-directed if
∏

A is λ-directed in ≤I .
We construct the generators Bλ by induction, so that for each cardinal κ ≤

sup pcf A the following conditions are satisfied:

(i) the ideal Jκ generated by {Bλ : λ < κ and λ ∈ pcf A} is κ-
directed;

(ii) if κ /∈ pcf A then Jκ is κ+-directed;
(iii) if κ ∈ pcf A and κ is not a maximal element of pcf A then there

exists a Bκ ∈ J+
κ such that Jκ has a κ-scale on Bκ and Jκ[Bκ],

the ideal generated by Jκ ∪ {Bκ}, is a κ+-directed ideal;
(iv) if κ = max(pcf A) then Jκ has a κ-scale on A (and we let

Bκ = A).

(24.9)

If the conditions (24.9) are satisfied, then the sets Bλ satisfy Theorem 24.25:
To prove (a), let λ ∈ pcf A. Choose an ultrafilter D on Bλ that extends

the dual filter of Jλ. Jλ has a λ-scale on Bλ, and this scale is also a scale
for <D; therefore cof D = λ, and so λ ∈ pcf Bλ. Also, if D is any ultrafilter
on Bλ, then either D ∩ Jλ = ∅ in which case cof D = λ, or else there is some
ν < λ such that Bν ∈ D. If ν is the least such ν then D is an ultrafilter on Bν

and D ∩ Jν = ∅. Since Jν has a ν-scale on Bν , we have cof D = ν. In either
case, cof D ≤ λ.

To prove (b), let D be an ultrafilter on A such that Bλ /∈ D; we claim
that cof D �= λ. Either D � Bλ for some ν < λ in which case cof D < λ, or
else D ∩ Jλ[Bλ] �= ∅, and since Jλ[Bλ] is λ+-directed, D is λ+-directed, and
we have cof D > λ.

Finally, (c) follows from (24.9)(iii) and (iv). We prove (24.9) by induction
on κ ≤ sup pcf A:

(i) If κ ≤ min A then Jκ = {∅} is κ-directed. If κ is a limit cardinal, then
Jκ =

⋃
λ<κ Jλ and the claim follows easily. If κ = λ+ then either λ /∈ pcf A

and Jκ = Jλ is λ+-directed by (ii), or λ ∈ pcf A and Jκ = Jλ[Bλ] is λ+-
directed by (iii).

(ii) Let κ /∈ pcf A and κ ≥ min A; hence κ > 2|A|. If κ is singular,
then it is easy to see that since Jκ is κ-directed, it is κ+-directed. If κ is
regular, assume by contradiction that Jκ is κ-directed but not κ+-directed.
By Corollary 24.12, Jκ has a κ-scale on some X ∈ J+

κ . Let D be any ultrafilter
on X such that D∩Jκ = ∅. Then cof D = κ and so κ ∈ pcf A, a contradiction.
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(iii) Let κ ∈ pcf A be such that κ < sup pcf A. We claim that Jκ is not
κ+-directed and that Jκ does not have a κ-scale on A. Then a Bκ exists by
Corollary 24.12. Assume by contradiction that Jκ is κ+-directed, and let D
be any ultrafilter on A. If D � Bλ for some λ < κ, then cof D < κ. Otherwise,
D ∩ Jκ = ∅ and since Jκ is κ+-directed, D is κ+-directed and so cof D > κ.
In either case cof D �= κ, hence κ /∈ pcf A, a contradiction.

Now assume that Jκ does have a κ-scale on A. Then for every ultrafilter D
on A, either D � Bλ for some λ < κ, and then cof D < κ, or D ∩ Jκ = ∅, so
D has a κ-scale and cof D = κ. Hence κ = max(pcf A), a contradiction.

(iv) Let κ = max(pcf A) and again assume, by contradiction, that Jκ does
not have a scale on A. Then by Corollary 24.12 there exists a Y ∈ J+

κ such
that Jκ[Y ] is κ+-directed. If D is any ultrafilter on A such that D∩Jκ[Y ] = ∅
then <D is κ+-directed and so cof D > κ. Hence κ is not the maximal element
of pcf A, a contradiction. ��

The same argument that shows that pcf A has a greatest element yields
the following property of pcf, called compactness :

Corollary 24.29. Let Bλ, λ ∈ pcf A, be generators of pcf A. For every X ⊂
A there exists a finite set {ν1, . . . , νk} ⊂ pcf X such that X ⊂ Bν1 ∪ . . .∪Bνk

.

Proof. Assume the contrary. Then {X − Bν : ν ∈ pcf X} has the finite
intersection property and there exists an ultrafilter D on X such that Bν /∈
D for all ν ∈ pcf X . If λ = cof D then Bλ ∈ D by Theorem 24.25(b),
a contradiction. ��

We conclude this section with the following improvement of Theorem
24.16:

Corollary 24.30. Let κ be a regular uncountable cardinal, and let ℵη be
a singular cardinal of cofinality κ such that 2κ < ℵη. Then there is a closed
unbounded set C ⊂ η such that max(pcf{ℵα+1 : α ∈ C}) = ℵη+1;∏

α∈C ℵα+1 has true cofinality ℵη+1 mod I where I is the ideal of all bounded
subsets of C.

Proof. Let C0 be any closed unbounded subset of η of order-type κ such that
2κ < ℵα0 where α0 = min C0. Let A0 = {ℵα+1 : α ∈ C0}, let λ = ℵη+1, and
let Bλ be a generator for pcf A0, for this λ (by Theorem 24.16, λ ∈ pcf A0).
Let X = {α ∈ C0 : ℵα+1 ∈ Bλ}. If D is any ultrafilter on C0 that extends
the closed unbounded filter, then by Theorem 24.16, cof

∏
α∈C0

ℵα+1/D = λ,
and by Theorem 24.25(b), X ∈ D. Thus X contains a closed unbounded
set C. Let A = {ℵα+1 : α ∈ C}. By Theorem 24.25(a), max(pcf A) ≤ λ, and
therefore = λ.

Now let Bν , ν ≤ λ, denote the generators of pcf A. Every Bν for ν < λ is
a bounded subset of A and so the ideal of all bounded subsets of A extends Jλ,
the ideal generated by the Bν , ν < λ. Thus

∏
α∈C ℵα+1/I has a λ-scale. ��
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Transitive Generators and Localization

Let A be a set of regular cardinals with 2|A| < min A, let Bλ, λ ∈ pcf A,
be generators for pcf A, and let Jκ be, for each κ ≤ max(pcf A), the ideal
generated by {Bλ : λ < κ}. The following shows that the ideals Jκ are
independent of the choice of generators for pcf A:

(24.10) For every X ⊂ A, X ∈ Jκ if and only if cof D < κ for every
ultrafilter D on X .

To see this, note first that if X ∈ Jκ then X ⊂ Bν1 ∪ . . . ∪ Bνk
for some

ν1, . . . , νk < κ, and so max(pcf X) < κ. Conversely, if X /∈ Jκ then the set
{X − Bλ : λ < κ} has the finite intersection property, and so there exists an
ultrafilter D on X such that Bλ /∈ D for all λ < κ. By Theorem 24.25(b),
cof D ≥ κ. Each generator Bλ is uniquely determined up to equivalence
mod Jλ; if B is any set such that B  Bλ ∈ Jλ, then B also satisfies (a)
and (b) of Theorem 24.25. To see this, note that by (24.10), if X  Y ∈ Jλ

then pcf X − λ = pcf Y − λ; thus max pcf B = λ and λ /∈ pcf(A − B).
We shall now produce generators for pcf that are transitive:

Lemma 24.31 (Transitive Generators). Let A be a set of regular cardi-
nals such that A = pcf A and (2|A|)+ < min A. There exist generators Bλ,
λ ∈ A, for pcf A with the property

(24.11) if µ ∈ Bλ then Bµ ⊂ Bλ.

In other words, the relation “µ ∈ Bλ” of µ and λ is transitive. The lemma
holds under weaker assumptions on A; see Shelah [1994].

Proof. Let Bλ, λ ∈ A, be generators for pcf A. We shall replace each Bλ by
an equivalent generator Bλ so that (24.11) is satisfied.

For each λ ∈ A there exists a sequence 〈fλ
α : α < λ〉 of functions in

∏
A

that is <Jλ
-increasing and is cofinal on Bλ. Moreover, by Lemma 24.10 we

may assume that for each λ and each α of cofinality greater than 2|A|, fλ
α is

an exact upper bound of {fλ
β : β < α}.

Let κ = (2|A|)+. Let ϑ be sufficiently large, and consider elementary sub-
models of (Hϑ,∈, <) where < is some well-ordering of Hϑ. Consider a con-
tinuous elementary chain

M0 ≺ M1 ≺ . . . ≺ Mη ≺ . . . ≺ Mκ = M ≺ Hϑ

of models, each of size κ, such that M0 contains A, each λ ∈ A, all subsets
of A, each 〈fλ

α : α < λ〉, every function from a subset of A into A<ω, and
such that

(24.12) 〈Mξ : ξ ≤ η〉 ∈ Mη+1 (all η < κ).
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Let χη, η ≤ κ, be the characteristic functions of Mη:

(24.13) χη(λ) = sup(Mη ∩ λ) (for all λ ∈ A),

and let χ = χκ, the characteristic function of M . Each χη (η < κ) belongs
to Mη+1 and therefore to M . If ξ < η then χξ(λ) < χη(λ) for all λ ∈ A, and
〈χη(λ) : η < κ〉 is an increasing continuous sequence with limit χ(λ) < λ.

We claim that for each λ ∈ A, χ is the <Jλ
-exact upper bound of 〈fλ

α :
α ∈ M ∩ λ〉 on Bλ and consequently,

(24.14) fλ
χ(λ)(µ) = χ(µ) for Jλ-almost all µ ∈ Bλ.

If α ∈ M ∩ λ then fλ
α ∈ M and so fλ

α(µ) < χ(µ) for all µ ∈ A. Hence χ is
an upper bound of 〈fλ

α : α ∈ M ∩ λ〉. To show that χ is the <Jλ
-exact upper

bound on Bλ, it suffices to show that for each η < κ, χη <Jλ
fλ

α on Bλ for
some α ∈ M ∩ λ, since χ is the pointwise supremum of {χη : η < κ}, and
|A| < κ. Thus let η < κ; there exists an α < λ such that χη <Jλ

fλ
α on Bλ,

and since M is an elementary submodel, there exists such an α in M .
Since cf χ(λ) = κ > 2|A|, fλ

χ(λ) is a <Jλ
-exact upper bound of {fλ

α : α ∈
M ∩ λ} on Bλ, and (24.14) follows.

Now we let, for each λ ∈ A,

(24.15) B∗
λ = {µ ∈ Bλ : fλ

χ(λ)(µ) = χ(µ)};

if follows from (24.14) that B∗
λ is Jλ-equivalent to Bλ.

The transitive generators Bλ are defined as follows:

(24.16) ν ∈ Bλ if and only if there exists a finite increasing sequence (with
k ≥ 0) 〈ν0, . . . , νk〉 such that ν0 = ν, νk = λ and νi ∈ B∗

νi+1
for

every i = 0, . . . , k − 1.

It is clear that Bλ is transitive, B∗
λ ⊂ Bλ, and λ = maxBλ. It remains

to prove that Bλ is Jλ-equivalent to Bλ; for that it suffices to show that
Bλ ∈ Jλ+ = Jλ[Bλ].

For each ν ∈ Bλ, fix a finite sequence ϕ(ν) = 〈ν0, . . . , νk〉 to sat-
isfy (24.16). Note that the function ϕ on Bλ belongs to M . Let 〈gα : α < λ〉
be the λ-sequence of functions in

∏
A defined as follows:

If ν /∈ Bλ, we let gα(ν) = 0. If ν ∈ Bλ then ϕ(ν) = 〈ν0, . . . , νk〉 with
ν0 = ν and νk = λ, and we consider the sequence 〈β0, . . . , βk〉, where βi < νi

for each i, obtained as follows (by descending induction):

(24.17) βk = α,

βi = f
νi+1
βi+1

(νi) (i = k − 1, . . . , 0).

and let gα(ν) = β0.
As M is an elementary submodel and ϕ ∈ M , the sequence 〈gα : α < λ〉

is defined in M . Since Jλ+ is λ+-directed, there exists a function g ∈
∏

A
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such that gα < g mod Jλ+ for every α < λ. Since M ≺ Hϑ, such a function g
exists in M . Since g ∈ M , we have g(ν) < χ(ν) for all ν and therefore gα < χ
mod Jλ+ for every α < λ.

Now let α = χ(λ). We shall finish the proof by showing that gα(ν) = χ(ν)
for every ν ∈ Bλ. This implies that Bλ ∈ Jλ+ .

So let ν ∈ Bλ. Let 〈ν0, . . . , νk〉 = ϕ(ν), and let 〈β0, . . . , βk〉 be the sequence
obtained in (24.17) for α = χ(λ). We claim that for each i, βi = χ(νi), and
therefore gα(ν) = β0 = χ(ν0) = χ(ν).

For each i we have νi ∈ B∗
νi+1

, and so by (24.15), f
νi+1

χ(νi+1)
(νi) = χ(νi). For

i = k, we have βk = α = χ(λ) = χ(νk), and then for each i = k − 1, . . . , 0,
we have by (24.17)

βi = f
νi+1
βi+1

(νi) = f
νi+1

χ(νi+1)
(νi) = χ(νi). ��

Using transitive generators we now prove the Localization Lemma:

Lemma 24.32 (Localization). Let A be a set of regular cardinals such that
2| pcf A| < min A, let X ⊂ pcf A and let λ ∈ pcf X. There exists a set W ⊂ X
such that |W | ≤ |A| and such that λ ∈ pcf W .

Again, the Localization Lemma holds under the weaker assumption
| pcf A| < min A.

Proof. First, since 2|X| < min X , there exist generators for pcf X , and in
particular there exists a set Y ⊂ X with max(pcf Y ) = λ. Let A = pcf A.
By (24.7)(vii) we have pcf A = A, and since 2|A| < min A, we can find
transitive generators Bν , ν ∈ A, for pcf A.

For every ν ∈ Y , let BA
ν = Bν ∩ A. Since Y ⊂ pcf A, there exists an

ultrafilter D on A with cof D = ν, and by Theorem 24.25, Bν ∈ D. Hence
ν ∈ pcf BA

ν . Let
E =

⋃
{BA

ν : ν ∈ Y }.
Since ν ∈ pcf E for every ν ∈ Y , we have Y ⊂ pcf E, hence pcf Y ⊂ pcf pcf E,
and since (by (24.7)(vii)) pcf pcf E = pcf E, we have pcf Y ⊂ pcf E. In
particular, λ ∈ pcf E.

Since E ⊂ A, there exists a set W ⊂ Y of size ≤ |A| such that E ⊂⋃
{BA

ν : ν ∈ W}. We shall prove that λ ∈ pcf W .
Assume, by contradiction, that λ /∈ pcf W . By compactness (Corol-

lary 24.29) there exist λ1, . . . , λn ∈ pcf W such that W ⊂ Bλ1 ∪ . . . ∪ Bλn ,
and since max pcf W ≤ maxpcf Y = λ, we have λi < λ for all i = 1, . . . , n.
Now

E ⊂
⋃
{Bν : ν ∈ W} ⊂

⋃
{Bν : ν ∈ Bλ1} ∪ . . . ∪

⋃
{Bν : ν ∈ Bλn},

and since, by transitivity (Lemma 24.31),
⋃

ν∈Bµ
Bν ⊂ Bµ for every µ, we

have
E ⊂ Bλ1 ∪ . . . ∪ Bλn .

It follows that pcf E ⊂ pcf(Bλ1 ∪ . . . ∪ Bλn) = pcf Bλ1 ∪ . . . ∪ pcf Bλn , and
so max(pcf E) ≤ max{λ1, . . . , λn} < λ, a contradiction. ��
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Shelah’s Bound on 2ℵω

As an application of the pcf theory, we shall now present the following result
of Shelah:

Theorem 24.33 (Shelah). If ℵω is a strong limit cardinal then 2ℵω < ℵω4 .

Proof. Let us assume that ℵω is strong limit. We already know, by Corol-
lary 24.27, that 2ℵω = maxpcf{ℵn}∞n=0 < ℵℵω . We shall prove that

maxpcf{ℵn}∞n=0 < ℵω4 .

Let ϑ be the ordinal such that 2ℵω = ℵϑ+1; we shall prove that ϑ < ω4.

Lemma 24.34. There exists an ordinal function on P (ϑ) with the following
properties:

(i) If X ⊂ Y then F (X) ≤ F (Y ).
(ii) For every limit ordinal η < ϑ of uncountable cofinality there is

a closed unbounded set C ⊂ η such that F (C) = η.
(iii) If X ⊂ ϑ has order-type ω1 then there exists some γ ∈ X such

that F (X ∩ γ) ≥ sup X.

(24.18)

Proof. Let X ⊂ ϑ and consider the set A = {ℵξ+1 : ξ ∈ X}. As 2|A| = ℵk

for some finite k, max(pcf A) exists and is equal to some ℵγ+1. We define
F (X) = γ.

It is clear that X ⊂ Y implies F (X) ≤ F (Y ) and that F (X) ≥ sup X .
Property (ii) follows from Corollary 24.30. If κ = cf η then κ < ℵω and so

2κ < ℵω < ℵη and the corollary applies.
Property (iii) is a consequence of the Localization Lemma 24.32: If X ⊂ ϑ

then {ℵξ+1 : ξ ∈ X} ⊂ pcf{ℵn}∞n=0 and since 2|pcf{ℵn}n| ≤ 22ℵ0
< ℵω,

Lemma 24.32 applies (with e.g. λ = ℵη+1 where η = supX) and X has
a countable subset W such that F (W ) ≥ sup X . ��

We complete the proof of Shelah’s Theorem by showing that ϑ < ω4.
Assume, by contradiction, that ϑ ≥ ω4. Let 〈Cα : α ∈ Eℵ3

ℵ1
〉 be a club-

guessing sequence (see Theorem 23.3). Each Cα is a closed unbounded subset
of α, and for every closed unbounded C ⊂ ω3, the set {α ∈ Eℵ3

ℵ1
: Cα ⊂ C} is

stationary.
Let Mα, α < ω3, be a continuous elementary chain of models of size ℵ3

that contain the family {Cα}α, are closed under F , such that 〈Mξ : ξ ≤ α〉 ∈
Mα+1 for each α, and that for each α, ηα = Mα ∩ ω4 is an ordinal. Let
η : ω3 → ω4 be the continuous function η(α) = ηα. By (24.18)(ii) there
is a closed unbounded set C ⊂ ω3 such that F (η“C) = supα ηα. Let α ∈
Eℵ3

ℵ1
be such that Cα ⊂ C. By (24.18)(iii) there exists a β < α such that

F (η“(Cα ∩ β)) ≥ η(α). Let X = η“(Cα ∩ β).
Since Cα ∈ Mα and η�β ∈ Mα, we have X ∈ Mα. Since X ⊂ η“C we

have F (X) ≤ F (η“C) < ω4. As Mα is closed under F , we have F (X) ∈ Mα,
and since ω4 ∩Mα = η(α), it follows that F (X) < η(α), a contradiction. ��
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Exercises

24.1. If β < ω1 and if 2ℵα ≤ ℵα+β for a stationary set of α’s, then 2ℵω1 ≤ ℵω1+β.
[By induction on β: If ϕ(α) ≤ β on a stationary set, then ‖ϕ‖ ≤ β.]

24.2. If β < ω1, if 2ℵ1 < ℵω1 , and if ℵℵ0
α ≤ ℵα+β for a stationary set of α’s, then

ℵℵ1
ω1 ≤ ℵω1+β.

24.3. If 2ℵα ≤ ℵα+2 holds for all cardinals of cofinality ω, then the same holds for
all singular cardinals.

24.4. If ℵ1 ≤ cf ℵη < ℵη, if β < cf ℵη, and if 2ℵα ≤ ℵα+β for all α < η, then
2ℵη ≤ ℵη+β.

24.5. If 2ℵα ≤ ℵα+α+1 for a stationary set of α < ω1, then 2ℵω1 ≤ ℵω1+ω1+1.
[If ϕ(α) = α for all α < ω1, then ‖ϕ‖ = ω1.]

24.6. If 2ℵω1+α < ℵω1+α+α for all α < ω1, then 2ℵω1+ω1 < ℵω1+ω1+ω1 .
[Use the sets Aα = ωω1+α.]

24.7. If 2ℵ1 < ℵω1 and if ℵℵ0
α ≤ ℵα+α+1 for all α < ω1, then ℵℵ1

ω1 ≤ ℵω1+ω1+1.

24.8. If κ is a strong limit cardinal, κ = ℵη, and cf κ ≥ ℵ1, then 2κ < ℵγ , where
γ = (|η|cf κ)+.

24.9. If ℵ1 ≤ cf κ < κ and if λcf κ < κ for all λ < κ, then κcf κ < ℵγ , where
γ = (|η|cf κ)+.

The next exercise uses the notation from Chapter 8. Let κ be a regular uncount-
able cardinal, let M0 = κ, Mη+1 = Tr(Mη), Mη =

T

ν<cf η Mξν or Mη = �ν<κ Mξν

(if cf η = κ) as long as Mη is stationary.

24.10. Let fη, η < κ+, be the canonical functions on κ. Let Sη = {α < κ : o(α) =
fη(α)}. Show that Sη = Mη−Mη+1 mod INS and that o(S) = η for every stationary
S ⊂ Sη.

The sets Sη are the canonical stationary sets (of order η).

24.11. Find a partially ordered set of cofinality ℵω; of cofinality 1, 2, 3, etc.

24.12. The lexicographical ordering ω × ω1 does not have true cofinality.

24.13. Let I = INS be the nonstationary ideal on ω1, let cγ , γ < ω1, be the
constant functions (with value γ) on ω1, and let d(α) = α be the diagonal function.
The function d is a least upper bound, but not an exact upper bound of the set
{cγ : γ < ω1}, in <I .

Historical Notes

The Galvin-Hajnal Theorem appeared in [1975]. Shelah’s investigation leading to
the pcf theory started in [1978], and the book [1982] contains the first proof of
a bound on 2ℵω . In a sequence of papers starting in 1978, Shelah developed the
theory of possible cofinalities. A complete presentation is in his book [1994].

There are several papers that give an exposition and/or simplified proofs of
Shelah’s results; we mention Burke and Magidor [1990] and Jech [1992].


