
25. Descriptive Set Theory

Descriptive set theory is the study of definable sets of real numbers, in par-
ticular projective sets, and is mostly interested in how well behaved these
sets are. A prototype of such results is Theorem 11.18 stating that Σ1

1 sets
are Lebesgue measurable, have the Baire property, and have the perfect set
property. This chapter continues the investigations started in Chapter 11.
Throughout, we shall work in set theory ZF + DC (the Principle of Depen-
dent Choice).

The Hierarchy of Projective Sets

Modern descriptive set theory builds on both the classical descriptive set
theory and on recursion theory. It has become clear in the 1950’s that the
topological approach of classical descriptive set theory and the recursion theo-
retic techniques of logical definability describe the same phenomena. Modern
descriptive set theory unified both approaches, as well as the notation. An
additional ingredient is in the use of infinite games and determinacy; we shall
return to that subject in Part III.

We first reformulate the hierarchy of projective sets in terms of the light-
face hierarchy Σ1

n, Π1
n and ∆1

n and its relativization for real parameters.
While we introduce these concepts explicitly for subsets of the Baire space
N = ωω, analogous definitions and results apply to product spaces N × N ,
N r as well as the spaces ω, ωk, ωk ×N r.

Definition 25.1.

(i) A set A ⊂ N is Σ1
1 if there exists a recursive set R ⊂

⋃∞
n=0(ω

n × ωn)
such that for all x ∈ N ,

(25.1) x ∈ A if and only if ∃y ∈ ωω ∀n ∈ ω R(x�n, y�n).

(ii) Let a ∈ N ; a set A ⊂ N is Σ1
1(a) (Σ1

1 in a) if there exists a set R
recursive in a such that for all x ∈ N ,

x ∈ A if and only if ∃y ∈ ωω ∀n ∈ ω R(x�n, y�n, a�n).
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(iii) A ⊂ N is Π1
n (in a) if the complement of A is Σ1

n (in a).
(iv) A ⊂ N is Σ1

n+1 (in a) if it is the projection of a Π1
n (in a) subset

of N ×N .
(v) A ⊂ N is ∆1

n (in a) if it is both Σ1
n and Π1

n (in a).

A similar lightface hierarchy exists for Borel sets: A set A ⊂ N is Σ0
1

(recursive open or recursively enumerable) if

(25.2) A = {x : ∃n R(x�n)}

for some recursive R, and Π0
1 (recursive closed) if it is the complement of

a Σ0
1 set. Thus Σ1

1 sets are projections of Π0
1 sets, and as every open set is Σ0

1

in some a ∈ N (namely an a than codes the corresponding union of basic
open intervals), we have

Σ1
1 =

⋃
a∈N

Σ1
1(a),

and more generally, every Σ1
n (Π1

n) set is Σ1
n (Π1

n) in some parameter a ∈ N .
For n ∈ ω, the lightface hierarchy of Σ0

n and Π0
n sets describes the arith-

metical sets: For instance, a set A is Σ0
3 if

A = {x ∈ N : ∃m1 ∀m2 ∃m3 R(m1, m2, x�m3)}

for some recursive R, etc. Arithmetical sets are exactly those A ⊂ N that
are definable (without parameters) in the model (HF ,∈) of hereditary finite
sets.

The following lemma gives a list of closure properties of projective rela-
tions on N . We use the logical (rather than set-theoretic) notation for Boolean
operations; compare with Lemma 13.10.

Lemma 25.2. Let n ≥ 1.

(i) If A, B are Σ1
n(a) relations, then so are ∃xA, A ∧ B, A ∨ B, ∃m A,

∀m A.
(ii) If A, B are Π1

n(a) relations, then so are ∀xA, A ∧ B, A ∨ B, ∃m A,
∀m A.

(iii) If A is Σ1
n(a), then ¬A is Π1

n; if A is Π1
n(a), then ¬A is Σ1

n.
(iv) If A is Π1

n(a) and B is Σ1
n(a), then A → B is Σ1

n(a); if A is Σ1
n(a)

and B is Π1
n(a), then A → B is Π1

n(a).
(v) If A and B are ∆1

n(a), then so are ¬A, A∧B, A∨B, A → B, A ↔ B,
∃m A, ∀m A.

Proof. We prove the lemma for n = 1; the general case follows by induction.
Moreover, clauses (ii)–(v) follow from (i).

First, let A ∈ Σ1
1(a) and let us show that ∃xA is Σ1

1(a). We have

(x, y) ∈ A ↔ ∃z ∀n (x�n, y�n, z�n, n) ∈ R,
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where R is recursive in a. Thus

y ∈ ∃xA ↔ ∃x∃z ∀n (x�n, y�n, z�n, n) ∈ R.

We want to contract the two quantifiers ∃x∃z into one. Let us consider some
recursive homeomorphism between N and N 2, e.g., for u ∈ N let u+ and u−

be
u+(n) = u(2n), u−(n) = u(2n + 1), (n ∈ N).

There exists a relation R′ recursive in R, such that for all u, y ∈ N ,

(25.3) ∀n (u�n, y�n, n) ∈ R′ if and only if ∀k (u+�k, y�k, u−�k, k) ∈ R.

Namely, if n = 2k (or n = 2k+1), we let (s, t, n) ∈ R′ just in case length(s) =
length(t) = n and

(〈s(0), . . . , s(2k − 2)〉, 〈t(0), . . . , t(k − 1)〉, 〈s(1), . . . , s(2k − 1)〉, k) ∈ R.

Now (25.3) implies that

y ∈ ∃xA ↔ ∃u ∀n (u�n, y�n, n) ∈ R′,

and hence ∃xA is Σ1
1(a).

Now let A and B be Σ1
1(a):

x ∈ A ↔ ∃z ∀n (x�n, z�n, n) ∈ R1,

x ∈ A ↔ ∃z ∀n (x�n, z�n, n) ∈ R2

where both R1 and R2 are recursive in a. Note that

x ∈ A ∧ B ↔ ∃z1 ∃z2 ∀n [(x�n, z1�n, n) ∈ R1 ∧ (x�n, z2�n, n) ∈ R2]

and hence, by contraction of ∃z1 ∃z2, there is some R, recursive in R1 and R2

such that
x ∈ A ∧ B ↔ ∃z ∀n (x�n, z�n, n) ∈ R.

Thus A ∧ B is Σ1
1(a).

The following argument shows that the case A∨B can be reduced to the
case ∃m C. Let us define R as follows (s, t ∈ Seq, m, n ∈ N):

(s, m, t, n) ∈ R ↔ either m = 1 and (s, t, n) ∈ R1

or m = 2 and (s, t, n) ∈ R2.

R is recursive in R1 and R2, and

x ∈ A ∨ B ↔ ∃z ∀n (x�n, z�n, n) ∈ R1 ∨ ∃z ∀n (x�n, z�n, n) ∈ R2

↔ ∃m ∃z ∀n (x�n, m, z�n, n) ∈ R

↔ x ∈ ∃m C

where C is Σ1
1(a).
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The contraction of quantifiers ∃m ∃z is easier than the contraction ∃x∃z
above. We employ the following recursive homomorphism between N and
ω ×N : h(u) = (u(0), u′), where

u′(n) = u(n + 1) (n ∈ N).

If
(x, m) ∈ A ↔ ∃z ∀n (x�n, m, z�n, n) ∈ R,

then we leave it to the reader to find a relation R′, recursive in R, such that
for all u, x ∈ N ,

∀n (x�n, u�n, n) ∈ R′ ↔ ∀k (x�k, u(0), u′�k, k) ∈ R.

Then
x ∈ ∃m A ↔ ∃u ∀n (x�n, u�n, n) ∈ R′.

It remains to show that if A is Σ1
1(a), then ∀m A is Σ1

1(a). Let

(x, m) ∈ A ↔ ∃z ∀n (x�n, m, z�n, n) ∈ R

where R is recursive in a. Thus

(25.4) x ∈ ∀m A ↔ ∀m ∃z ∀n (x�n, m, z�n, n) ∈ R.

We want to replace the quantifiers ∀m ∃z by ∃u ∀m and then contract the two
quantifiers ∀m ∀n into one. Let us consider the pairing function Γ : N×N →
N and the following homeomorphism between N and Nω : For each u ∈ N ,
let um, m ∈ N , be

um(n) = u(Γ(m, n)) (m, n ∈ N).

Now we can replace ∀m ∃z in (25.4) by ∃u ∀m (note that in the forward
implication we use the Countable Axiom of Choice):

(25.5) ∀m ∃z ∀n (x�n, m, z�n, n) ∈ R ↔ ∃u ∀m ∀n (x�n, m, um�n, n) ∈ R.

Let α : N → N and β : N → N be the inverses of the function Γ: If
Γ(m, n) = k, then m = α(k) and n = β(k). From (25.4) and (25.5) we get

(25.6) x ∈ ∀m A ↔ ∃u ∀k (x�β(k), α(k), uα(k)�β(k), β(k)) ∈ R.

Now it suffices to show that there exists a relation R′ ⊂ Seq2 ×N , recursive
in R, such that for all u, x ∈ N ,

(25.7) ∀k (x�k, u�k, k) ∈ R′ ↔ ∀k (x�β(k), α(k), uα(k)�β(k), β(k)) ∈ R.

The relation R′ is found in a way similar to the relation R′ in (25.3), and we
leave the details as an exercise.

Hence ∀m A is Σ1
1(a) because by (25.6) and (25.7),

x ∈ ∀m A ↔ ∃u ∀k (x�k, u�k, k) ∈ R′.

In Lemma 11.8 we proved the existence of a universal Σ1
n set. An analysis

of the proof (and of Lemma 11.2) yields a somewhat finer result: There exists
a Σ1

n set A ⊂ N 2 (lightface) that is a universal Σ1
n set.
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Π1
1 Sets

We formulate a normal form for Π1
1 sets in terms of trees. This is based on

the idea that analytic sets are projections of closed sets, and that closed sets
in N are represented by sets [T ] where T is a sequential tree; cf. (4.6). Let
us consider the product space N r , for an arbitrary integer r ≥ 1. As in the
case r = 1, the closed subsets of N r can be represented by trees: Let Seqr

denote the set of all r-tuples (s1, . . . , sr) ∈ Seqr such that length(s1) = . . . =
length(sr). A set T ⊂ Seqr is an (r-dimensional sequential) tree if for every
(s1, . . . , sr) ∈ T and each n ≤ length(s1), (s1�n, . . . , sr�n) is also in T . Let

(25.8) [T ] = {(a1, . . . , ar) ∈ N r : ∀n (a1�n, . . . , ar�n) ∈ T }.

The set [T ] is closed, and every closed set in N r has the form (25.8), for
some tree T .

We call a sequential tree T ⊂ Seqr well-founded if [T ] = ∅, i.e., if the
reverse inclusion on T is a well-founded relation. T is ill-founded if it is not
well-founded.

For T ⊂ Seqr+1 and for each x ∈ N , let

(25.9) T (x) = {(s1, . . . , sr) ∈ Seqr : (x�n, s1, . . . , sr) ∈ T

where n = length si}.

Now if A ⊂ N is analytic, there exists a tree T ⊂ Seq2 such that A is the
projection of [T ]; consequently, for all x ∈ N we have

(25.10) x ∈ A if and only if T (x) is ill-founded.

More generally, if A is Σ1
1, let R be recursive such that

x ∈ A ↔ ∃y ∈ N ∀n R(x�n, y�n)

and define T = {(t, s) ∈ Seq2 : ∀n ≤ length(s)R(t�n, s�n)}. For all x ∈ N ,
we have T (x) = {s ∈ Seq : ∀n ≤ length(s)R(x�n, s�n)} and x ∈ A if and
only if T (x) is ill-founded.

Theorem 25.3 (Normal Form for Π1
1). A set A ⊂ N is Π1

1 if and only if
there exists a recursive mapping x �→ T (x) such that each T (x) is a sequential
tree, and

x ∈ A if and only if T (x) is well-founded. ��(25.11)

Similarly, a relation A ⊂ N r is Π1
1 if and only if A = {�x : T (�x) is well-

founded} where 〈T (�x) : �x ∈ N r〉 is a recursive system of r-dimensional trees.
One consequence of normal forms is that Π1

1 (and Σ1
1) relations are abso-

lute for transitive models:



484 Part II. Advanced Set Theory

Theorem 25.4 (Mostowski’s Absoluteness). If P is a Σ1
1 property then

P is absolute for every transitive model that is adequate for P .

Proof. “Adequate” here means that the model satisfies enough axioms to
know that well-founded trees have a rank function, and contains the param-
eter in which P is Σ1

1. The proof is similar to Lemma 13.11.
Let M be a transitive model and let T ∈ M be a tree such that P =

{x : T (x) is ill-founded}. Let x ∈ M . If M � (T (x) is ill-founded) then
T (x) is ill-founded. Conversely, if M � (T (x) is well-founded) then M � (∃f :
T (x) → Ord such that f(s) < f(t) whenever s ⊃ t) and therefore T (x) is
well-founded. ��

Trees, Well-Founded Relations and κ-Suslin Sets

Much of modern descriptive set theory depends on a generalization of the
Normal Form for Π1

1 sets. A tree T ⊂ Seqr consists of r-tuples of finite
sequences. We can also identify T with finite sequences of r-tuples, which
enables us to consider a more general concept:

Definition 25.5.

(i) A tree T (on a set X) is a set of finite sequences (in X) closed under
initial segments.

(ii) If s, t ∈ T then s ≤ t means s ⊃ t, i.e., t is an initial segment of s.
(iii) If s ∈ T then T/s = {t : s�t ∈ T }.
(iv) If (T,≤) is well-founded then ‖T ‖ is the height of ≤, and for t ∈ T ,

ρT (t) is the rank of t in ≤.
(v) [T ] = {f ∈ Xω : ∀n f�n ∈ T }.

If S and T are well-founded trees and if f : S → T is order-preserving
then ‖S‖ ≤ ‖T ‖; this is easily verified by induction on rank. But the converse
is also true:

Lemma 25.6. If S and T are well-founded trees and ‖S‖ ≤ ‖T ‖ then there
exists an order-preserving map f : S → T .

Proof. By induction on ‖T ‖. For each 〈a〉 ∈ S, ‖S/〈a〉‖ < ‖S‖ ≤ ‖T ‖ and
there exists a ta �= ∅ such that ‖S/〈a〉‖ ≤ ‖T/〈ta〉‖. Let fa : S/〈a〉 → S/ta be
order-preserving. Now define f : S → T as follows: f(∅) = ∅, and f(a�s) =
t�a fa(s) whenever a�s ∈ S. ��

We remark that the above proof (as well as the existence of rank), uses
the Principle of Dependent Choices. If T is ill-founded, note that for any S
there exists an order-preserving f : S → T (into an infinite branch of T ).
Thus we have
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Corollary 25.7. There exists an order-preserving f : S → T if and only if
either T is ill-founded or ‖S‖ ≤ ‖T ‖. ��

Trees used in descriptive set theory are trees on ω × K (or on ωr × K)
where K is some set, usually well-ordered.

Let Seq(K) be the set of all finite sequences in K. A tree on ω × K is
a set of pairs (s, h) ∈ Seq ×Seq(K) such that length(s) = length(h) and that
for each n ≤ length(s), (s�n, h�n) ∈ T . For every x ∈ N , let

(25.12) T (x) = {h ∈ Seq(K) : (x�n, h) ∈ T where n = length(h)}.
T (x) is a tree on K. Further we let

p[T ] = {x ∈ N : T (x) is ill-founded}
= {x ∈ N : [T (x)] �= ∅}
= {x ∈ N : (∃f ∈ Kω)∀n (x�n, f�n) ∈ T }.

Trees on ωr × K are defined analogously.

Definition 25.8. Let κ be an infinite cardinal. A set A ⊂ N is κ-Suslin if
A = p[T ] for some tree on ω × κ.

By the Normal Form Theorem for Π1
1 sets, every Σ1

1 set is ω-Suslin. In
fact if A is Σ1

1(a) then A = p[T ] where T is a tree on ω × ω recursive in a.
Let us associate with each x ∈ N the following binary relation Ex on N :

(25.13) m Ex n ↔ x(Γ(m, n)) = 0

where Γ is a (recursive) pairing function of N × N onto N ; we say that
x codes the relation Ex. We define

(25.14) WF = {x ∈ N : x codes a well-founded relation},
WO = {x ∈ N : x codes a well-ordering on N}.

Lemma 25.9. The sets WF and WO are Π1
1.

Proof. We prove in some detail that WF is Π1
1. Ex is well-founded if and only

if there is no z : N → N such that z(k + 1) Ex z(k) for all k. Thus

x ∈ WF ↔ ∀z ∃k ¬z(k + 1) Ex z(k).

In other words, WF = ∀z A, where

(x, z) ∈ A ↔ ∃k x(Γ(z(k + 1), z(k))) �= 0

and it suffices to show that A is arithmetical. But

(x, z) ∈ A ↔ ∃n, m, j, k [i = (z�n)(k + 1) ∧ j = (z�n)(k) ∧
m = Γ(i, j) ∧ (x�n)(m) �= 0].

To show that WO is Π1
1 it suffices to verify that the set

LO = {x : Ex is a linear ordering of N}
is arithmetical. Then WO = WF ∧ LO is Π1

1. ��
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We show below that neither WF nor WO is a Σ1
1 set; thus neither is

a Borel set.
For each x ∈ WF, let

(25.15) ‖x‖ = the height of the well-founded relation Ex

(see (2.7)). For each x, ‖x‖ is a countable ordinal (and for each α < ω1 there
is some x ∈ WF such that ‖x‖ = α). If x ∈ WO, then ‖x‖ is the order-type
of the well-ordering Ex.

Lemma 25.10. For each α < ω1, the sets

WFα = {x ∈ WF : ‖x‖ ≤ α}, WOα = {x ∈ WO : ‖x‖ ≤ α}
are Borel sets.

Proof. Note that the set {(x, n) : n ∈ field(Ex)} is arithmetical (and hence
Borel). Let us prove the lemma first for WOα.

For each α < ω1, let

Bα = {(x, n) : Ex restricted to {m : m Ex n}
is a well-ordering of order type ≤ α}.

We prove, by induction on α < ω1, that each Bα is a Borel set. It is easy to
see that B0 is arithmetical. Thus let α < ω1 and assume that all Bβ , β < α,
are Borel. Then

⋃
β<α Bβ is Borel and hence Bα is also Borel because

(x, n) ∈ Bα ↔ ∀m
(
m Ex n → (x, m) ∈

⋃
β<α

Bβ

)
.

It follows that each WOα is Borel because

x ∈ WOα ↔ ∀n
(
n ∈ field(Ex) → (x, n) ∈

⋃
β<α

Bβ

)
.

To handle WFα, note that the rank function ρE can be defined for any
binary relation E; namely:

ρE(u) = α if and only if ∀v (v E u → ρE(v) is defined) and

α = sup{ρE(v) + 1 : v E u}.
For each α < ω1, let

Cα = {(x, n) : ρEx(n) is defined and ≤ α}.
Again, C0 is arithmetical, and if we assume that all Cβ , β < α, are Borel,
then Cα is also Borel:

(x, n) ∈ Cα ↔ ∀m
(
m Ex n → (x, m) ∈

⋃
β<α

Cβ

)
.

Hence each Cα is Borel, and it follows that each WFα is Borel:

x ∈ WFα ↔ ∀n
(
n ∈ field(Ex) → (x, n) ∈

⋃
β<α

Cβ

)
. ��
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Corollary 25.11. The sets {x ∈ WF : ‖x‖ = α} and {x ∈ WF : ‖x‖ < α}
are Borel (similarly for WO).

Proof. {x ∈ WF : ‖x‖ < α} =
⋃

β<α WFβ . ��

Theorem 25.12. If C is a Π1
1 set, then there exists a continuous function

f : N → N such that C = f−1(WF), and there exists a continuous function
g : N → N such that C = g−1(WO).

Proof. We shall give the proof for WF; the proof for WO is similar. Let
T ⊂ Seq2 be such that

x ∈ C ↔ T (x) is well-founded.

Let {t0, t1, . . . , tn, . . .} be an enumeration of the set Seq . For each x ∈ N , let
y = f(x) be the following element of N :

y(Γ(m, n)) =
{

0 if tm, tn ∈ T (x), and tm < tn,

1 otherwise.

It is clear that Ey is isomorphic to (T (x), <), and hence y ∈ WF if and only
if T (x) is well-founded. Thus C = f−1(WF) and it remains to show only that
f is continuous. But it should be obvious from the definitions of T (x) and
of y = f(x) that for any finite sequence s = 〈ε0, . . . , εk−1〉, there is š ∈ Seq
such that if x ⊃ š and y = f(x), then y�k = s. Hence f is continuous. ��
Corollary 25.13. WF is not Σ1

1; WO is not Σ1
1.

Proof. Otherwise every Π1
1 set would be the inverse image by a continuous

function of an analytic set and hence analytic; however, there are Π1
1 sets

that are not analytic. ��
Corollary 25.14 (Boundedness Lemma). If B ⊂ WO is Σ1

1, then there
is an α < ω1 such that ‖x‖ < α for all x ∈ B.

Proof. Otherwise we would have

WO = {x ∈ N : ∃z (z ∈ B ∧ ‖x‖ ≤ ‖z‖)}.

Hence ‖x‖ ≤ ‖z‖ for x, z ∈ N means: Either z /∈ WO or ‖x‖ ≤ ‖z‖; this
relation is Σ1

1; see Exercise 25.3. This would mean that WO is Σ1
1, a contra-

diction. ��
Corollary 25.15. Every Π1

1 set is the union of ℵ1 Borel sets.

Proof. If C is Π1
1, then C = f−1(WF) for some continuous f . But WF =⋃

α<ω1
WFα, and hence

C =
⋃

α<ω1

f−1(WFα).

Each f−1(WFα) is the inverse image of a Borel set by a continuous function,
hence Borel. ��
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Corollary 25.16. Assuming the Axiom of Choice, every Π1
1 set is either at

most countable, or has cardinality ℵ1, or cardinality 2ℵ0 . ��

Theorem 25.19 below improves Corollary 25.15 by showing that every
Σ1

2 set is the union of ℵ1 Borel sets. The following lemma is the first step
toward that theorem.

Lemma 25.17. Every Σ1
1 set is the union of ℵ1 Borel sets.

Proof. Let A be a Σ1
1 set. Let T ⊂ Seq2 be a tree such that A = p[T ]. We

prove by induction on α that for each t ∈ Seq and every α < ω1, the set

(25.16) {x ∈ N : ‖T (x)/t‖ ≤ α}

is Borel. Namely, {x : ‖T (x)/t‖ ≤ 0} = {x : (x�n, t) /∈ T } and if α > 0, then
‖T (x)/t‖ ≤ α if and only if ∀n (∃β < α) ‖T (x)/t�n‖ ≤ β.

Let us define, for each α, the set Bα as follows:

x ∈ Bα ↔ ¬(‖T (x)‖ < α) ∧ ∀t (¬‖T (x)/t‖ = α).

Since the sets in (25.16) are Borel, it follows that each Bα is Borel. We shall
prove that A =

⋃
α<ω1

Bα. First let x ∈ A. Thus T (x) is ill-founded; hence
‖T (x)‖ �< α for any α, and it suffices to show that there is an α such that
‖T (x)/t‖ �= α for all t. If there is no such α, then for every α there is t such
that ‖T (x)/t‖ = α, but there are ℵ1 α’s and only ℵ0 t’s; a contradiction.

Next let x /∈ A, and let us show that x /∈ Bα, for all α. Let α < ω1

be arbitrary. Since T (x) is well-founded, either ‖T (x)‖ < α and x /∈ Ba, or
‖T (x)‖ ≥ α and there exists some t ∈ T (x) such that ‖T (x)/t‖ = α and
again x /∈ Bα. ��

Σ1
2 Sets

The Normal Form Theorem for Π1
1 sets provides a tree representation for

Σ1
2 sets:

Theorem 25.18. Every Σ1
2 set is ω1-Suslin. If A is Σ1

2(a) then A = p[T ]
where T is a tree on ω × ω1 and T ∈ L[a].

Proof. Let A be a Σ1
2(a) subset of N . There is a tree U ⊂ Seq3, recursive

in a such that
x ∈ A ↔ ∃y ∀z ∃n (x�n, y�n, z�n) /∈ U.

In other words,
x ∈ A ↔ ∃y U(x, y) is well-founded.
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A necessary and sufficient condition for a countable relation to be well-
founded is that it admits an order-preserving mapping into ω1. Thus

x ∈ A ↔ ∃y (∃f : U(x, y) → ω1) if u ⊂ v then f(u) > f(v)

↔ ∃y (∃f : Seq → ω1) f�U(x, y) is order-preserving.

Let {un : n ∈ N} be a recursive enumeration of the set Seq such that for
every n, length(un) ≤ n. If f is a function on (a subset of) N , let f∗ be the
function on (a subset of) Seq defined by f∗(un) = f(n). Thus

(25.17) x ∈ A ↔ ∃y (∃f : ω → ω1) f∗�U(x, y) is order-preserving.

Now we define a tree T ′ on ω2 × ω1 as follows: If s, t ∈ Seq and h ∈ Seq(ω1)
are all of length n, we let

(25.18) (s, t, h) ∈ T ′ ↔ h∗�Us,t is order-preserving

where Us,t = {u ∈ Seq : k = lengthu ≤ n and (s�k, t�k, u) ∈ U}. Clearly,
T ′ is a tree on ω2 × ω1.

Let x, y ∈ N . We claim that if (x�n, (y�n, h) ∈ T ′, then h∗�U(x, y) is
order-preserving. This is because if u, v ∈ dom(h∗) ∩ U(x, y), then u = ui,
v = uj for some i, j < n, hence length(u), length(v) < n and hence u, v ∈ Us,t,
where s = x�n, t = y�n. Thus

f ∈ T ′(x, y) ↔ ∀n (f�n)∗�U(x, y) is order-preserving.

But clearly a mapping f : ω → ω1 satisfies the right-hand side if and only if
f∗�U(x, y) is order-preserving. Hence (25.17) and (25.18) give

x ∈ A ↔ ∃y ∃f : ω → ω1 f ∈ T ′(x, y)

↔ ∃y ∃f : ω → ω1 ∀n (x�n, y�n, f�n) ∈ T ′.

Now we transform T ′ (on ω2×ω1) into a tree T ′′ (on ω×K where K = ω×ω1)
such that we replace triples

(〈s(0), . . . , s(n − 1)〉, 〈t(0), . . . , t(n − 1), 〉, 〈h(0), . . . , h(n − 1)〉)

by pairs

(〈s(0), . . . , s(n − 1)〉, 〈(t(0), h(0)), . . . , (t(n − 1), h(n − 1))〉)

and we get
x ∈ A ↔ (∃g : ω → K)∀n (x�n, g�n) ∈ T ′′.

Since K = ω × ω1 is in an obvious one-to-one correspondence with ω1, it is
clear that we can find a tree T on ω × ω1 such that

(25.19) x ∈ A ↔ (∃g : ω → ω1)∀n (x�n, g�n) ∈ T,

that is A = p[T ]. The tree T so obtained is constructible from the tree U ,
which in turn is constructible from a. ��
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One consequence of Theorem 25.18 is the following:

Theorem 25.19 (Sierpiński). Every Σ1
2 set is the union of ℵ1 Borel sets.

It follows that in ZFC, every Σ1
2 set has cardinality either at most ℵ1, or 2ℵ0 .

Proof. Let A be a Σ1
2 set. By Theorem 25.18 there is a tree T on ω×ω1 such

that A = p[T ]. For each γ < ω1 let T γ = {(s, h) ∈ T : h ∈ Seq(γ)}. Since
every f : ω → ω1 has the range included in some γ < ω1, it is clear that

A =
⋃

γ<ω1

p[T γ ].

For each γ < ω1, the set p[T γ ] is analytic (because p[T γ] = p[T̃ ] for some
T̃ ⊂ Seq2) and is the union of ℵ1 Borel sets. In fact, Lemma 25.17 gives
a uniform decomposition into ℵ1 Borel sets for any p[U ] where U is a tree on
ω × S with S countable. If we let

x ∈ Bγ
α ↔ ¬(‖T γ(x)‖ < α) ∧ (∀t ∈ Seq(γ))(¬‖T γ(x)/t‖ = α)

then A =
⋃

α<ω1

⋃
γ<ω1

Bγ
α. ��

The main application of Theorem 25.18 is absoluteness of Σ1
2 (and Π1

2)
relations.

Theorem 25.20 (Shoenfield’s Absoluteness Theorem). Every Σ1
2(a)

relation and every Π1
2(a) relation is absolute for all inner models M of ZF+

DC such that a ∈ M . In particular, Σ1
2 and Π1

2 relations are absolute for L.

It is clear from the proof that every Σ1
2(a) relation is absolute for every

transitive model M of a finite fragment of ZF + DC such that ω1 ∈ M .

Proof. Let a ∈ N and let A be a Σ1
2(a) subset of N ; let A = {x : A(x)}

where A(x) is a Σ1
2(a) property. Let M be an inner model of ZF + DC such

that a ∈ M . We shall prove that M � A if and only if A holds.
Let U ⊂ Seq3 be a tree, arithmetical in a, such that for all x ∈ N ,

x ∈ A ↔ ∃y U(x, y) is well-founded.

Thus for all x ∈ N ∩ M

x ∈ AM ↔ (∃y ∈ M)M � U(x, y) is well-founded.

However, for all x, y ∈ M , U(x, y) is the same tree in M as in V ; and since
well-foundedness is absolute, we have

x ∈ AM ↔ (∃y ∈ M)U(x, y) is well-founded.

Thus, if x ∈ AM , then x ∈ A, and it suffices to prove that if x ∈ A∩M then
x ∈ AM .
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We use the tree representation of Σ1
2 sets. Let T be the tree on ω × ω1

constructed in the proof of Theorem 25.18. Hence T ∈ L[a] and for every
x ∈ N ,

x ∈ A ↔ T (x) is ill-founded.

Now if x ∈ M is such that x ∈ A, then T (x) is ill-founded, and by absoluteness
of well-foundedness,

M � T (x) is ill-founded.

In other words, there exists a function g ∈ M from N into the ordinals such
that ∀n (x�n, g�n) ∈ T . Now following the proof of Theorem 25.18 backward,
from (25.19) to the beginning, and working inside M , one finds a y ∈ M such
that

M � U(x, y) is well-founded.

Hence if x ∈ A ∩ M , then x ∈ AM and we are done. ��

With only notational changes Theorem 25.18 gives a tree representation
of subsets of ω (or ωk) and we have:

Corollary 25.21. If A ⊂ ω is Σ1
2(a) then A ∈ L[a]. In particular, every

Σ1
2 real (and every Π1

2 real) is constructible.

The following lemma is an interesting application of Shoenfield’s Abso-
luteness.

Lemma 25.22. Let S be a set of countable ordinals such that the set A =
{x ∈ WO : ‖x‖ ∈ S} is Σ1

2. Then S is constructible. (And more generally, if
A is Σ1

2(a), then S ∈ L[a].)

Proof. Let A(x) be the Σ1
2 property such that A = {x : A(x)}. For each

countable ordinal α, let Pα be the notion of forcing that collapses α; i.e.,
the elements of Pα are finite sequences of ordinals less than α. Each Pα is
constructible; let us consider, in L, the forcing languages associated with
the Pα, and the corresponding Boolean-valued models LPα .

We shall show that for every α < ω1, α belongs to S if and only if

(25.20) L � every p ∈ Pα forces ∃x (A(x) ∧ ‖x‖ = α).

This will show that S is constructible.
In order to prove that α ∈ S is equivalent to (25.20), let us consider

a generic extension N of V in which ωV
1 is countable. Let us argue in N .

The notion of forcing Pα has only countably many constructible dense
subsets, and hence for every p ∈ Pα there exists a G ⊂ Pα such that G is
L-generic and p ∈ G. It follows that for every α, every ϕ and every p ∈ Pα,

(25.21) L � (p � ϕ) if and only if for every L-generic G � p, L[G] � ϕ.
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Let α < ωV
1 , and let z ∈ V be such that ‖z‖ = α. Clearly, α belongs to S

if and only if V satisfies

(25.22) ∃x (A(x) ∧ ‖x‖ = ‖z‖).

The property (25.22) is Σ1
2 and by absoluteness, it holds in V if and only if

it holds in N .
Let G be an arbitrary L-generic filter on Pα, and let u ∈ L[G] be such that

‖u‖ = α. Since N satisfies (25.22) if and only if it satisfies the Σ1
2 property

(25.23) ∃x (A(x) ∧ ‖x‖ = ‖u‖),

it follows that α ∈ S if and only if L[G] satisfies (25.23). Since an L-generic
filter on Pα exists in N , we conclude (still in N), that α ∈ S is equivalent to:

For every L-generic G ⊂ Pα, L[G] � ∃x (A(x) ∧ ‖x‖ = α).

But in view of (25.21) this last statement is equivalent to (25.20). ��

Another application of the tree representation of Σ1
2 sets is the Perfect

Set Theorem of Mansfield and Solovay:

Theorem 25.23 (Mansfield-Solovay). Let A be a Σ1
2(a) set in N . If

A contains an element that is not in L[a], then A has a perfect subset.

The theorem follows from this more general lemma:

Lemma 25.24. Let T be a tree on ω×K and let A = p[T ]. Either A ⊂ L[T ],
or A contains a perfect subset ; moreover, in the latter case there is a perfect
tree U ∈ L[T ] on ω such that [U ] ⊂ A.

Proof. The proof follows the Cantor-Bendixson argument. If T is a tree on
ω × K, let

(25.24) T ′ = {(s, h) ∈ T : there exist (s0, h0), (s1, h1) ∈ T such that s0 ⊃ s,
s1 ⊃ s, h0 ⊃ h, h1 ⊃ h, and that s0 and s1 are
incompatible

and then, inductively,

T (0) = T, T (α+1) = (T (α))′,

T (α) =
⋂

β<α

T (β) if α is limit.

The definition (25.24) is absolute for all models that contain T , and hence
T (α) ∈ L[T ] for all α. Let α be the least ordinal such that T (α+1) = T (α).

Let us assume first that T (α) = ∅; we shall show that A ⊂ L[T ]. Let
x ∈ A be arbitrary. There exists an f ∈ Kω such that (x, f) ∈ [T ]. Let
γ < α be such that (x, f) ∈ [T (γ)] but (x, f) /∈ [T (γ+1)]. Thus there is some
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(s, h) ∈ T (γ) such that s ⊂ x, h ⊂ f , and (s, h) /∈ T (γ+1); this means that
for any (s′, h′) ∈ T (γ), if s′ ⊃ s and h′ ⊃ h, then s′ ⊂ x. Now it follows that
x ∈ L[T ]; in L[T ], x is the unique x =

⋃
{s′ ⊃ s : (s′, h′) ∈ T (γ) for some

h ⊃ h′}.
Now let us assume that T (α) �= ∅. The tree T (γ) has the property that

for every (s, h) ∈ T (α) there exist two extensions (s0, h0) and (s1, h1) of
(s, h) that are incompatible in the first coordinate. Let us work in L[T ]. Let
(s0, h0) and (s1, h1) be some elements of T (α) such that s0 and s1 are in-
compatible. Then let (s0,0, h0,0), (s0,1, h0,1), (s1,0, h1,0), and (s1,1, h1,1) be
elements of T (α) such that si,j ⊃ si, hi,j ⊃ hi and that the si,j are incom-
patible. In this fashion we construct (st, ht) ∈ T (α) for each 0–1 sequence t.
The st generate a tree U = {s : s ⊂ st for some t}. It is clear that U is
a perfect three, that U ∈ L[T ], and that [U ] ⊂ p[T ] = A. ��

The following observation establishes a close connection between the pro-
jective hierarchy and the Lévy hierarchy of Σn properties of hereditarily
countable sets:

Lemma 25.25. A set A ⊂ N is Σ1
2 if and only if it is Σ1 over (HC ,∈).

Proof. If A is Σ1 over HC , there exists a Σ0 formula ϕ such that

x ∈ A ↔ HC � ∃u ϕ(u, x) ↔ (∃u ∈ HC )HC � ϕ[u, x].

Since ϕ is Σ0, it is absolute for transitive models and we have

x ∈ A ↔ (∃ transitive set M)(∃u ∈ M)M � ϕ[u, x]

(e.g., M = TC({u, x})). By the Principle of Dependent Choices every
TC({u, x}) is countable and we have

x ∈ A ↔ (∃ countable transitive set M)(∃u ∈ M)M � ϕ[u, x]

↔ (∃ well-founded extensional relation E on ω)

∃n ∃m (πE(m) = x and (ω, E) � ϕ[n, m])

where πE is the transitive collapse of (ω, E) onto (M,∈). Recalling the defi-
nition (25.13) of Ex for z ∈ N we have

(25.25) x ∈ A ↔ (∃z ∈ N )(z ∈ WF and (ω, Ex) � Extensionality,

∃n ∃m (πEx(m) = x and (ω, Ex) � ϕ[n, m])).

We shall verify that (25.25) gives a Σ1
2 definition of A. Since WF is Π1

1, it
suffices to show that the relation “(ω, E) � ϕ[n1, . . . , nk]” and “πE(m) =
x” are arithmetical in E. It is easy to see that (ω, E) � ϕ is a property
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arithmetical in E. As for the transitive collapse, we notice first that if k ∈ N ,
then

πE(m) = k ↔ ∃〈r0, . . . , rk〉 such that m = rk and (ω, E) � r0 = ∅
and (∀i < k) (ω, E) � (ri+1 = ri ∪ {ri}).

Then for x ⊂ ω we have

πE(m) = x ↔ ∀n (n E m ↔ πE(n) ∈ x)

and a similar formula, arithmetical in E, defines πE(m) = x for x ∈ N .
Hence A ∈ Σ1

2.
Conversely, if A is a Σ1

2 set then for some Π1
1 property P , A = {x :

∃y P (x, y)}. By Mostowski’s Absoluteness, x ∈ A if and only if for some
countable transitive model M � x adequate for P there exists a y ∈ M such
that M � P (x, y). But this gives a Σ1 definition of A over (HC ,∈). ��

As a consequence, Σ1
n+1 sets are exactly those that are Σn over HC .

Projective Sets and Constructibility

We now compute the complexity of the set of all constructible reals:

Theorem 25.26 (Gödel). The set of all constructible reals is a Σ1
2 set. The

ordering <L is a Σ1
2 relation.

The field of <L is R∩L. If all reals are constructible, then <L is also Π1
2

(because x <L y if and only if y �L x) and hence <L is then a ∆1
2 relation.

The theorem easily generalizes to L[a]: If a ∈ R (or a ⊂ ω or a ∈ N ),
then the set R ∩ L[a] is Σ1

2(a); also, the relation “x is constructible from y”
is a Σ1

2 relation.
We proved in Chapter 13 that “x is constructible” and “x <L y” are

Σ1 relations over the model (HC ,∈). Thus Theorem 25.26 follows from
Lemma 25.25.

The following lemma tells even more than <L is a Σ1
2 relation. For any

z ∈ N , let zm, m ∈ N , be defined by zm(n) = z(Γ(m, n)) (the canonical
homeomorphism between N and Nω).

Lemma 25.27. The following relation R on N is Σ1
2:

(z, x) ∈ R ↔ {zn : n ∈ N} = {y : y <L x}.

Proof. Since the relation {zn : n ∈ N} ⊂ {y : y <L x} is clearly Σ1
2, it

suffices to show that

(25.26) ∀y <L x∃n (y = zn)
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is Σ1
2. There is a sentence Θ (provable in ZF) such that if M is a transitive

model of Θ, then <L is absolute for M ; and if x ∈ M is constructible, then
every y <L x is in M . Thus (25.26) is equivalent to

∃ countable transitive model M that contains x, z, and all zn,
and M � (Θ and ∀y <L x∃n (y = zn)).

This last property is Σ1
2 by a proof similar to Lemma 25.25. ��

Every Σ1
1 set is Lebesgue measurable, has the Baire property and if un-

countable, has a perfect subset. The following results show that this is best
possible.

Corollary 25.28. If V = L then there exists a ∆1
2 set that is not Lebesgue

measurable and does not have the Baire property.

Proof. Let A = {(x, y) : x <L y}. For every y, the set {x : (x, y) ∈ A} is
countable, hence null and meager, and by Lemmas 11.12 and 11.16, if A is
measurable, then it is null; and if it has the Baire property, then it is meager.

Let B be the complement of A in R2, B = {(x, y) : y ≤L x}. Again, for
every x, the set {y : (x, y) ∈ B} is countable, and hence null if measurable,
and meager if has the Baire property.

It clearly follows that A neither is Lebesgue measurable nor has the prop-
erty of Baire ��

Corollary 25.29. If V = L then there exists an uncountable Σ1
2 set without

a perfect subset.

Proof. Let
x ∈ A ↔ x ∈ WO ∧ ∀y <L x (¬‖y‖ = ‖x‖).

The set A is uncountable: A is a subset of WO and for every α < ω1 there is
exactly one x in A such that ‖x‖ = α. Let us show that A is Σ1

2: Let R be
the Σ1

2 relation from Lemma 25.27; thus

x ∈ A ↔ x ∈ WO ∧ ∃z (R(z, x) ∧ ∀n (¬‖zn‖ = ‖x‖)),

and since ¬‖zn‖ = ‖x‖ is Π1
1, A is Σ1

2.
The set A does not have a perfect subset; in fact, it does not have an

uncountable analytic subset. This follows from the Boundedness Lemma: For
every analytic set X ⊂ A, the set {‖x‖ : x ∈ X} is bounded, and hence
countable (because of the definition of A). ��

Below (Corollary 25.37) we improve this by showing that in L there exists
an uncountable Π1

1 set without a perfect subset.
By Shoenfield’s Absoluteness Theorem, every Σ1

2 real is constructible. In
Part III we show that it is consistent that a nonconstructible ∆1

3 real exists.
In the presence of large cardinals, an example of a nonconstructible ∆1

3 real
is 0�:
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Lemma 25.30. If 0� exists then 0� is a ∆1
3 real, and the singleton {0�} is

a Π1
2 set.

Proof. We identify 0� with the set of Gödel numbers of the sentences in 0�.
We claim that the property Σ = 0� is Π1 over (HC ,∈), and therefore Π1

2.
We use the description (18.24) of 0� and note that the quantifiers ∀α can be
replaced by ∀α < ω1, thus making it a Π1 property over HC .

Thus {0�} is a Π1
2 set, and

n ∈ 0� ↔ ∃z (z ∈ {0�} and z(n) = 1) ↔ ∀z (z ∈ {0�} → z(n) = 1)

shows that 0� is a ∆1
3 subset of ω. ��

Scales and Uniformization

The tree analysis of Σ1
2 sets can be refined; an analysis of Kondô’s proof of

the Uniformization Theorem (Theorem 25.36) led Moschovakis to introduce
the concept of scale that pervades the modern descriptive set theory.

We start with the definition of norm and prewellordering. While in the
present chapter these concepts are applied to Π1

1 and Σ1
2 sets, the theory

applies to more general collection of definable sets of reals.

Definition 25.31. A norm on a set A is an ordinal function ϕ on A. A pre-
wellordering of A is a transitive relation � such that a � b or b � a for all
a, b ∈ A, and that ≺ is well-founded.

A prewellordering of a set A induces an equivalence relation (a � b∧b � a)
and a well-ordering of its equivalence classes. Its rank function is a norm, and
conversely, a norm ϕ defines a prewellordering

(25.27) a �ϕ b if and only if ϕ(a) ≤ ϕ(b).

The tree analysis of Π1
1 and Σ1

2 sets produces well behaved prewellorder-
ings of Π1

1 and Σ1
2 sets:

Theorem 25.32. For every Π1
1 set A there exists a norm ϕ on A with the

property that there exist a Π1
1 relation P (x, y) and a Σ1

1 relation Q(x, y) such
that for every y ∈ A and all x,

(25.28) x ∈ A and ϕ(x) ≤ ϕ(y) ↔ P (x, y) ↔ Q(x, y).

A norm ϕ with the above property is called a Π1
1-norm and the statement

“every Π1
1 set has a Π1

1-norm” is called the prewellordering property of Π1
1.

A relativization of Theorem 25.32 shows that every Π1
1(a) set has a Π1

1(a)-
norm. A modification of the proof of Theorem 25.32 yields the prewellordering
property of Σ1

2: every Σ1
2 set has a Σ1

2 norm, i.e., a norm for which exist a Σ1
2 P

and a Π1
2 Q that satisfy (25.28) (cf. Exercises 25.5 and 25.6).
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Proof. Let A be a Π1
1 and let T be a recursive tree on ω × ω such that

A(x) ↔ T (x) is well-founded.

For each x ∈ A let ϕ(x) = ‖T (x)‖ be the height of the well-founded tree.
To define the Σ1

1 relation Q, let

(25.29) Q(x, y) ↔ there exists an order-preserving function

f : T (x) → T (y).

It is not difficult to see that Q is Σ1
1, and the equivalence in (25.28) follows

from Corollary 25.7. For the Π1
1 relation, let

(25.30) P (x, y) ↔ ∀s �= ∅ there exists no order-preserving

f : T (y) → T (x)/s.

This is Π1
1 and says that T (x) is well-founded and it is not the case that

‖T (y)‖ < ‖T (x)‖. ��

The prewellordering property of Π1
1 implies the reduction principle for Π1

1

and the separation principle for Σ1
1—see Exercises. This in turn implies

Suslin’s Theorem that every ∆1
1 set is Borel.

The prewellordering property has an important strengthening, the scale
property which we now introduce.

Let A be a Π1
1 set. Following the proof of Theorem 25.18 we obtain a tree T

on ω × ω1 such that A = p[T ]. In detail, let U be a recursive tree on ω × ω
such that

x ∈ A ↔ U(x) is well-founded ↔ ∃g : U(x) → ω1 order preserving.

Let {un : n ∈ N} be a recursive enumeration of Seq such that length(un) ≤ n,
and let T be the tree on ω × ω1 defined by

(25.31) (s, h) ∈ T ↔ ∀m, n < length(s)(if um ⊃ un and (s�k, s�um) ∈ U
where k = length(um), then h(m) < h(n)).

The relevant observation is that not only that A = p[T ], i.e.,

x ∈ A ↔ ∃ a branch g in T (x)

but that for every x ∈ p[T ] there exists a (pointwise) least branch g in T (x),
i.e., for every f ∈ p[T ], g(n) ≤ f(n) for all n. To see this, let

gx(n) =
{

ρT (x)(un) if un ∈ U(x),

0 otherwise.

That gx is the least branch in T (x) holds because the rank function is the
least order-preserving function.
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Definition 25.33. A scale on a set A is a sequence of norms 〈ϕn : n ∈ ω〉
such that: If 〈xi : i ∈ ω〉 is a sequence of points in A with limi→∞ xi = x and
such that

(25.32) for every n, the sequence 〈ϕn(xi) : i ∈ ω〉 is eventually constant,
with value αn,

then x ∈ A, and for every n, ϕn(x) ≤ αn.

It is easy to see that every Π1
1 set A has a scale: Let A be a Π1

1 set and
let T be the tree in (25.31). We have A = p[T ] and for each x ∈ A, T (x) has
a least branch gx. Let 〈ϕn : n ∈ ω〉 be the sequence of norms on A defined by

(25.33) ϕn(x) = gx(n).

If 〈xi : i ∈ ω〉 is a sequence in A with limi→∞ xi = x that satisfies (25.32)
then 〈αn : n ∈ ω〉 is a branch in T (x) witnessing x ∈ p[T ], and for every n,
gx(n) ≤ αn.

The norms defined in (25.33) are Π1
1-norms; this can be verified as in the

proof of Theorem 25.32. To be precise, the scale 〈ϕn : n ∈ ω〉 is a Π1
1-scale:

Theorem 25.34. For every Π1
1 set A there exists a scale 〈ϕn : n ∈ ω〉 on A

with the property that there exist a Π1
1 relation P (n, x, y) and a Σ1

1 relation
Q(n, x, y) such that for every n, every y ∈ A, and all x,

x ∈ A and ϕn(x) ≤ ϕn(y) ↔ P (n, x, y) ↔ Q(n, x, y). ��(25.34)

The statement “every Π1
1 set has a Π1

1-scale” is called the scale property
of Π1

1. A relativization shows that every Π1
1(a) set has a Π1

1(a)-scale, and
a modification of the above construction yields the scale property for Σ1

2:
every Σ1

2(a) set has a Σ1
2(a)-scale; cf. Exercises 25.12 and 25.13.

A major application of scales is the uniformization property.

Definition 25.35. A set A ⊂ N × N is uniformized by a function F if
dom(F ) = {x : ∃y (x, y) ∈ A}, and (x, F (x)) ∈ A for all x ∈ dom(F ).

[Equivalently, F ⊂ A and dom(F ) = dom(A).]

Theorem 25.36 (Kondô). Every Π1
1 relation A ⊂ N × N is uniformized

by a Π1
1 function.

The statement of Theorem 25.36 (the Uniformization Theorem) is called
the uniformization property of Π1

1. A relativization shows that every Π1
1(a) re-

lation is uniformized by a Π1
1(a) function, and a modification of the proof

yields the uniformization property of Σ1
2; see Exercise 25.15.
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Proof. We give a proof of the following statement that easily generalizes to
a proof of Kondô’s Theorem: If A is a nonempty Π1

1 subset of N then there
exists an a ∈ A such that {a} is Π1

1.
Thus let A be a nonempty Π1

1 subset of N . Given a scale 〈ϕn : n ∈ ω〉
on A, we select an element a ∈ A as follows: We let A0 = A, and for each n
let

A2n+1 = {x ∈ A2n : ϕn(x) is least},
A2n+2 = {x ∈ A2n+1 : x(n) is least}.

Then A0 ⊃ A1 ⊃ . . . ⊃ An ⊃ . . . and the intersection has at most one element.
Definition 25.33 guarantees that the limit a is in A and so

⋂∞
n=0 An = {an}.

If the scale 〈ϕn : n ∈ ω〉 is Π1
1 then using (25.34) one verifies that the

set {a} is Π1
1. ��

Theorem 25.36 can be used to improve the result in Corollary 25.29:

Corollary 25.37. If V = L then there exists an uncountable Π1
1 set without

a perfect subset.

Proof. Let A be a Σ1
2 set without a perfect subset (by 25.29). Now A is the

projection of some Π1
1 set B ⊂ N 2. By the Uniformization Theorem, B has

a Π1
1 subset f that is a function and has the same projection A. The set f

is uncountable; we claim that f does not have a perfect subset. Assume that
P ⊂ f is perfect. The projection of P is an analytic subset of A. Since P ⊂ f ,
P is itself a function and because P is uncountable, the projection dom(P ) is
also uncountable. This is a contradiction since we proved that every analytic
subset of A is countable. ��

Combining this result with Theorem 25.23 we obtain:

Theorem 25.38. The following are equivalent:

(i) For every a ⊂ ω, ℵL[a]
1 is countable.

(ii) Every uncountable Π1
1 set contains a perfect subset.

(iii) Every uncountable Σ1
2 set contains a perfect subset.

Proof. Obviously, (iii) implies (ii). In order to show that (i) implies (iii), let
us assume (i) and let A be an uncountable Σ1

2 set. Let a ∈ N be such that
A ∈ Σ1

2(a). Since ℵL[a]
1 is countable, there are only countably many reals

in L[a], and hence A has an element that is not in L[a]. Thus A contains
a perfect subset, by Theorem 25.23.

The remaining implication uses the same argument as Corollaries 25.29
and 25.37. Assume that there exists an a ⊂ ω such that ℵL[a]

1 = ℵ1. We claim
that there exists an uncountable Π1

1 set without a perfect subset. Let

x ∈ A ↔ x ∈ L[a] ∧ x ∈ WO ∧ ∀y <L[a] x (¬‖y‖ = ‖x‖).

A is a Σ1
2(a) subset of WO and for all α < ω1, A has exactly one element x

such that ‖x‖ = α. The rest of the proof proceeds as before, and we obtain
a Π1

1(a) set of cardinality ℵ1 without a perfect subset. ��
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Σ1
2 Well-Orderings and Σ1

2 Well-Founded Relations

The canonical well-ordering of constructible reals is Σ1
2, and so if V = L

then there exists a Σ1
2 well-ordering of the set R (and of N ). We now prove

the converse: If there exists a Σ1
2 well-ordering of R then all reals are con-

structible.

Theorem 25.39 (Mansfield). If < is a Σ1
2 well-ordering of N then every

real is constructible. More generally, if < is Σ1
2(a) then N ⊂ L[a].

Proof. Let < be a Σ1
2 well-ordering of N and let us assume that there is

a nonconstructible real. Let T0 = Seq({0, 1}), and let C = [T0] = {0, 1}ω be
the Cantor space. Let us consider trees T ⊂ T0 and functions f : T → T0

such that s ⊂ t implies f(s) ⊂ f(t) and for every x ∈ [T ],
⋃∞

n=0 f(x�n) ∈ C.
Every such function induces a continuous function from [T ] into C, which we
denote by f∗.

Lemma 25.40. If T ⊂ T0 is a constructible perfect tree and if f : T → T0

is a constructible function such that f∗ is one-to-one, then there exist a con-
structible perfect tree U ⊂ T and a constructible g : U → T0 such that g∗ is
one-to-one, and g∗(x) < f∗(x) for every x ∈ [U ].

It suffices to prove this lemma because then we can construct a sequence
of trees T0 ⊃ T1 ⊃ . . . ⊃ Tn ⊃ . . . and functions f0, f1, . . . , fn, . . . where f0 is
the identity such that f∗

n+1(x) < f∗
n(x) for all x ∈ Tn+1. Since all [Tn] are

compact sets, their intersection is nonempty and therefore there exists an x
such that f∗

0 (x) > f∗
1 (x) > . . . > f∗

n(x) > . . . contrary to the assumption that
< is a well-ordering.

Proof of Lemma 25.40. Let T ⊂ T0 be a constructible tree and let f : T → T0

be constructible, such that f∗ is one-to-one.
Since T is perfect, there exists a constructible function h : T → T0 such

that h∗ : [T ] → C is one-to-one and onto. For each s ∈ T0, let s be the “mirror
image” of s, namely if s = 〈s(0), . . . , s(k)〉, let s = 〈1 − s(0), . . . , 1 − s(k)〉;
for x ∈ C, x is defined similarly.

We claim that at least one of the sets

A = {x ∈ [T ] : f∗(x) > h∗(x)}, B = {x ∈ [T ] : f∗(x) > h∗(x)}

contains a nonconstructible element. Let z be the least nonconstructible el-
ement of C, and let x, y ∈ [T ] be such that h∗(x) = z and h∗(y) = z. Then
both x and y are nonconstructible and hence f∗(x) ≥ z and f∗(y) ≥ z. Thus
either f∗(x) > z or f∗(y) > z and so either A or B contains a noncon-
structible element. For instance, assume that A does.

Since < is Σ2, and T , f , and h are constructible subsets of HF , the set A
is Σ1

2(a) for some a ∈ L. By Lemma 25.24 there exists a constructible perfect
tree U such that [U ] ⊂ A. If we let g = h�U , then U and g satisfy the lemma.

��
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The set WO is Π1
1 but not Σ1

1. One consequence of this fact, related to
the Boundedness Lemma, is that there is no Σ1

1 well-ordering of the reals,
in fact every Σ1

1 well-ordering of a set of reals is countable. A more general
statement holds:

Lemma 25.41. Every Σ1
1 well-founded relation on N has countable height.

Proof. Assuming that some Σ1
1 well-founded relation on N has height ≥ ω1,

we reach a contradiction by describing the set WO in a Σ1
1 way.

First consider the special case of well-orderings. Let E be a Σ1
1 well-

ordering and let us assume that its order-type is ≥ ω1. Then for every α < ω1

there is an order-preserving mapping of (α, <) into (N , E). Conversely, if
a countable linearly ordered set (Q, <) can be embedded in (N , E), then
(Q, <) is a well-ordering. Hence let Ex be, for each x ∈ N , the relation coded
by x (see (25.13)), and let LO be the arithmetical set of all x that code
a linear ordering of N . Then

(25.35) x ∈ WO ↔ x ∈ LO ∧ (∃f : ω → N )∀n ∀m
(n Ex m → (f(n), f(m)) ∈ E)

↔ x ∈ LO ∧ ∃z ∈ N ∀n ∀m (n Ex m → (zn, zm) ∈ E),

where for each z ∈ N and each n, zn is the element of N defined by zn(k) =
z(Γ(n, k)) for all k ∈ N , where Γ is the pairing function. Now (25.35) gives
a Σ1

1 description of WO, a contradiction.
In the general case when E is a Σ1

1 well-founded relation we observe that if
α is a countable ordinal less than the height of E, then there exist a countable
set S ⊂ N and a function f of S onto α such that for every u ∈ S and every
β < f(u) there exists a v ∈ S such that v E u and β ≤ f(v) (namely
f(x) = ρE(x), and the countable set S is constructed with the help of the
Principle of Dependent Choices). Conversely, if (Q, <) is a linearly ordered
set and if there is a function f from a subset of N onto Q such that for every
u ∈ dom(f) and every q < f(u) there is v ∈ dom(f) such that v E u and
q ≤ f(v), then (Q, <) is a well-ordering. Thus if E has height ≥ ω1, we have

(25.36) x ∈ WO ↔ x ∈ LO ∧ (∃ countable S = {zn : n ∈ N})
(∃f : S

onto→ N)∀n ∀k [if (k, f(zn)) ∈ Ex, then

∃m such that (zm, zn) ∈ E and

either k = f(zm) or (k, f(zm)) ∈ Ex].

Again, (25.36) can be written in a Σ1
1 manner, and we get a contradiction.

��

The next theorem gives an upper bound on heights of Σ1
2 well-founded

relations.
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Theorem 25.42 (Martin). Every Σ1
2 well-founded relation on N has length

< ω2.

Note that since every prewellordering is a well-founded relation, the the-
orem implies that δ1

2 ≤ ω2, where

δ1
2 = sup{α : α is the length of a Σ1

2 prewellordering}.

Proof. Let E ⊂ N × N be a Σ1
2 relation. Let T be a tree on ω2 × ω1 such

that for all x, y ∈ N ,

(25.37) (x, y) ∈ E ↔ (∃f : ω → ω1)∀n (x�n, y�n, f�n) ∈ T.

As usual, for each z ∈ N and each n ∈ N , let zn ∈ N be such that zn(k) =
z(Γ(n, k)) for all k; similarly, for each f : ω → ω1 and each n, let fn : ω → ω1

be such that fn(k) = f(Γ(n, k)) for all k. (Here Γ is the pairing function.)
Each of the following formulas is equivalent to the statement that the

relation E is not well-founded:

∃x∀m (xm+1, xm) ∈ E,

∃x∀m ∃f ∀n (xm+1�n, xm�n, f�n) ∈ T,

∃x∃f ∀m ∀n (xm+1�n, xm�n, fm�n) ∈ T.

It is easy to construct a tree U on ω × ω1 such that for all x ∈ N and all
f : ω → ω1,

(25.38) ∀m ∀n (xm+1�n, xm�n, fm�n) ∈ T if and only if ∀k (x�k, f�k) ∈ U .

It follows from (25.38) that

(25.39) E is well-founded if and only if U is well-founded.

Now let E ⊂ N ×N be a Σ1
2 well-founded relation; we want to show that

its height is < ω2. Let T be a tree on ω2 × ω1 such that (25.37) holds for all
x, y ∈ N and let U be the tree on ω ×ω1 constructed from T as above; since
E is well-founded, U is well-founded.

Let us consider a generic extension V [G] of the universe in which ωV
1 is

countable and ωV
2 = ωV [G]

1 . Let us argue in V [G].
Let E∗ be the relation on N defined by (25.37). First we observe that

E ⊂ E∗: If x, y ∈ V , then

(x, y) ∈ E ↔ V � T (x, y) is ill-founded

↔ V [G] � T (x, y) is ill-founded

↔ (x, y) ∈ E∗.

(because well-foundedness is absolute). We notice further that E∗ is well-
founded: This is because by the construction of U (which is absolute) and
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the definition of E∗, V [G] satisfies (25.39), i.e.,

E∗ is well-founded if and only if U is well-founded.

Hence E∗ is well-founded, and height(E) ≤ height(E∗).
The tree T is a tree on ω × ωV

1 and ωV
1 is a countable ordinal. Since

E∗ = p[T ], it follows that E∗ is a Σ1
1 relation. By Lemma 25.41, the height

of E∗ is countable. It follows that height(E) < ωV [G]
1 = ωV

2 .
Now we can step back into the ground model and look at the result of the

above argument: height(E) < ω2. ��

Both Theorem 25.42 and Lemma 25.41 are special cases of the more gen-
eral Kunen-Martin Theorem:

Theorem 25.43. Let κ be an infinite cardinal. Every κ-Suslin well-founded
relation on N has height < κ+.

Proof. Let < be a κ-Suslin well-founded relation on N . We first associate
with < a tree T on N as follows:

(25.40) T = {〈x0, . . . , xn−1〉 : xn−1 < xn−2 < . . . < x0},

(and 〈x〉 ∈ T for all x ∈ N ). T is well-founded and it suffices to prove that
the height of T is < κ+.

As < is κ-Suslin, there exists a tree T on ω × ω × κ such that

x < y if and only if ∃f (x, y, f) ∈ [T ].

Let W be the set of ill sequences (of nodes at the same level of T )

w = 〈(s1, s0, h0), . . . , (si+1, si, hi), . . . , (sk, sk−1, hk−1)〉

with (si+1, si, hi) ∈ T , and let

(25.41) w′ ≺ w if and only if k = length(w) < length(w′) = k′

length(s0) < length(s′0), and

∀i < k si ⊂ s′i and hi ⊂ h′
i.

We claim that the relation ≺ is well-founded. Otherwise, let wn = 〈(sn
i+1,

sn
i , hn

i ) : i < kn〉 be such that wn+1 ≺ wn for all n. For each i ∈ ω, let
xi =

⋃∞
n=0 sn

i , and fi =
⋃∞

n=0 hn
i (these exist by (25.41)). It follows that

(xi+1, xi, fi) ∈ [T ] for all i, hence xi+1 < xi, and therefore x0 > x1 > . . . >
xi > . . ., a contradiction.

The set W has cardinality κ and it suffices to find an order preserving
mapping from T − {∅} into (W,≺). For every pair (x, y) such that x < y,
the tree T (x, y) on κ is not well-founded and has a branch h; let hx,y be the
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leftmost branch of the tree T (x, y). Now let π : T − {∅} → W be as follows:
π(〈x〉) = ∅ for every x ∈ N , and for k ≥ 2,

π(〈x0, . . . , xk−1〉) = 〈(x1�k, x0�k, hx1,x0�k), . . . , (xk�k, xk−1�k, hxk,xk−1�k)〉.

As π(〈x0, . . . , xk−1, xk〉) ≺ π(〈x0, . . . , xk−1〉), the mapping is order-preserv-
ing, completing the proof. ��

Borel Codes

Every Borel set of reals is obtained, in fewer than ω1 steps, from open inter-
vals by taking complements and countable unions. We shall show how this
procedure can be coded by a function c ∈ ωω. We shall define the set BC of
Borel codes and assign to each c ∈ BC a unique Borel set Ac. The code c not
only describes the Borel set Ac but also describes the procedure by which the
set Ac is constructed from basic open sets.

Let I1, I2, . . . , Ik, . . . be a recursive enumeration of open intervals with
rational endpoints (i.e., the sequence of the pairs of endpoints is rercursive).
For each c ∈ N , let

(25.42) u(c) and vi(c) (i ∈ N)

be elements of N defined as follows: If d = u(c), then d(n) = c(n + 1) for
all n; if d = vi(c), then d(n) = c(Γ(i, n)+1) for all n (where Γ is the canonical
one-to-one correspondence between N × N and N).

For 0 < α < ω1, we define sets Σα and Πα ⊂ N as follows:

(25.43) c ∈ Σ1 if c(0) > 1;

c ∈ Πα if either c ∈ Σβ ∪ Πβ for some β < α

or c(0) = 0 and u(c) ∈ Σα;

c ∈ Σα (α > 1) if either c ∈ Σβ ∪ Πβ for some β < α

or c(0) = 1 and vi(c) ∈
⋃

β<α(Σβ ∪ Πβ) for all i.

If c ∈ Σα (if c ∈ Πα), we call c a Σ0
α-code (a Π0

α-code). Let BC, the set of
all Borel codes, be

BC =
⋃

α<ω1

Σα =
⋃

α<ω1

Πα.

For every c ∈ BC, we define a Borel set Ac as follows (we say that
c codes Ac):

(25.44) if c ∈ Σ1 then Ac =
⋃
{In : c(n) = 1};

if c ∈ Πα and c(0) = 0 then Ac = R − Au(c);

if c ∈ Σα and c(0) = 1 then Ac =
⋃∞

i=0 Avi(c).
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It is clear that for every α > 0, if c ∈ Σα (if c ∈ Πα), then Ac ∈ Σ0
α

(Ac ∈ Π0
α). Conversely, if B is a Σ0

α set (a Π0
α set), then there exists c ∈ Σα

(c ∈ Πα) such that B = Ac. This is proved by induction on α using facts
like: If ci, i ∈ ω are elements of

⋃
β<α Πβ , then there is c ∈ Σα such that

ci = vi(c) for all i ∈ ω.
Thus {Ac : c ∈ BC} is the collection of all Borel sets.

Lemma 25.44. The set BC of all Borel codes is Π1
1.

Proof. Let us consider the following relation E on N :

(25.45) x E y if and only if either y(0) = 0 and x = u(y),

or y(0) = 1 and x = vi(y) for some i ∈ ω.

The relation E is arithmetical. If y ∈ Σ1, then y is E-minimal (i.e., extE(y) =
∅) and vice versa; if y ∈ Πα and x E y, then x ∈ Σα, and if y ∈ Σα (α > 1)
and x E y, then x ∈

⋃
β<α(Σβ ∪ Πβ).

We claim that

(25.46) y ∈ BC ↔ E is well-founded below y

↔ there is no 〈z0, z1, . . . zn, . . .〉 such that z0 = y
and that ∀n (zn+1 E zn).

By the remark following (25.45), if y ∈ BC, then there can be no infinite
descending sequence z0 = y, z1 E z0, z2 E z1, etc. Conversely, if E is well-
founded below y, let ρ denote the rank function for E on extE(y). By induc-
tion on ρ(x), one can see that every x ∈ extE(y) is a Borel code, and finally
that y is itself a Borel code.

Now (25.46) gives a Π1
1 definition of the set BC and the lemma follows.

��

Lemma 25.45. The properties Ac ⊂ Ad, Ac = Ad, and Ac = ∅ are Π1
1 prop-

erties of Borel codes.

Proof. We shall show that there are properties P, Q ⊂ R × N such that
P is Π1

1 and Q is Σ1
1 and such that for every c ∈ BC,

(25.47) a ∈ Ac ↔ (a, c) ∈ P ↔ (a, c) ∈ Q.

Then
Ac ⊂ Ad ↔ c, d ∈ BC ∧ ∀a ((a, c) ∈ Q → (a, d) ∈ P ),

Ac = Ad ↔ c, d ∈ BC ∧ Ac ⊂ Ad ∧ Ad ⊂ Ac,

Ac = ∅ ↔ c ∈ BC ∧ ∀a (a, c) /∈ Q.

To find P and Q, let x ∈ N be fixed. Let T be the smallest set T ⊂ N
such that

(25.48) x ∈ T , and if y ∈ T and z E y, then z ∈ T .
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The set T is countable. Let h : T → {0, 1} be a function with the following
property: For all y ∈ T ,

(25.49) if y(0) > 1, then h(y) = 1 if and only if
for some n, y(n) = 1 and a ∈ In;

if y(0) = 0, then h(y) = 1 if and only if h(u(y)) = 0;

if y(0) = 1, then h(y) = 1 if and only if for some i, h(vi(y)) = 1.

Note that if x is a Borel code then there is a unique smallest countable
set T ⊂ N with the property (25.48), and a unique function h with the
property (25.49); moreover, for every y ∈ T we have h(y) = 1 if and only if
a ∈ Ay. Thus we let

(25.50) (a, x) ∈ P ↔ (∀ countable T ⊂ N )(∀h : T → {0, 1})
if (25.48) and (25.49) then h(x) = 1,

and

(25.51) (a, x) ∈ Q ↔ (∃ countable T ⊂ N )(∃h : T → {0, 1})
(25.48) ∧ (25.49) ∧ h(x) = 1,

and it is clear that if c ∈ BC, then a ∈ Ac if and only if (a, c) ∈ P if and only
if (a, c) ∈ Q.

It is a routine matter to verify that (25.50) can be written in Π1
1 way and

(25.51) in a Σ1
1 way. (The quantifiers ∀T , ∀h, and ∃T , ∃h are the only ones

for which one needs quantifiers over N ; note that for instance, ∀z (z E y →
y ∈ T ) in (25.48) can be written as

(y(0) = 0 → u(y) ∈ T ) ∧ (y(0) = 1 → ∀i (vi(y) ∈ T )).) ��

We shall now show that certain properties of Borel codes are absolute for
transitive models of ZF+DC. (As usual, full ZF+DC is not needed, and the
absoluteness holds for adequate transitive models.) If M is a transitive model
of ZF + DC and c ∈ ωω is in M , then because the set BC is Π1

1, c is a Borel
code if and only if M � c is a Borel code. By Lemma 25.45 the properties
of the codes Ac ⊂ Ad, Ac = Ad, and Ac = ∅ are Π1

1 and therefore absolute:
Ac = Ad holds if and only if AM

c = AM
d , etc., where AM

c denotes the Borel set
in M coded by c. Moreover, since a ∈ Ac is Π1

1, it follows that AM
c = Ac ∩M

for every Borel code c ∈ M .

Lemma 25.46. The following properties (of codes) are absolute for all tran-
sitive models M of ZF + DC:

Ae = Ac ∪ Ad, Ae = Ac ∩ Ad,

Ae = R − Ac, Ae = Ac  Ad, Ae =
∞⋃

n=0
Acn

(we assume that the codes c, d, e are in M , as is the sequence 〈cn : n ∈ ω〉).
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We say that the operations ∪, ∩, −, ,
⋃∞

n=0 on Borel sets with codes
in M are absolute for M .

Proof. If c0, c1, . . . , cn, . . . is a sequence of Borel codes in M , let c ∈ N be
such that c(0) = 1 and that vi(c) = ci for all i ∈ ω. Clearly, c is a Borel code,
c ∈ M , and c codes (both in the universe and in M) the Borel set

⋃∞
n=0 Acn .

Hence for any Borel code e ∈ M , we have

AM
e =

∞⋃
n=0

AM
cn

↔ AM
e = AM

c ↔ Ae = Ac ↔ Ae =
∞⋃

n=0
Acn

because Ae = Ac is absolute for M . Thus Ae =
⋃∞

n=0 Acn is absolute.
An analogous argument shows that R−Ac is absolute, and the rest of the

lemma follows easily because the operations ∩, and  can be defined from ∪
and −. ��

Exercises

25.1. If A ⊂ Seq × ω is arithmetical then {(x, n) : (x�n, n) ∈ A} is ∆1
1.

25.2. (i) Every arithmetical relation is ∆1
1.

(ii) If A ⊂ N ×N is arithmetical then ∃x A is Σ1
1 and ∀x A is Π1

1.

25.3. The set A = {(x, z) : z /∈ WO ∨ ‖x‖ ≤ ‖z‖} is Σ1
1. Hence for each α, WOα

is Σ1
1(z) for each z ∈WO such that ‖z‖ = α.
[(x, z) ∈ A↔ z /∈WO ∨ (∃h : N →N )∀m∀n (m Ex n→ h(m) Ex h(n)).]

25.4. Every Σ1 sentence is absolute for all inner models; in fact for all transitive
models M ⊃ Lϑ where ϑ = ωL

1 .
[Use Shoenfield’s Absoluteness Lemma and Lemma 25.25.]

25.5. Modify the proof of Theorem 25.32 to show that Σ1
2 has the prewellordering

property.

25.6. Prove the prewellordering property of Σ1
2 from the prewellordering property

of Π1
1.

A collection C of subsets of N satisfies the reduction principle if for every pair
A, B ∈ C there are disjoint A′, B′ ∈ C such that A′ ⊂ A, B′ ⊂ B, and A′ ∪ B′ =
A ∪B. C satisfies the separation principle if for every pair of disjoint sets A, B ∈ C
there is a set E such that both E and ¬E are in C, and that A ⊂ E and B ⊂ ¬E.
Lemma 11.11 proves that the collection of all analytic sets satisfies the separation
principle.

25.7. The collection of Π1
1 sets satisfies the reduction principle.

[Let ϕ and ψ be Π1
1 norms on the Π1

1 sets A and B and let A′ = {x ∈ A :
ψ(x) �< ϕ(x)} and B′ = {x ∈ B : ϕ(x) � ψ(x)}.]

25.8. The collection of Σ1
2 sets satisfies the reduction principle.

The two exercises above hold also for Π1
1(a) and Σ1

2(a).
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25.9. If a collection C satisfies the reduction principle then the collection C∗ = {A :
¬A ∈ C} satisfies the separation principle.

[If A,B ∈ C∗ are disjoint, then ¬A ∪ ¬B = N r and so if A′, B′ ∈ C are disjoint
such that A′ ⊂ ¬A, B′ ⊂ ¬B and A′ ∪B′ = ¬A∪¬B, then B′ = ¬A′ and both A′

and B′ are in C∗.]

Hence the separation principle holds for Σ1
1 and for Π1

2 (and Σ1
1(a) and Π1

2(a)).

25.10. There is no universal ∆1
n set, for any n ∈ N , i.e., no D ⊂ N 2 such that

D is ∆1
n and that for every ∆1

n set A ⊂ N there is v ∈ N such that A = {x :
(x, v) ∈ D}.

[Assume there is such a D and let A = {x : (x, x) �∈ D}.]

25.11. The collection of Π1
1 sets (or Σ1

2 sets) does not satisfy the separation prin-
ciple.

[The reason is that Π1
1 satisfies the reduction principle (Σ1

2 is similar). Let h be
a homeomorphism of N ×N onto N , and let U ⊂ N 2 be a universal Π1

1 set. Let
(x, h(u, v)) ∈ A if and only if (x, u) ∈ U , (x, h(u, v)) ∈ B if and only if (x, v) ∈ V ,
and let A′, B′ be disjoint Π1

1 sets such that A′ ⊂ A, B′ ⊂ B, and A′ ∪B′ = A∪B.
If there existed E ∈ ∆1

1 such that A′ ⊂ E and B′ ⊂ ¬E, then E would be
a universal ∆1

1 set.]

25.12. Modify the proof of Theorem 25.34 to show that Σ1
2 has the scale property.

25.13. Prove the scale property of Σ1
2 from the scale property of Π1

1.

25.14. Let 〈ϕn : n ∈ ω〉 be a scale on A and let T be the tree {(s, 〈α0, . . . , αn−1〉) :
(∃x ∈ A)x�n = s and ∀i < n αi = ϕi(x)}. Show that A = p[T ] and that for each
x ∈ A, T (x) has a least branch.

25.15. Using the scale property of Σ1
2 prove the uniformization property of Σ1

2.

Historical Notes

For classical descriptive set theory, see the books of Luzin [1930] and Kuratow-
ski [1966]; the terminology is that of modern descriptive set theory based on the
analogy with Kleene’s hierarchies ([1955]).

The basic facts on Σ1
1 and Π1

1 sets are all in Luzin’s book [1930] and some
are of earlier origin: Lemma 25.10 was in effect proved by Lebesgue in [1905], and
Corollary 25.13 and Lemma 25.17 were proved by Luzin and Sierpiński in [1923].

Theorem 25.19 appeared in Sierpiński [1925]. Theorem 25.36 is due to Kondô
[1939].

Theorem 25.20 is due to Shoenfield [1961]. Previously, Mostowski had es-
tablished absoluteness of Σ1

1 and Π1
1 predicates (Theorem 25.4). Lemma 25.25:

Lévy [1965b].
The tree representation of Σ1

2 sets is implicit in Shoenfield’s proof in [1961].
Lemma 25.22 is due to Kechris and Moschovakis [1972].

Theorem 25.23 is due to Mansfield [1970] and Solovay [1969]. Lemma 25.24 was
formulated and first proved by Mansfield.

Theorem 25.26 and corollaries: In his announcement [1938] Gödel stated that
the Axiom of Constructibility implies that there exists a nonmeasurable ∆1

2 set
and an uncountable Π1

1 set without a perfect subset. Gödel did not publish the
proof but gave an outline in the second printing (in 1951) of his monograph [1940].
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Novikov in [1951] gave a proof of the corollaries (Kuratowski’s paper [1948] contains
somewhat weaker results) and Addison in [1959] worked out the details of Gödel
outline of the proof of the theorem.

Lemma 25.30: Solovay [1967].
For scales and uniformization, see Moschovakis’ book [1980]. Moschovakis in-

troduced scales in [1971].
Theorem 25.38: Solovay [1969].
Theorem 25.39: Mansfield [1975].
Theorem 25.42 (as well as the present proof) is due to Martin; and Theo-

rem 25.43 is due to Kunen and Martin, the present proof is Kunen’s.
Borel codes are as in Solovay [1970].
The reduction and separation principles were introduced by Kuratowski; they

are discussed in detail in Kuratowski’s book [1966] and in Addison [1959].
Exercise 25.7: Kuratowski [1936].


