25. Descriptive Set Theory

Descriptive set theory is the study of definable sets of real numbers, in particular projective sets, and is mostly interested in how well behaved these sets are. A prototype of such results is Theorem 11.18 stating that $\boldsymbol{\Sigma}_{1}^{1}$ sets are Lebesgue measurable, have the Baire property, and have the perfect set property. This chapter continues the investigations started in Chapter 11. Throughout, we shall work in set theory ZF + DC (the Principle of Dependent Choice).

The Hierarchy of Projective Sets

Modern descriptive set theory builds on both the classical descriptive set theory and on recursion theory. It has become clear in the 1950's that the topological approach of classical descriptive set theory and the recursion theoretic techniques of logical definability describe the same phenomena. Modern descriptive set theory unified both approaches, as well as the notation. An additional ingredient is in the use of infinite games and determinacy; we shall return to that subject in Part III.

We first reformulate the hierarchy of projective sets in terms of the lightface hierarchy $\Sigma_{n}^{1}, \Pi_{n}^{1}$ and Δ_{n}^{1} and its relativization for real parameters. While we introduce these concepts explicitly for subsets of the Baire space $\mathcal{N}=\omega^{\omega}$, analogous definitions and results apply to product spaces $\mathcal{N} \times \mathcal{N}$, \mathcal{N}^{r} as well as the spaces $\omega, \omega^{k}, \omega^{k} \times \mathcal{N}^{r}$.

Definition 25.1.

(i) A set $A \subset \mathcal{N}$ is Σ_{1}^{1} if there exists a recursive set $R \subset \bigcup_{n=0}^{\infty}\left(\omega^{n} \times \omega^{n}\right)$ such that for all $x \in \mathcal{N}$,

$$
\begin{equation*}
x \in A \quad \text { if and only if } \quad \exists y \in \omega^{\omega} \forall n \in \omega R(x \upharpoonright n, y \upharpoonright n) . \tag{25.1}
\end{equation*}
$$

(ii) Let $a \in \mathcal{N}$; a set $A \subset \mathcal{N}$ is $\Sigma_{1}^{1}(a)\left(\Sigma_{1}^{1}\right.$ in $\left.a\right)$ if there exists a set R recursive in a such that for all $x \in \mathcal{N}$,

$$
x \in A \quad \text { if and only if } \quad \exists y \in \omega^{\omega} \forall n \in \omega R(x \upharpoonright n, y \upharpoonright n, a \upharpoonright n) .
$$

(iii) $A \subset \mathcal{N}$ is $\Pi_{n}^{1}($ in $a)$ if the complement of A is $\Sigma_{n}^{1}($ in $a)$.
(iv) $A \subset \mathcal{N}$ is Σ_{n+1}^{1} (in a) if it is the projection of a Π_{n}^{1} (in a) subset of $\mathcal{N} \times \mathcal{N}$.
(v) $A \subset \mathcal{N}$ is $\Delta_{n}^{1}($ in $a)$ if it is both Σ_{n}^{1} and $\Pi_{n}^{1}($ in $a)$.

A similar lightface hierarchy exists for Borel sets: A set $A \subset \mathcal{N}$ is Σ_{1}^{0} (recursive open or recursively enumerable) if

$$
\begin{equation*}
A=\{x: \exists n R(x \upharpoonright n)\} \tag{25.2}
\end{equation*}
$$

for some recursive R, and Π_{1}^{0} (recursive closed) if it is the complement of a Σ_{1}^{0} set. Thus Σ_{1}^{1} sets are projections of Π_{1}^{0} sets, and as every open set is Σ_{1}^{0} in some $a \in \mathcal{N}$ (namely an a than codes the corresponding union of basic open intervals), we have

$$
\boldsymbol{\Sigma}_{1}^{1}=\bigcup_{a \in \mathcal{N}} \Sigma_{1}^{1}(a)
$$

and more generally, every $\boldsymbol{\Sigma}_{n}^{1}\left(\boldsymbol{\Pi}_{n}^{1}\right)$ set is $\Sigma_{n}^{1}\left(\Pi_{n}^{1}\right)$ in some parameter $a \in \mathcal{N}$.
For $n \in \omega$, the lightface hierarchy of Σ_{n}^{0} and Π_{n}^{0} sets describes the arithmetical sets: For instance, a set A is Σ_{3}^{0} if

$$
A=\left\{x \in \mathcal{N}: \exists m_{1} \forall m_{2} \exists m_{3} R\left(m_{1}, m_{2}, x\left\lceil m_{3}\right)\right\}\right.
$$

for some recursive R, etc. Arithmetical sets are exactly those $A \subset \mathcal{N}$ that are definable (without parameters) in the model ($H F, \in$) of hereditary finite sets.

The following lemma gives a list of closure properties of projective relations on \mathcal{N}. We use the logical (rather than set-theoretic) notation for Boolean operations; compare with Lemma 13.10.

Lemma 25.2. Let $n \geq 1$.
(i) If A, B are $\Sigma_{n}^{1}(a)$ relations, then so are $\exists x A, A \wedge B, A \vee B, \exists m A$, $\forall m A$.
(ii) If A, B are $\Pi_{n}^{1}(a)$ relations, then so are $\forall x A, A \wedge B, A \vee B, \exists m A$, $\forall m A$.
(iii) If A is $\Sigma_{n}^{1}(a)$, then $\neg A$ is Π_{n}^{1}; if A is $\Pi_{n}^{1}(a)$, then $\neg A$ is Σ_{n}^{1}.
(iv) If A is $\Pi_{n}^{1}(a)$ and B is $\Sigma_{n}^{1}(a)$, then $A \rightarrow B$ is $\Sigma_{n}^{1}(a)$; if A is $\Sigma_{n}^{1}(a)$ and B is $\Pi_{n}^{1}(a)$, then $A \rightarrow B$ is $\Pi_{n}^{1}(a)$.
(v) If A and B are $\Delta_{n}^{1}(a)$, then so are $\neg A, A \wedge B, A \vee B, A \rightarrow B, A \leftrightarrow B$, $\exists m A, \forall m A$.

Proof. We prove the lemma for $n=1$; the general case follows by induction. Moreover, clauses (ii)-(v) follow from (i).

First, let $A \in \Sigma_{1}^{1}(a)$ and let us show that $\exists x A$ is $\Sigma_{1}^{1}(a)$. We have

$$
(x, y) \in A \leftrightarrow \exists z \forall n(x\lceil n, y\lceil n, z\lceil n, n) \in R,
$$

where R is recursive in a. Thus

$$
y \in \exists x A \leftrightarrow \exists x \exists z \forall n(x \upharpoonright n, y\lceil n, z \upharpoonright n, n) \in R .
$$

We want to contract the two quantifiers $\exists x \exists z$ into one. Let us consider some recursive homeomorphism between \mathcal{N} and \mathcal{N}^{2}, e.g., for $u \in \mathcal{N}$ let u^{+}and u^{-} be

$$
u^{+}(n)=u(2 n), \quad u^{-}(n)=u(2 n+1), \quad(n \in \boldsymbol{N})
$$

There exists a relation R^{\prime} recursive in R, such that for all $u, y \in \mathcal{N}$,
(25.3) $\forall n(u \upharpoonright n, y \upharpoonright n, n) \in R^{\prime} \quad$ if and only if $\quad \forall k\left(u^{+} \upharpoonright k, y \upharpoonright k, u^{-} \upharpoonright k, k\right) \in R$.

Namely, if $n=2 k$ (or $n=2 k+1$), we let $(s, t, n) \in R^{\prime}$ just in case length $(s)=$ $\operatorname{length}(t)=n$ and

$$
(\langle s(0), \ldots, s(2 k-2)\rangle,\langle t(0), \ldots, t(k-1)\rangle,\langle s(1), \ldots, s(2 k-1)\rangle, k) \in R .
$$

Now (25.3) implies that

$$
y \in \exists x A \leftrightarrow \exists u \forall n\left(u\lceil n, y \upharpoonright n, n) \in R^{\prime},\right.
$$

and hence $\exists x A$ is $\Sigma_{1}^{1}(a)$.
Now let A and B be $\Sigma_{1}^{1}(a)$:

$$
\begin{aligned}
& x \in A \leftrightarrow \exists z \forall n\left(x \left\lceiln, z\lceil n, n) \in R_{1},\right.\right. \\
& x \in A \leftrightarrow \exists z \forall n\left(x \left\lceiln, z\lceil n, n) \in R_{2}\right.\right.
\end{aligned}
$$

where both R_{1} and R_{2} are recursive in a. Note that

$$
x \in A \wedge B \leftrightarrow \exists z_{1} \exists z_{2} \forall n\left[\left(x \upharpoonright n, z_{1} \upharpoonright n, n\right) \in R_{1} \wedge\left(x \upharpoonright n, z_{2} \upharpoonright n, n\right) \in R_{2}\right]
$$

and hence, by contraction of $\exists z_{1} \exists z_{2}$, there is some R, recursive in R_{1} and R_{2} such that

$$
x \in A \wedge B \leftrightarrow \exists z \forall n(x \upharpoonright n, z \upharpoonright n, n) \in R .
$$

Thus $A \wedge B$ is $\Sigma_{1}^{1}(a)$.
The following argument shows that the case $A \vee B$ can be reduced to the case $\exists m C$. Let us define R as follows ($s, t \in S e q, m, n \in \boldsymbol{N}$):

$$
\begin{aligned}
(s, m, t, n) \in R \leftrightarrow \text { either } m & =1 \text { and }(s, t, n) \in R_{1} \\
\text { or } m & =2 \text { and }(s, t, n) \in R_{2} .
\end{aligned}
$$

R is recursive in R_{1} and R_{2}, and

$$
\begin{aligned}
x \in A \vee B & \leftrightarrow \exists z \forall n\left(x \upharpoonright n, z\lceil n, n) \in R_{1} \vee \exists z \forall n\left(x \left\lceiln, z\lceil n, n) \in R_{2}\right.\right.\right. \\
& \leftrightarrow \exists m \exists z \forall n(x \upharpoonright n, m, z\lceil n, n) \in R \\
& \leftrightarrow x \in \exists m C
\end{aligned}
$$

where C is $\Sigma_{1}^{1}(a)$.

The contraction of quantifiers $\exists m \exists z$ is easier than the contraction $\exists x \exists z$ above. We employ the following recursive homomorphism between \mathcal{N} and $\omega \times \mathcal{N}: h(u)=\left(u(0), u^{\prime}\right)$, where

$$
u^{\prime}(n)=u(n+1) \quad(n \in \boldsymbol{N})
$$

If

$$
(x, m) \in A \leftrightarrow \exists z \forall n(x \upharpoonright n, m, z \upharpoonright n, n) \in R,
$$

then we leave it to the reader to find a relation R^{\prime}, recursive in R, such that for all $u, x \in \mathcal{N}$,

$$
\forall n(x \upharpoonright n, u \upharpoonright n, n) \in R^{\prime} \leftrightarrow \forall k\left(x \upharpoonright k, u(0), u^{\prime} \upharpoonright k, k\right) \in R .
$$

Then

$$
x \in \exists m A \leftrightarrow \exists u \forall n(x \upharpoonright n, u \upharpoonright n, n) \in R^{\prime} .
$$

It remains to show that if A is $\Sigma_{1}^{1}(a)$, then $\forall m A$ is $\Sigma_{1}^{1}(a)$. Let

$$
(x, m) \in A \leftrightarrow \exists z \forall n(x \upharpoonright n, m, z\lceil n, n) \in R
$$

where R is recursive in a. Thus

$$
\begin{equation*}
x \in \forall m A \leftrightarrow \forall m \exists z \forall n(x \upharpoonright n, m, z\lceil n, n) \in R . \tag{25.4}
\end{equation*}
$$

We want to replace the quantifiers $\forall m \exists z$ by $\exists u \forall m$ and then contract the two quantifiers $\forall m \forall n$ into one. Let us consider the pairing function $\Gamma: \boldsymbol{N} \times \boldsymbol{N} \rightarrow$ \boldsymbol{N} and the following homeomorphism between \mathcal{N} and \mathcal{N}^{ω} : For each $u \in \mathcal{N}$, let $u_{m}, m \in \boldsymbol{N}$, be

$$
u_{m}(n)=u(\Gamma(m, n)) \quad(m, n \in \boldsymbol{N}) .
$$

Now we can replace $\forall m \exists z$ in (25.4) by $\exists u \forall m$ (note that in the forward implication we use the Countable Axiom of Choice):
(25.5) $\quad \forall m \exists z \forall n\left(x \upharpoonright n, m, z\lceil n, n) \in R \leftrightarrow \exists u \forall m \forall n\left(x \upharpoonright n, m, u_{m} \upharpoonright n, n\right) \in R\right.$.

Let $\alpha: \boldsymbol{N} \rightarrow \boldsymbol{N}$ and $\beta: \boldsymbol{N} \rightarrow \boldsymbol{N}$ be the inverses of the function Γ : If $\Gamma(m, n)=k$, then $m=\alpha(k)$ and $n=\beta(k)$. From (25.4) and (25.5) we get

$$
\begin{equation*}
x \in \forall m A \leftrightarrow \exists u \forall k\left(x \upharpoonright \beta(k), \alpha(k), u_{\alpha(k)} \upharpoonright \beta(k), \beta(k)\right) \in R . \tag{25.6}
\end{equation*}
$$

Now it suffices to show that there exists a relation $R^{\prime} \subset S e q^{2} \times \boldsymbol{N}$, recursive in R, such that for all $u, x \in \mathcal{N}$,

$$
\begin{equation*}
\forall k(x \upharpoonright k, u \upharpoonright k, k) \in R^{\prime} \leftrightarrow \forall k\left(x \upharpoonright \beta(k), \alpha(k), u_{\alpha(k)} \upharpoonright \beta(k), \beta(k)\right) \in R . \tag{25.7}
\end{equation*}
$$

The relation R^{\prime} is found in a way similar to the relation R^{\prime} in (25.3), and we leave the details as an exercise.

Hence $\forall m A$ is $\Sigma_{1}^{1}(a)$ because by (25.6) and (25.7),

$$
x \in \forall m A \leftrightarrow \exists u \forall k(x \upharpoonright k, u \upharpoonright k, k) \in R^{\prime} .
$$

In Lemma 11.8 we proved the existence of a universal $\boldsymbol{\Sigma}_{n}^{1}$ set. An analysis of the proof (and of Lemma 11.2) yields a somewhat finer result: There exists a Σ_{n}^{1} set $A \subset \mathcal{N}^{2}$ (lightface) that is a universal Σ_{n}^{1} set.

Π_{1}^{1} Sets

We formulate a normal form for Π_{1}^{1} sets in terms of trees. This is based on the idea that analytic sets are projections of closed sets, and that closed sets in \mathcal{N} are represented by sets $[T]$ where T is a sequential tree; cf. (4.6). Let us consider the product space \mathcal{N}^{r}, for an arbitrary integer $r \geq 1$. As in the case $r=1$, the closed subsets of \mathcal{N}^{r} can be represented by trees: Let $S e q_{r}$ denote the set of all r-tuples $\left(s_{1}, \ldots, s_{r}\right) \in S e q^{r}$ such that length $\left(s_{1}\right)=\ldots=$ length $\left(s_{r}\right)$. A set $T \subset S e q_{r}$ is an (r-dimensional sequential) tree if for every $\left(s_{1}, \ldots, s_{r}\right) \in T$ and each $n \leq$ length $\left(s_{1}\right),\left(s_{1} \upharpoonright n, \ldots, s_{r} \upharpoonright n\right)$ is also in T. Let

$$
\begin{equation*}
[T]=\left\{\left(a_{1}, \ldots, a_{r}\right) \in \mathcal{N}^{r}: \forall n\left(a_{1} \upharpoonright n, \ldots, a_{r} \upharpoonright n\right) \in T\right\} . \tag{25.8}
\end{equation*}
$$

The set [T] is closed, and every closed set in \mathcal{N}^{r} has the form (25.8), for some tree T.

We call a sequential tree $T \subset S e q_{r}$ well-founded if $[T]=\emptyset$, i.e., if the reverse inclusion on T is a well-founded relation. T is ill-founded if it is not well-founded.

For $T \subset S e q_{r+1}$ and for each $x \in \mathcal{N}$, let

$$
\begin{align*}
& T(x)=\left\{\left(s_{1}, \ldots, s_{r}\right) \in S e q_{r}:\left(x \upharpoonright n, s_{1}, \ldots, s_{r}\right) \in T\right. \tag{25.9}\\
&\text { where } \left.n=\text { length } s_{i}\right\} .
\end{align*}
$$

Now if $A \subset \mathcal{N}$ is analytic, there exists a tree $T \subset S e q_{2}$ such that A is the projection of $[T]$; consequently, for all $x \in \mathcal{N}$ we have

$$
\begin{equation*}
x \in A \quad \text { if and only if } T(x) \text { is ill-founded. } \tag{25.10}
\end{equation*}
$$

More generally, if A is Σ_{1}^{1}, let R be recursive such that

$$
x \in A \leftrightarrow \exists y \in \mathcal{N} \forall n R(x\lceil n, y \upharpoonright n)
$$

and define $T=\left\{(t, s) \in S e q_{2}: \forall n \leq \operatorname{length}(s) R(t \upharpoonright n, s \upharpoonright n)\right\}$. For all $x \in \mathcal{N}$, we have $T(x)=\{s \in S e q: \forall n \leq \operatorname{length}(s) R(x \upharpoonright n, s \upharpoonright n)\}$ and $x \in A$ if and only if $T(x)$ is ill-founded.

Theorem 25.3 (Normal Form for Π_{1}^{1}). A set $A \subset \mathcal{N}$ is Π_{1}^{1} if and only if there exists a recursive mapping $x \mapsto T(x)$ such that each $T(x)$ is a sequential tree, and

$$
\begin{equation*}
x \in A \quad \text { if and only if } T(x) \text { is well-founded. } \tag{25.11}
\end{equation*}
$$

Similarly, a relation $A \subset \mathcal{N}^{r}$ is Π_{1}^{1} if and only if $A=\{\vec{x}: T(\vec{x})$ is wellfounded $\}$ where $\left\langle T(\vec{x}): \vec{x} \in \mathcal{N}^{r}\right\rangle$ is a recursive system of r-dimensional trees.

One consequence of normal forms is that Π_{1}^{1} (and Σ_{1}^{1}) relations are absolute for transitive models:

Theorem 25.4 (Mostowski's Absoluteness). If P is a $\boldsymbol{\Sigma}_{1}^{1}$ property then P is absolute for every transitive model that is adequate for P.

Proof. "Adequate" here means that the model satisfies enough axioms to know that well-founded trees have a rank function, and contains the parameter in which P is Σ_{1}^{1}. The proof is similar to Lemma 13.11 .

Let M be a transitive model and let $T \in M$ be a tree such that $P=$ $\{x: T(x)$ is ill-founded $\}$. Let $x \in M$. If $M \vDash(T(x)$ is ill-founded) then $T(x)$ is ill-founded. Conversely, if $M \vDash(T(x)$ is well-founded) then $M \vDash(\exists f$: $T(x) \rightarrow$ Ord such that $f(s)<f(t)$ whenever $s \supset t)$ and therefore $T(x)$ is well-founded.

Trees, Well-Founded Relations and κ-Suslin Sets

Much of modern descriptive set theory depends on a generalization of the Normal Form for Π_{1}^{1} sets. A tree $T \subset S e q_{r}$ consists of r-tuples of finite sequences. We can also identify T with finite sequences of r-tuples, which enables us to consider a more general concept:

Definition 25.5.

(i) A tree T (on a set X) is a set of finite sequences (in X) closed under initial segments.
(ii) If $s, t \in T$ then $s \leq t$ means $s \supset t$, i.e., t is an initial segment of s.
(iii) If $s \in T$ then $T / s=\{t: s \frown t \in T\}$.
(iv) If (T, \leq) is well-founded then $\|T\|$ is the height of \leq, and for $t \in T$, $\rho_{T}(t)$ is the rank of t in \leq.
(v) $[T]=\left\{f \in X^{\omega}: \forall n f \upharpoonright n \in T\right\}$.

If S and T are well-founded trees and if $f: S \rightarrow T$ is order-preserving then $\|S\| \leq\|T\|$; this is easily verified by induction on rank. But the converse is also true:

Lemma 25.6. If S and T are well-founded trees and $\|S\| \leq\|T\|$ then there exists an order-preserving map $f: S \rightarrow T$.

Proof. By induction on $\|T\|$. For each $\langle a\rangle \in S,\|S /\langle a\rangle\|<\|S\| \leq\|T\|$ and there exists a $t_{a} \neq \emptyset$ such that $\|S /\langle a\rangle\| \leq\left\|T /\left\langle t_{a}\right\rangle\right\|$. Let $f_{a}: S /\langle a\rangle \rightarrow S / t_{a}$ be order-preserving. Now define $f: S \rightarrow T$ as follows: $f(\emptyset)=\emptyset$, and $f\left(a^{\frown} s\right)=$ $t_{a}^{\prec} f_{a}(s)$ whenever $a^{\frown} s \in S$.

We remark that the above proof (as well as the existence of rank), uses the Principle of Dependent Choices. If T is ill-founded, note that for any S there exists an order-preserving $f: S \rightarrow T$ (into an infinite branch of T). Thus we have

Corollary 25.7. There exists an order-preserving $f: S \rightarrow T$ if and only if either T is ill-founded or $\|S\| \leq\|T\|$.

Trees used in descriptive set theory are trees on $\omega \times K$ (or on $\omega^{r} \times K$) where K is some set, usually well-ordered.

Let $\operatorname{Seq}(K)$ be the set of all finite sequences in K. A tree on $\omega \times K$ is a set of pairs $(s, h) \in \operatorname{Seq} \times \operatorname{Seq}(K)$ such that length $(s)=\operatorname{length}(h)$ and that for each $n \leq \operatorname{length}(s),(s\lceil n, h\lceil n) \in T$. For every $x \in \mathcal{N}$, let

$$
\begin{equation*}
T(x)=\{h \in \operatorname{Seq}(K):(x \upharpoonright n, h) \in T \text { where } n=\text { length }(h)\} . \tag{25.12}
\end{equation*}
$$

$T(x)$ is a tree on K. Further we let

$$
\begin{aligned}
p[T] & =\{x \in \mathcal{N}: T(x) \text { is ill-founded }\} \\
& =\{x \in \mathcal{N}:[T(x)] \neq \emptyset\} \\
& =\left\{x \in \mathcal{N}:\left(\exists f \in K^{\omega}\right) \forall n(x \upharpoonright n, f \upharpoonright n) \in T\right\} .
\end{aligned}
$$

Trees on $\omega^{r} \times K$ are defined analogously.
Definition 25.8. Let κ be an infinite cardinal. A set $A \subset \mathcal{N}$ is κ-Suslin if $A=p[T]$ for some tree on $\omega \times \kappa$.

By the Normal Form Theorem for Π_{1}^{1} sets, every $\boldsymbol{\Sigma}_{1}^{1}$ set is ω-Suslin. In fact if A is $\Sigma_{1}^{1}(a)$ then $A=p[T]$ where T is a tree on $\omega \times \omega$ recursive in a. Let us associate with each $x \in \mathcal{N}$ the following binary relation E_{x} on N :

$$
\begin{equation*}
m E_{x} n \leftrightarrow x(\Gamma(m, n))=0 \tag{25.13}
\end{equation*}
$$

where Γ is a (recursive) pairing function of $\boldsymbol{N} \times \boldsymbol{N}$ onto \boldsymbol{N}; we say that x codes the relation E_{x}. We define

$$
\begin{align*}
& \mathrm{WF}=\{x \in \mathcal{N}: x \text { codes a well-founded relation }\}, \tag{25.14}\\
& \mathrm{WO}=\{x \in \mathcal{N}: x \text { codes a well-ordering on } \boldsymbol{N}\} .
\end{align*}
$$

Lemma 25.9. The sets WF and WO are Π_{1}^{1}.
Proof. We prove in some detail that WF is Π_{1}^{1}. E_{x} is well-founded if and only if there is no $z: N \rightarrow \boldsymbol{N}$ such that $z(k+1) E_{x} z(k)$ for all k. Thus

$$
x \in \mathrm{WF} \leftrightarrow \forall z \exists k \neg z(k+1) E_{x} z(k) .
$$

In other words, $\mathrm{WF}=\forall z A$, where

$$
(x, z) \in A \leftrightarrow \exists k x(\Gamma(z(k+1), z(k))) \neq 0
$$

and it suffices to show that A is arithmetical. But

$$
\begin{gathered}
(x, z) \in A \leftrightarrow \exists n, m, j, k[i=(z\lceil n)(k+1) \wedge j=(z\lceil n)(k) \wedge \\
m=\Gamma(i, j) \wedge(x \upharpoonright n)(m) \neq 0] .
\end{gathered}
$$

To show that WO is Π_{1}^{1} it suffices to verify that the set

$$
\mathrm{LO}=\left\{x: E_{x} \text { is a linear ordering of } \boldsymbol{N}\right\}
$$

is arithmetical. Then $\mathrm{WO}=\mathrm{WF} \wedge \mathrm{LO}$ is Π_{1}^{1}.

We show below that neither WF nor WO is a $\boldsymbol{\Sigma}_{1}^{1}$ set; thus neither is a Borel set.

For each $x \in \mathrm{WF}$, let

$$
\begin{equation*}
\|x\|=\text { the height of the well-founded relation } E_{x} \tag{25.15}
\end{equation*}
$$

(see (2.7)). For each $x,\|x\|$ is a countable ordinal (and for each $\alpha<\omega_{1}$ there is some $x \in \mathrm{WF}$ such that $\|x\|=\alpha$). If $x \in \mathrm{WO}$, then $\|x\|$ is the order-type of the well-ordering E_{x}.
Lemma 25.10. For each $\alpha<\omega_{1}$, the sets

$$
\mathrm{WF}_{\alpha}=\{x \in \mathrm{WF}:\|x\| \leq \alpha\}, \quad \mathrm{WO}_{\alpha}=\{x \in \mathrm{WO}:\|x\| \leq \alpha\}
$$

are Borel sets.
Proof. Note that the set $\left\{(x, n): n \in \operatorname{field}\left(E_{x}\right)\right\}$ is arithmetical (and hence Borel). Let us prove the lemma first for WO_{α}.

For each $\alpha<\omega_{1}$, let

$$
\begin{aligned}
B_{\alpha}=\{(x, n): & E_{x} \text { restricted to }\left\{m: m E_{x} n\right\} \\
& \text { is a well-ordering of order type } \leq \alpha\} .
\end{aligned}
$$

We prove, by induction on $\alpha<\omega_{1}$, that each B_{α} is a Borel set. It is easy to see that B_{0} is arithmetical. Thus let $\alpha<\omega_{1}$ and assume that all $B_{\beta}, \beta<\alpha$, are Borel. Then $\bigcup_{\beta<\alpha} B_{\beta}$ is Borel and hence B_{α} is also Borel because

$$
(x, n) \in B_{\alpha} \leftrightarrow \forall m\left(m E_{x} n \rightarrow(x, m) \in \bigcup_{\beta<\alpha} B_{\beta}\right)
$$

It follows that each WO_{α} is Borel because

$$
x \in \mathrm{WO}_{\alpha} \leftrightarrow \forall n\left(n \in \operatorname{field}\left(E_{x}\right) \rightarrow(x, n) \in \bigcup_{\beta<\alpha} B_{\beta}\right) .
$$

To handle WF_{α}, note that the rank function ρ_{E} can be defined for any binary relation E; namely:

$$
\begin{aligned}
\rho_{E}(u)=\alpha \text { if and only if } & \forall v\left(v E u \rightarrow \rho_{E}(v) \text { is defined }\right) \text { and } \\
& \alpha=\sup \left\{\rho_{E}(v)+1: v E u\right\} .
\end{aligned}
$$

For each $\alpha<\omega_{1}$, let

$$
C_{\alpha}=\left\{(x, n): \rho_{E_{x}}(n) \text { is defined and } \leq \alpha\right\} .
$$

Again, C_{0} is arithmetical, and if we assume that all $C_{\beta}, \beta<\alpha$, are Borel, then C_{α} is also Borel:

$$
(x, n) \in C_{\alpha} \leftrightarrow \forall m\left(m E_{x} n \rightarrow(x, m) \in \bigcup_{\beta<\alpha} C_{\beta}\right) .
$$

Hence each C_{α} is Borel, and it follows that each WF_{α} is Borel:

$$
x \in \mathrm{WF}_{\alpha} \leftrightarrow \forall n\left(n \in \operatorname{field}\left(E_{x}\right) \rightarrow(x, n) \in \bigcup_{\beta<\alpha} C_{\beta}\right) .
$$

Corollary 25.11. The sets $\{x \in \mathrm{WF}:\|x\|=\alpha\}$ and $\{x \in \mathrm{WF}:\|x\|<\alpha\}$ are Borel (similarly for WO).

Proof. $\{x \in \mathrm{WF}:\|x\|<\alpha\}=\bigcup_{\beta<\alpha} \mathrm{WF}_{\beta}$.
Theorem 25.12. If C is a Π_{1}^{1} set, then there exists a continuous function $f: \mathcal{N} \rightarrow \mathcal{N}$ such that $C=f_{-1}(\mathrm{WF})$, and there exists a continuous function $g: \mathcal{N} \rightarrow \mathcal{N}$ such that $C=g_{-1}(\mathrm{WO})$.

Proof. We shall give the proof for WF; the proof for WO is similar. Let $T \subset S e q_{2}$ be such that

$$
x \in C \leftrightarrow T(x) \text { is well-founded. }
$$

Let $\left\{t_{0}, t_{1}, \ldots, t_{n}, \ldots\right\}$ be an enumeration of the set Seq. For each $x \in \mathcal{N}$, let $y=f(x)$ be the following element of \mathcal{N} :

$$
y(\Gamma(m, n))= \begin{cases}0 & \text { if } t_{m}, t_{n} \in T(x), \text { and } t_{m}<t_{n} \\ 1 & \text { otherwise }\end{cases}
$$

It is clear that E_{y} is isomorphic to $(T(x),<)$, and hence $y \in \mathrm{WF}$ if and only if $T(x)$ is well-founded. Thus $C=f_{-1}(\mathrm{WF})$ and it remains to show only that f is continuous. But it should be obvious from the definitions of $T(x)$ and of $y=f(x)$ that for any finite sequence $s=\left\langle\varepsilon_{0}, \ldots, \varepsilon_{k-1}\right\rangle$, there is $\check{s} \in S e q$ such that if $x \supset \check{s}$ and $y=f(x)$, then $y \upharpoonright k=s$. Hence f is continuous.
Corollary 25.13. WF is not $\boldsymbol{\Sigma}_{1}^{1}$; WO is not $\boldsymbol{\Sigma}_{1}^{1}$.
Proof. Otherwise every $\boldsymbol{\Pi}_{1}^{1}$ set would be the inverse image by a continuous function of an analytic set and hence analytic; however, there are $\boldsymbol{\Pi}_{1}^{1}$ sets that are not analytic.

Corollary 25.14 (Boundedness Lemma). If $B \subset$ WO is $\boldsymbol{\Sigma}_{1}^{1}$, then there is an $\alpha<\omega_{1}$ such that $\|x\|<\alpha$ for all $x \in B$.

Proof. Otherwise we would have

$$
\mathrm{WO}=\{x \in \mathcal{N}: \exists z(z \in B \wedge\|x\| \leq\|z\|)\}
$$

Hence $\|x\| \leq\|z\|$ for $x, z \in \mathcal{N}$ means: Either $z \notin$ WO or $\|x\| \leq\|z\|$; this relation is Σ_{1}^{1}; see Exercise 25.3. This would mean that WO is Σ_{1}^{1}, a contradiction.

Corollary 25.15. Every Π_{1}^{1} set is the union of \aleph_{1} Borel sets.
Proof. If C is Π_{1}^{1}, then $C=f_{-1}(\mathrm{WF})$ for some continuous f. But WF $=$ $\bigcup_{\alpha<\omega_{1}} \mathrm{WF}_{\alpha}$, and hence

$$
C=\bigcup_{\alpha<\omega_{1}} f_{-1}\left(\mathrm{WF}_{\alpha}\right) .
$$

Each $f_{-1}\left(\mathrm{WF}_{\alpha}\right)$ is the inverse image of a Borel set by a continuous function, hence Borel.

Corollary 25.16. Assuming the Axiom of Choice, every $\boldsymbol{\Pi}_{1}^{1}$ set is either at most countable, or has cardinality \aleph_{1}, or cardinality $2^{\aleph_{0}}$.

Theorem 25.19 below improves Corollary 25.15 by showing that every Σ_{2}^{1} set is the union of \aleph_{1} Borel sets. The following lemma is the first step toward that theorem.

Lemma 25.17. Every $\boldsymbol{\Sigma}_{1}^{1}$ set is the union of \aleph_{1} Borel sets.
Proof. Let A be a $\boldsymbol{\Sigma}_{1}^{1}$ set. Let $T \subset S e q_{2}$ be a tree such that $A=p[T]$. We prove by induction on α that for each $t \in$ Seq and every $\alpha<\omega_{1}$, the set

$$
\begin{equation*}
\{x \in \mathcal{N}:\|T(x) / t\| \leq \alpha\} \tag{25.16}
\end{equation*}
$$

is Borel. Namely, $\{x:\|T(x) / t\| \leq 0\}=\{x:(x \upharpoonright n, t) \notin T\}$ and if $\alpha>0$, then $\|T(x) / t\| \leq \alpha$ if and only if $\forall n(\exists \beta<\alpha)\|T(x) / t \frown n\| \leq \beta$.

Let us define, for each α, the set B_{α} as follows:

$$
x \in B_{\alpha} \leftrightarrow \neg(\|T(x)\|<\alpha) \wedge \forall t(\neg\|T(x) / t\|=\alpha) .
$$

Since the sets in (25.16) are Borel, it follows that each B_{α} is Borel. We shall prove that $A=\bigcup_{\alpha<\omega_{1}} B_{\alpha}$. First let $x \in A$. Thus $T(x)$ is ill-founded; hence $\|T(x)\| \nless \alpha$ for any α, and it suffices to show that there is an α such that $\|T(x) / t\| \neq \alpha$ for all t. If there is no such α, then for every α there is t such that $\|T(x) / t\|=\alpha$, but there are $\aleph_{1} \alpha$'s and only $\aleph_{0} t$'s; a contradiction.

Next let $x \notin A$, and let us show that $x \notin B_{\alpha}$, for all α. Let $\alpha<\omega_{1}$ be arbitrary. Since $T(x)$ is well-founded, either $\|T(x)\|<\alpha$ and $x \notin B_{a}$, or $\|T(x)\| \geq \alpha$ and there exists some $t \in T(x)$ such that $\|T(x) / t\|=\alpha$ and again $x \notin B_{\alpha}$.

Σ_{2}^{1} Sets

The Normal Form Theorem for Π_{1}^{1} sets provides a tree representation for Σ_{2}^{1} sets:

Theorem 25.18. Every $\boldsymbol{\Sigma}_{2}^{1}$ set is ω_{1}-Suslin. If A is $\Sigma_{2}^{1}(a)$ then $A=p[T]$ where T is a tree on $\omega \times \omega_{1}$ and $T \in L[a]$.

Proof. Let A be a $\Sigma_{2}^{1}(a)$ subset of \mathcal{N}. There is a tree $U \subset S e q_{3}$, recursive in a such that

$$
x \in A \leftrightarrow \exists y \forall z \exists n(x \upharpoonright n, y \upharpoonright n, z \upharpoonright n) \notin U .
$$

In other words,

$$
x \in A \leftrightarrow \exists y U(x, y) \text { is well-founded. }
$$

A necessary and sufficient condition for a countable relation to be wellfounded is that it admits an order-preserving mapping into ω_{1}. Thus

$$
\begin{aligned}
x \in A & \leftrightarrow \exists y\left(\exists f: U(x, y) \rightarrow \omega_{1}\right) \text { if } u \subset v \text { then } f(u)>f(v) \\
& \leftrightarrow \exists y\left(\exists f: S e q \rightarrow \omega_{1}\right) f \upharpoonright U(x, y) \text { is order-preserving. }
\end{aligned}
$$

Let $\left\{u_{n}: n \in \boldsymbol{N}\right\}$ be a recursive enumeration of the set $S e q$ such that for every n, length $\left(u_{n}\right) \leq n$. If f is a function on (a subset of) \boldsymbol{N}, let f^{*} be the function on (a subset of) Seq defined by $f^{*}\left(u_{n}\right)=f(n)$. Thus

$$
\begin{equation*}
x \in A \leftrightarrow \exists y\left(\exists f: \omega \rightarrow \omega_{1}\right) f^{*} \mid U(x, y) \text { is order-preserving. } \tag{25.17}
\end{equation*}
$$

Now we define a tree T^{\prime} on $\omega^{2} \times \omega_{1}$ as follows: If $s, t \in \operatorname{Seq}$ and $h \in \operatorname{Seq}\left(\omega_{1}\right)$ are all of length n, we let

$$
\begin{equation*}
(s, t, h) \in T^{\prime} \leftrightarrow h^{*} \mid U_{s, t} \text { is order-preserving } \tag{25.18}
\end{equation*}
$$

where $U_{s, t}=\{u \in S e q: k=$ length $u \leq n$ and $(s \upharpoonright k, t \upharpoonright k, u) \in U\}$. Clearly, T^{\prime} is a tree on $\omega^{2} \times \omega_{1}$.

Let $x, y \in \mathcal{N}$. We claim that if $\left(x \upharpoonright n,(y \upharpoonright n, h) \in T^{\prime}\right.$, then $h^{*} \mid U(x, y)$ is order-preserving. This is because if $u, v \in \operatorname{dom}\left(h^{*}\right) \cap U(x, y)$, then $u=u_{i}$, $v=u_{j}$ for some $i, j<n$, hence length $(u), \operatorname{length}(v)<n$ and hence $u, v \in U_{s, t}$, where $s=x \upharpoonright n, t=y \upharpoonright n$. Thus

$$
f \in T^{\prime}(x, y) \leftrightarrow \forall n\left(f\lceil n)^{*} \upharpoonright U(x, y)\right. \text { is order-preserving. }
$$

But clearly a mapping $f: \omega \rightarrow \omega_{1}$ satisfies the right-hand side if and only if $f^{*} \upharpoonright U(x, y)$ is order-preserving. Hence (25.17) and (25.18) give

$$
\begin{aligned}
x \in A & \leftrightarrow \exists y \exists f: \omega \rightarrow \omega_{1} f \in T^{\prime}(x, y) \\
& \leftrightarrow \exists y \exists f: \omega \rightarrow \omega_{1} \forall n\left(x \upharpoonright n, y\left\lceil n, f\lceil n) \in T^{\prime} .\right.\right.
\end{aligned}
$$

Now we transform $T^{\prime}\left(\right.$ on $\left.\omega^{2} \times \omega_{1}\right)$ into a tree $T^{\prime \prime}\left(\right.$ on $\omega \times K$ where $\left.K=\omega \times \omega_{1}\right)$ such that we replace triples

$$
(\langle s(0), \ldots, s(n-1)\rangle,\langle t(0), \ldots, t(n-1),\rangle,\langle h(0), \ldots, h(n-1)\rangle)
$$

by pairs

$$
(\langle s(0), \ldots, s(n-1)\rangle,\langle(t(0), h(0)), \ldots,(t(n-1), h(n-1))\rangle)
$$

and we get

$$
x \in A \leftrightarrow(\exists g: \omega \rightarrow K) \forall n(x \upharpoonright n, g \upharpoonright n) \in T^{\prime \prime} .
$$

Since $K=\omega \times \omega_{1}$ is in an obvious one-to-one correspondence with ω_{1}, it is clear that we can find a tree T on $\omega \times \omega_{1}$ such that

$$
\begin{equation*}
x \in A \leftrightarrow\left(\exists g: \omega \rightarrow \omega_{1}\right) \forall n(x \upharpoonright n, g \upharpoonright n) \in T, \tag{25.19}
\end{equation*}
$$

that is $A=p[T]$. The tree T so obtained is constructible from the tree U, which in turn is constructible from a.

One consequence of Theorem 25.18 is the following:
Theorem 25.19 (Sierpinski). Every Σ_{2}^{1} set is the union of \aleph_{1} Borel sets.
It follows that in ZFC, every $\boldsymbol{\Sigma}_{2}^{1}$ set has cardinality either at most \aleph_{1}, or $2^{\aleph_{0}}$.
Proof. Let A be a $\boldsymbol{\Sigma}_{2}^{1}$ set. By Theorem 25.18 there is a tree T on $\omega \times \omega_{1}$ such that $A=p[T]$. For each $\gamma<\omega_{1}$ let $T^{\gamma}=\{(s, h) \in T: h \in \operatorname{Seq}(\gamma)\}$. Since every $f: \omega \rightarrow \omega_{1}$ has the range included in some $\gamma<\omega_{1}$, it is clear that

$$
A=\bigcup_{\gamma<\omega_{1}} p\left[T^{\gamma}\right]
$$

For each $\gamma<\omega_{1}$, the set $p\left[T^{\gamma}\right]$ is analytic (because $p\left[T^{\gamma}\right]=p[\tilde{T}]$ for some $\left.\tilde{T} \subset S e q_{2}\right)$ and is the union of \aleph_{1} Borel sets. In fact, Lemma 25.17 gives a uniform decomposition into \aleph_{1} Borel sets for any $p[U]$ where U is a tree on $\omega \times S$ with S countable. If we let

$$
x \in B_{\alpha}^{\gamma} \leftrightarrow \neg\left(\left\|T^{\gamma}(x)\right\|<\alpha\right) \wedge(\forall t \in \operatorname{Seq}(\gamma))\left(\neg\left\|T^{\gamma}(x) / t\right\|=\alpha\right)
$$

then $A=\bigcup_{\alpha<\omega_{1}} \bigcup_{\gamma<\omega_{1}} B_{\alpha}^{\gamma}$.
The main application of Theorem 25.18 is absoluteness of Σ_{2}^{1} (and Π_{2}^{1}) relations.

Theorem 25.20 (Shoenfield's Absoluteness Theorem). Every $\Sigma_{2}^{1}(a)$ relation and every $\Pi_{2}^{1}(a)$ relation is absolute for all inner models M of $\mathrm{ZF}+$ DC such that $a \in M$. In particular, $\boldsymbol{\Sigma}_{2}^{1}$ and $\boldsymbol{\Pi}_{2}^{1}$ relations are absolute for L.

It is clear from the proof that every $\boldsymbol{\Sigma}_{2}^{1}(a)$ relation is absolute for every transitive model M of a finite fragment of $\mathrm{ZF}+\mathrm{DC}$ such that $\omega_{1} \in M$.

Proof. Let $a \in \mathcal{N}$ and let A be a $\Sigma_{2}^{1}(a)$ subset of \mathcal{N}; let $A=\{x: A(x)\}$ where $A(x)$ is a $\Sigma_{2}^{1}(a)$ property. Let M be an inner model of ZF +DC such that $a \in M$. We shall prove that $M \vDash A$ if and only if A holds.

Let $U \subset S e q_{3}$ be a tree, arithmetical in a, such that for all $x \in \mathcal{N}$,

$$
x \in A \leftrightarrow \exists y U(x, y) \text { is well-founded. }
$$

Thus for all $x \in \mathcal{N} \cap M$

$$
x \in A^{M} \leftrightarrow(\exists y \in M) M \vDash U(x, y) \text { is well-founded. }
$$

However, for all $x, y \in M, U(x, y)$ is the same tree in M as in V; and since well-foundedness is absolute, we have

$$
x \in A^{M} \leftrightarrow(\exists y \in M) U(x, y) \text { is well-founded. }
$$

Thus, if $x \in A^{M}$, then $x \in A$, and it suffices to prove that if $x \in A \cap M$ then $x \in A^{M}$.

We use the tree representation of $\boldsymbol{\Sigma}_{2}^{1}$ sets. Let T be the tree on $\omega \times \omega_{1}$ constructed in the proof of Theorem 25.18. Hence $T \in L[a]$ and for every $x \in \mathcal{N}$,

$$
x \in A \leftrightarrow T(x) \text { is ill-founded. }
$$

Now if $x \in M$ is such that $x \in A$, then $T(x)$ is ill-founded, and by absoluteness of well-foundedness,

$$
M \vDash T(x) \text { is ill-founded. }
$$

In other words, there exists a function $g \in M$ from \mathcal{N} into the ordinals such that $\forall n(x \upharpoonright n, g \upharpoonright n) \in T$. Now following the proof of Theorem 25.18 backward, from (25.19) to the beginning, and working inside M, one finds a $y \in M$ such that

$$
M \vDash U(x, y) \text { is well-founded. }
$$

Hence if $x \in A \cap M$, then $x \in A^{M}$ and we are done.
With only notational changes Theorem 25.18 gives a tree representation of subsets of ω (or ω^{k}) and we have:

Corollary 25.21. If $A \subset \omega$ is $\Sigma_{2}^{1}(a)$ then $A \in L[a]$. In particular, every Σ_{2}^{1} real (and every Π_{2}^{1} real) is constructible.

The following lemma is an interesting application of Shoenfield's Absoluteness.

Lemma 25.22. Let S be a set of countable ordinals such that the set $A=$ $\{x \in \mathrm{WO}:\|x\| \in S\}$ is Σ_{2}^{1}. Then S is constructible. (And more generally, if A is $\Sigma_{2}^{1}(a)$, then $S \in L[a]$.)

Proof. Let $A(x)$ be the Σ_{2}^{1} property such that $A=\{x: A(x)\}$. For each countable ordinal α, let P_{α} be the notion of forcing that collapses α; i.e., the elements of P_{α} are finite sequences of ordinals less than α. Each P_{α} is constructible; let us consider, in L, the forcing languages associated with the P_{α}, and the corresponding Boolean-valued models $L^{P_{\alpha}}$.

We shall show that for every $\alpha<\omega_{1}, \alpha$ belongs to S if and only if

$$
\begin{equation*}
L \vDash \text { every } p \in P_{\alpha} \text { forces } \exists x(A(x) \wedge\|x\|=\alpha) \tag{25.20}
\end{equation*}
$$

This will show that S is constructible.
In order to prove that $\alpha \in S$ is equivalent to (25.20), let us consider a generic extension N of V in which ω_{1}^{V} is countable. Let us argue in N.

The notion of forcing P_{α} has only countably many constructible dense subsets, and hence for every $p \in P_{\alpha}$ there exists a $G \subset P_{\alpha}$ such that G is L-generic and $p \in G$. It follows that for every α, every φ and every $p \in P_{\alpha}$,
(25.21) $L \vDash(p \Vdash \varphi) \quad$ if and only if \quad for every L-generic $G \ni p, L[G] \Vdash \varphi$.

Let $\alpha<\omega_{1}^{V}$, and let $z \in V$ be such that $\|z\|=\alpha$. Clearly, α belongs to S if and only if V satisfies

$$
\begin{equation*}
\exists x(A(x) \wedge\|x\|=\|z\|) \tag{25.22}
\end{equation*}
$$

The property (25.22) is Σ_{2}^{1} and by absoluteness, it holds in V if and only if it holds in N.

Let G be an arbitrary L-generic filter on P_{α}, and let $u \in L[G]$ be such that $\|u\|=\alpha$. Since N satisfies (25.22) if and only if it satisfies the Σ_{2}^{1} property

$$
\begin{equation*}
\exists x(A(x) \wedge\|x\|=\|u\|) \tag{25.23}
\end{equation*}
$$

it follows that $\alpha \in S$ if and only if $L[G]$ satisfies (25.23). Since an L-generic filter on P_{α} exists in N, we conclude (still in N), that $\alpha \in S$ is equivalent to:

For every L-generic $G \subset P_{\alpha}, L[G] \vDash \exists x(A(x) \wedge\|x\|=\alpha)$.
But in view of (25.21) this last statement is equivalent to (25.20).
Another application of the tree representation of $\boldsymbol{\Sigma}_{2}^{1}$ sets is the Perfect Set Theorem of Mansfield and Solovay:

Theorem 25.23 (Mansfield-Solovay). Let A be a $\Sigma_{2}^{1}(a)$ set in \mathcal{N}. If A contains an element that is not in $L[a]$, then A has a perfect subset.

The theorem follows from this more general lemma:
Lemma 25.24. Let T be a tree on $\omega \times K$ and let $A=p[T]$. Either $A \subset L[T]$, or A contains a perfect subset; moreover, in the latter case there is a perfect tree $U \in L[T]$ on ω such that $[U] \subset A$.

Proof. The proof follows the Cantor-Bendixson argument. If T is a tree on $\omega \times K$, let
(25.24) $T^{\prime}=\left\{(s, h) \in T\right.$: there exist $\left(s_{0}, h_{0}\right),\left(s_{1}, h_{1}\right) \in T$ such that $s_{0} \supset s$, $s_{1} \supset s, h_{0} \supset h, h_{1} \supset h$, and that s_{0} and s_{1} are incompatible
and then, inductively,

$$
\begin{aligned}
& T^{(0)}=T, \quad T^{(\alpha+1)}=\left(T^{(\alpha)}\right)^{\prime} \\
& T^{(\alpha)}=\bigcap_{\beta<\alpha} T^{(\beta)} \quad \text { if } \alpha \text { is limit. }
\end{aligned}
$$

The definition (25.24) is absolute for all models that contain T, and hence $T^{(\alpha)} \in L[T]$ for all α. Let α be the least ordinal such that $T^{(\alpha+1)}=T^{(\alpha)}$.

Let us assume first that $T^{(\alpha)}=\emptyset$; we shall show that $A \subset L[T]$. Let $x \in A$ be arbitrary. There exists an $f \in K^{\omega}$ such that $(x, f) \in[T]$. Let $\gamma<\alpha$ be such that $(x, f) \in\left[T^{(\gamma)}\right]$ but $(x, f) \notin\left[T^{(\gamma+1)}\right]$. Thus there is some
$(s, h) \in T^{(\gamma)}$ such that $s \subset x, h \subset f$, and $(s, h) \notin T^{(\gamma+1)}$; this means that for any $\left(s^{\prime}, h^{\prime}\right) \in T^{(\gamma)}$, if $s^{\prime} \supset s$ and $h^{\prime} \supset h$, then $s^{\prime} \subset x$. Now it follows that $x \in L[T]$; in $L[T], x$ is the unique $x=\bigcup\left\{s^{\prime} \supset s:\left(s^{\prime}, h^{\prime}\right) \in T^{(\gamma)}\right.$ for some $\left.h \supset h^{\prime}\right\}$.

Now let us assume that $T^{(\alpha)} \neq \emptyset$. The tree $T^{(\gamma)}$ has the property that for every $(s, h) \in T^{(\alpha)}$ there exist two extensions $\left(s_{0}, h_{0}\right)$ and $\left(s_{1}, h_{1}\right)$ of (s, h) that are incompatible in the first coordinate. Let us work in $L[T]$. Let $\left(s_{0}, h_{0}\right)$ and $\left(s_{1}, h_{1}\right)$ be some elements of $T^{(\alpha)}$ such that s_{0} and s_{1} are incompatible. Then let $\left(s_{0,0}, h_{0,0}\right),\left(s_{0,1}, h_{0,1}\right),\left(s_{1,0}, h_{1,0}\right)$, and $\left(s_{1,1}, h_{1,1}\right)$ be elements of $T^{(\alpha)}$ such that $s_{i, j} \supset s_{i}, h_{i, j} \supset h_{i}$ and that the $s_{i, j}$ are incompatible. In this fashion we construct $\left(s_{t}, h_{t}\right) \in T^{(\alpha)}$ for each $0-1$ sequence t. The s_{t} generate a tree $U=\left\{s: s \subset s_{t}\right.$ for some $\left.t\right\}$. It is clear that U is a perfect three, that $U \in L[T]$, and that $[U] \subset p[T]=A$.

The following observation establishes a close connection between the projective hierarchy and the Lévy hierarchy of Σ_{n} properties of hereditarily countable sets:

Lemma 25.25. A set $A \subset \mathcal{N}$ is Σ_{2}^{1} if and only if it is Σ_{1} over $(H C, \in)$.
Proof. If A is Σ_{1} over $H C$, there exists a Σ_{0} formula φ such that

$$
x \in A \leftrightarrow H C \vDash \exists u \varphi(u, x) \leftrightarrow(\exists u \in H C) H C \vDash \varphi[u, x] .
$$

Since φ is Σ_{0}, it is absolute for transitive models and we have

$$
x \in A \leftrightarrow(\exists \text { transitive set } M)(\exists u \in M) M \vDash \varphi[u, x]
$$

(e.g., $M=\mathrm{TC}(\{u, x\}))$. By the Principle of Dependent Choices every $\mathrm{TC}(\{u, x\})$ is countable and we have

$$
\begin{aligned}
x \in A \leftrightarrow & (\exists \text { countable transitive set } M)(\exists u \in M) M \vDash \varphi[u, x] \\
\leftrightarrow & (\exists \text { well-founded extensional relation } E \text { on } \omega) \\
& \exists n \exists m\left(\pi_{E}(m)=x \text { and }(\omega, E) \vDash \varphi[n, m]\right)
\end{aligned}
$$

where π_{E} is the transitive collapse of (ω, E) onto (M, \in). Recalling the definition (25.13) of E_{x} for $z \in \mathcal{N}$ we have

$$
\begin{align*}
x \in A \leftrightarrow & (\exists z \in \mathcal{N})\left(z \in \mathrm{WF} \text { and }\left(\omega, E_{x}\right) \vDash\right. \text { Extensionality, } \tag{25.25}\\
& \left.\exists n \exists m\left(\pi_{E_{x}}(m)=x \text { and }\left(\omega, E_{x}\right) \vDash \varphi[n, m]\right)\right) .
\end{align*}
$$

We shall verify that (25.25) gives a Σ_{2}^{1} definition of A. Since WF is Π_{1}^{1}, it suffices to show that the relation " $(\omega, E) \vDash \varphi\left[n_{1}, \ldots, n_{k}\right]$ " and " $\pi_{E}(m)=$ $x "$ are arithmetical in E. It is easy to see that $(\omega, E) \vDash \varphi$ is a property
arithmetical in E. As for the transitive collapse, we notice first that if $k \in \boldsymbol{N}$, then

$$
\begin{aligned}
\pi_{E}(m)=k \leftrightarrow & \exists\left\langle r_{0}, \ldots, r_{k}\right\rangle \text { such that } m=r_{k} \text { and }(\omega, E) \vDash r_{0}=\emptyset \\
& \text { and }(\forall i<k)(\omega, E) \vDash\left(r_{i+1}=r_{i} \cup\left\{r_{i}\right\}\right) .
\end{aligned}
$$

Then for $x \subset \omega$ we have

$$
\pi_{E}(m)=x \leftrightarrow \forall n\left(n E m \leftrightarrow \pi_{E}(n) \in x\right)
$$

and a similar formula, arithmetical in E, defines $\pi_{E}(m)=x$ for $x \in \mathcal{N}$.
Hence $A \in \Sigma_{2}^{1}$.
Conversely, if A is a Σ_{2}^{1} set then for some Π_{1}^{1} property $P, A=\{x$: $\exists y P(x, y)\}$. By Mostowski's Absoluteness, $x \in A$ if and only if for some countable transitive model $M \ni x$ adequate for P there exists a $y \in M$ such that $M \vDash P(x, y)$. But this gives a Σ_{1} definition of A over $(H C, \in)$.

As a consequence, Σ_{n+1}^{1} sets are exactly those that are Σ_{n} over $H C$.

Projective Sets and Constructibility

We now compute the complexity of the set of all constructible reals:
Theorem 25.26 (Gödel). The set of all constructible reals is a Σ_{2}^{1} set. The ordering $<_{L}$ is a Σ_{2}^{1} relation.

The field of $<_{L}$ is $\boldsymbol{R} \cap L$. If all reals are constructible, then $<_{L}$ is also Π_{2}^{1} (because $x<_{L} y$ if and only if $y \not z_{L} x$) and hence $<_{L}$ is then a Δ_{2}^{1} relation.

The theorem easily generalizes to $L[a]$: If $a \in \boldsymbol{R}$ (or $a \subset \omega$ or $a \in \mathcal{N}$), then the set $\boldsymbol{R} \cap L[a]$ is $\Sigma_{2}^{1}(a)$; also, the relation " x is constructible from y " is a Σ_{2}^{1} relation.

We proved in Chapter 13 that " x is constructible" and " $x<_{L} y$ " are Σ_{1} relations over the model ($H C, \in$). Thus Theorem 25.26 follows from Lemma 25.25.

The following lemma tells even more than $<_{L}$ is a Σ_{2}^{1} relation. For any $z \in \mathcal{N}$, let $z_{m}, m \in \boldsymbol{N}$, be defined by $z_{m}(n)=z(\Gamma(m, n))$ (the canonical homeomorphism between \mathcal{N} and $\left.\mathcal{N}^{\omega}\right)$.

Lemma 25.27. The following relation R on \mathcal{N} is Σ_{2}^{1} :

$$
(z, x) \in R \leftrightarrow\left\{z_{n}: n \in \boldsymbol{N}\right\}=\left\{y: y<_{L} x\right\}
$$

Proof. Since the relation $\left\{z_{n}: n \in \boldsymbol{N}\right\} \subset\left\{y: y<_{L} x\right\}$ is clearly Σ_{2}^{1}, it suffices to show that

$$
\begin{equation*}
\forall y<_{L} x \exists n\left(y=z_{n}\right) \tag{25.26}
\end{equation*}
$$

is Σ_{2}^{1}. There is a sentence Θ (provable in ZF) such that if M is a transitive model of Θ, then $<_{L}$ is absolute for M; and if $x \in M$ is constructible, then every $y<_{L} x$ is in M. Thus (25.26) is equivalent to
\exists countable transitive model M that contains x, z, and all z_{n}, and $M \vDash\left(\Theta\right.$ and $\left.\forall y<_{L} x \exists n\left(y=z_{n}\right)\right)$.

This last property is Σ_{2}^{1} by a proof similar to Lemma 25.25.
Every $\boldsymbol{\Sigma}_{1}^{1}$ set is Lebesgue measurable, has the Baire property and if uncountable, has a perfect subset. The following results show that this is best possible.

Corollary 25.28. If $V=L$ then there exists a Δ_{2}^{1} set that is not Lebesgue measurable and does not have the Baire property.

Proof. Let $A=\left\{(x, y): x<_{L} y\right\}$. For every y, the set $\{x:(x, y) \in A\}$ is countable, hence null and meager, and by Lemmas 11.12 and 11.16, if A is measurable, then it is null; and if it has the Baire property, then it is meager.

Let B be the complement of A in $\boldsymbol{R}^{2}, B=\left\{(x, y): y \leq_{L} x\right\}$. Again, for every x, the set $\{y:(x, y) \in B\}$ is countable, and hence null if measurable, and meager if has the Baire property.

It clearly follows that A neither is Lebesgue measurable nor has the property of Baire

Corollary 25.29. If $V=L$ then there exists an uncountable Σ_{2}^{1} set without a perfect subset.

Proof. Let

$$
x \in A \leftrightarrow x \in \mathrm{WO} \wedge \forall y<_{L} x(\neg\|y\|=\|x\|) .
$$

The set A is uncountable: A is a subset of WO and for every $\alpha<\omega_{1}$ there is exactly one x in A such that $\|x\|=\alpha$. Let us show that A is Σ_{2}^{1} : Let R be the Σ_{2}^{1} relation from Lemma 25.27; thus

$$
x \in A \leftrightarrow x \in \mathrm{WO} \wedge \exists z\left(R(z, x) \wedge \forall n\left(\neg\left\|z_{n}\right\|=\|x\|\right)\right),
$$

and since $\neg\left\|z_{n}\right\|=\|x\|$ is Π_{1}^{1}, A is Σ_{2}^{1}.
The set A does not have a perfect subset; in fact, it does not have an uncountable analytic subset. This follows from the Boundedness Lemma: For every analytic set $X \subset A$, the set $\{\|x\|: x \in X\}$ is bounded, and hence countable (because of the definition of A).

Below (Corollary 25.37) we improve this by showing that in L there exists an uncountable Π_{1}^{1} set without a perfect subset.

By Shoenfield's Absoluteness Theorem, every Σ_{2}^{1} real is constructible. In Part III we show that it is consistent that a nonconstructible Δ_{3}^{1} real exists. In the presence of large cardinals, an example of a nonconstructible Δ_{3}^{1} real is 0^{\sharp} :

Lemma 25.30. If 0^{\sharp} exists then 0^{\sharp} is a Δ_{3}^{1} real, and the singleton $\left\{0^{\sharp}\right\}$ is $a \Pi_{2}^{1}$ set.
Proof. We identify 0^{\sharp} with the set of Gödel numbers of the sentences in 0^{\sharp}. We claim that the property $\Sigma=0^{\sharp}$ is Π_{1} over $(H C, \in)$, and therefore Π_{2}^{1}. We use the description (18.24) of 0^{\sharp} and note that the quantifiers $\forall \alpha$ can be replaced by $\forall \alpha<\omega_{1}$, thus making it a Π_{1} property over $H C$.

Thus $\left\{0^{\sharp}\right\}$ is a Π_{2}^{1} set, and

$$
n \in 0^{\sharp} \leftrightarrow \exists z\left(z \in\left\{0^{\sharp}\right\} \text { and } z(n)=1\right) \leftrightarrow \forall z\left(z \in\left\{0^{\sharp}\right\} \rightarrow z(n)=1\right)
$$

shows that 0^{\sharp} is a Δ_{3}^{1} subset of ω.

Scales and Uniformization

The tree analysis of Σ_{2}^{1} sets can be refined; an analysis of Kondô's proof of the Uniformization Theorem (Theorem 25.36) led Moschovakis to introduce the concept of scale that pervades the modern descriptive set theory.

We start with the definition of norm and prewellordering. While in the present chapter these concepts are applied to $\boldsymbol{\Pi}_{1}^{1}$ and $\boldsymbol{\Sigma}_{2}^{1}$ sets, the theory applies to more general collection of definable sets of reals.

Definition 25.31. A norm on a set A is an ordinal function φ on A. A prewellordering of A is a transitive relation \preccurlyeq such that $a \preccurlyeq b$ or $b \preccurlyeq a$ for all $a, b \in A$, and that \prec is well-founded.

A prewellordering of a set A induces an equivalence relation $(a \preccurlyeq b \wedge b \preccurlyeq a)$ and a well-ordering of its equivalence classes. Its rank function is a norm, and conversely, a norm φ defines a prewellordering

$$
\begin{equation*}
a \preccurlyeq \varphi b \text { if and only if } \varphi(a) \leq \varphi(b) \tag{25.27}
\end{equation*}
$$

The tree analysis of Π_{1}^{1} and Σ_{2}^{1} sets produces well behaved prewellorderings of Π_{1}^{1} and Σ_{2}^{1} sets:

Theorem 25.32. For every Π_{1}^{1} set A there exists a norm φ on A with the property that there exist a Π_{1}^{1} relation $P(x, y)$ and a Σ_{1}^{1} relation $Q(x, y)$ such that for every $y \in A$ and all x,

$$
\begin{equation*}
x \in A \text { and } \varphi(x) \leq \varphi(y) \leftrightarrow P(x, y) \leftrightarrow Q(x, y) \tag{25.28}
\end{equation*}
$$

A norm φ with the above property is called a Π_{1}^{1}-norm and the statement "every Π_{1}^{1} set has a Π_{1}^{1}-norm" is called the prewellordering property of Π_{1}^{1}.

A relativization of Theorem 25.32 shows that every $\Pi_{1}^{1}(a)$ set has a $\Pi_{1}^{1}(a)$ norm. A modification of the proof of Theorem 25.32 yields the prewellordering property of Σ_{2}^{1} : every Σ_{2}^{1} set has a Σ_{2}^{1} norm, i.e., a norm for which exist a $\Sigma_{2}^{1} P$ and a $\Pi_{2}^{1} Q$ that satisfy (25.28) (cf. Exercises 25.5 and 25.6).

Proof. Let A be a Π_{1}^{1} and let T be a recursive tree on $\omega \times \omega$ such that

$$
A(x) \leftrightarrow T(x) \text { is well-founded. }
$$

For each $x \in A$ let $\varphi(x)=\|T(x)\|$ be the height of the well-founded tree.
To define the Σ_{1}^{1} relation Q, let

$$
\begin{align*}
& Q(x, y) \leftrightarrow \text { there exists an order-preserving function } \tag{25.29}\\
& \quad f: T(x) \rightarrow T(y) .
\end{align*}
$$

It is not difficult to see that Q is Σ_{1}^{1}, and the equivalence in (25.28) follows from Corollary 25.7. For the Π_{1}^{1} relation, let

$$
\begin{gather*}
P(x, y) \leftrightarrow \forall s \neq \emptyset \text { there exists no order-preserving } \tag{25.30}\\
\qquad f: T(y) \rightarrow T(x) / s .
\end{gather*}
$$

This is Π_{1}^{1} and says that $T(x)$ is well-founded and it is not the case that $\|T(y)\|<\|T(x)\|$.

The prewellordering property of Π_{1}^{1} implies the reduction principle for Π_{1}^{1} and the separation principle for Σ_{1}^{1}-see Exercises. This in turn implies Suslin's Theorem that every Δ_{1}^{1} set is Borel.

The prewellordering property has an important strengthening, the scale property which we now introduce.

Let A be a Π_{1}^{1} set. Following the proof of Theorem 25.18 we obtain a tree T on $\omega \times \omega_{1}$ such that $A=p[T]$. In detail, let U be a recursive tree on $\omega \times \omega$ such that

$$
x \in A \leftrightarrow U(x) \text { is well-founded } \leftrightarrow \exists g: U(x) \rightarrow \omega_{1} \text { order preserving. }
$$

Let $\left\{u_{n}: n \in \boldsymbol{N}\right\}$ be a recursive enumeration of Seq such that length $\left(u_{n}\right) \leq n$, and let T be the tree on $\omega \times \omega_{1}$ defined by

$$
\begin{align*}
&(s, h) \in T \leftrightarrow \forall m, n<\operatorname{length}(s)\left(\text { if } u_{m} \supset u_{n} \text { and }\left(s \upharpoonright k, s \upharpoonright u_{m}\right) \in U\right. \tag{25.31}\\
&\text { where } \left.k=\operatorname{length}\left(u_{m}\right) \text {, then } h(m)<h(n)\right) .
\end{align*}
$$

The relevant observation is that not only that $A=p[T]$, i.e.,

$$
x \in A \leftrightarrow \exists \text { a branch } g \text { in } T(x)
$$

but that for every $x \in p[T]$ there exists a (pointwise) least branch g in $T(x)$, i.e., for every $f \in p[T], g(n) \leq f(n)$ for all n. To see this, let

$$
g_{x}(n)= \begin{cases}\rho_{T(x)}\left(u_{n}\right) & \text { if } u_{n} \in U(x), \\ 0 & \text { otherwise } .\end{cases}
$$

That g_{x} is the least branch in $T(x)$ holds because the rank function is the least order-preserving function.

Definition 25.33. A scale on a set A is a sequence of norms $\left\langle\varphi_{n}: n \in \omega\right\rangle$ such that: If $\left\langle x_{i}: i \in \omega\right\rangle$ is a sequence of points in A with $\lim _{i \rightarrow \infty} x_{i}=x$ and such that
(25.32) for every n, the sequence $\left\langle\varphi_{n}\left(x_{i}\right): i \in \omega\right\rangle$ is eventually constant, with value α_{n},
then $x \in A$, and for every $n, \varphi_{n}(x) \leq \alpha_{n}$.
It is easy to see that every Π_{1}^{1} set A has a scale: Let A be a Π_{1}^{1} set and let T be the tree in (25.31). We have $A=p[T]$ and for each $x \in A, T(x)$ has a least branch g_{x}. Let $\left\langle\varphi_{n}: n \in \omega\right\rangle$ be the sequence of norms on A defined by

$$
\begin{equation*}
\varphi_{n}(x)=g_{x}(n) . \tag{25.33}
\end{equation*}
$$

If $\left\langle x_{i}: i \in \omega\right\rangle$ is a sequence in A with $\lim _{i \rightarrow \infty} x_{i}=x$ that satisfies (25.32) then $\left\langle\alpha_{n}: n \in \omega\right\rangle$ is a branch in $T(x)$ witnessing $x \in p[T]$, and for every n, $g_{x}(n) \leq \alpha_{n}$.

The norms defined in (25.33) are Π_{1}^{1}-norms; this can be verified as in the proof of Theorem 25.32. To be precise, the scale $\left\langle\varphi_{n}: n \in \omega\right\rangle$ is a Π_{1}^{1}-scale:

Theorem 25.34. For every Π_{1}^{1} set A there exists a scale $\left\langle\varphi_{n}: n \in \omega\right\rangle$ on A with the property that there exist a Π_{1}^{1} relation $P(n, x, y)$ and a Σ_{1}^{1} relation $Q(n, x, y)$ such that for every n, every $y \in A$, and all x,

$$
\begin{equation*}
x \in A \text { and } \varphi_{n}(x) \leq \varphi_{n}(y) \leftrightarrow P(n, x, y) \leftrightarrow Q(n, x, y) . \tag{25.34}
\end{equation*}
$$

The statement "every Π_{1}^{1} set has a Π_{1}^{1}-scale" is called the scale property of Π_{1}^{1}. A relativization shows that every $\Pi_{1}^{1}(a)$ set has a $\Pi_{1}^{1}(a)$-scale, and a modification of the above construction yields the scale property for Σ_{2}^{1} : every $\Sigma_{2}^{1}(a)$ set has a $\Sigma_{2}^{1}(a)$-scale; cf. Exercises 25.12 and 25.13.

A major application of scales is the uniformization property.

Definition 25.35. A set $A \subset \mathcal{N} \times \mathcal{N}$ is uniformized by a function F if $\operatorname{dom}(F)=\{x: \exists y(x, y) \in A\}$, and $(x, F(x)) \in A$ for all $x \in \operatorname{dom}(F)$.
[Equivalently, $F \subset A$ and $\operatorname{dom}(F)=\operatorname{dom}(A)$.]
Theorem 25.36 (Kondô). Every Π_{1}^{1} relation $A \subset \mathcal{N} \times \mathcal{N}$ is uniformized by a Π_{1}^{1} function.

The statement of Theorem 25.36 (the Uniformization Theorem) is called the uniformization property of Π_{1}^{1}. A relativization shows that every $\Pi_{1}^{1}(a)$ relation is uniformized by a $\Pi_{1}^{1}(a)$ function, and a modification of the proof yields the uniformization property of Σ_{2}^{1}; see Exercise 25.15.

Proof. We give a proof of the following statement that easily generalizes to a proof of Kondô's Theorem: If A is a nonempty Π_{1}^{1} subset of \mathcal{N} then there exists an $a \in A$ such that $\{a\}$ is Π_{1}^{1}.

Thus let A be a nonempty Π_{1}^{1} subset of \mathcal{N}. Given a scale $\left\langle\varphi_{n}: n \in \omega\right\rangle$ on A, we select an element $a \in A$ as follows: We let $A_{0}=A$, and for each n let

$$
\begin{aligned}
& A_{2 n+1}=\left\{x \in A_{2 n}: \varphi_{n}(x) \text { is least }\right\} \\
& A_{2 n+2}=\left\{x \in A_{2 n+1}: x(n) \text { is least }\right\} .
\end{aligned}
$$

Then $A_{0} \supset A_{1} \supset \ldots \supset A_{n} \supset \ldots$ and the intersection has at most one element. Definition 25.33 guarantees that the limit a is in A and so $\bigcap_{n=0}^{\infty} A_{n}=\left\{a_{n}\right\}$.

If the scale $\left\langle\varphi_{n}: n \in \omega\right\rangle$ is Π_{1}^{1} then using (25.34) one verifies that the set $\{a\}$ is Π_{1}^{1}.

Theorem 25.36 can be used to improve the result in Corollary 25.29:
Corollary 25.37. If $V=L$ then there exists an uncountable Π_{1}^{1} set without a perfect subset.

Proof. Let A be a Σ_{2}^{1} set without a perfect subset (by 25.29). Now A is the projection of some Π_{1}^{1} set $B \subset \mathcal{N}^{2}$. By the Uniformization Theorem, B has a Π_{1}^{1} subset f that is a function and has the same projection A. The set f is uncountable; we claim that f does not have a perfect subset. Assume that $P \subset f$ is perfect. The projection of P is an analytic subset of A. Since $P \subset f$, P is itself a function and because P is uncountable, the projection $\operatorname{dom}(P)$ is also uncountable. This is a contradiction since we proved that every analytic subset of A is countable.

Combining this result with Theorem 25.23 we obtain:
Theorem 25.38. The following are equivalent:
(i) For every $a \subset \omega, \aleph_{1}^{L[a]}$ is countable.
(ii) Every uncountable $\boldsymbol{\Pi}_{1}^{1}$ set contains a perfect subset.
(iii) Every uncountable $\boldsymbol{\Sigma}_{2}^{1}$ set contains a perfect subset.

Proof. Obviously, (iii) implies (ii). In order to show that (i) implies (iii), let us assume (i) and let A be an uncountable $\boldsymbol{\Sigma}_{2}^{1}$ set. Let $a \in \mathcal{N}$ be such that $A \in \Sigma_{2}^{1}(a)$. Since $\aleph_{1}^{L[a]}$ is countable, there are only countably many reals in $L[a]$, and hence A has an element that is not in $L[a]$. Thus A contains a perfect subset, by Theorem 25.23.

The remaining implication uses the same argument as Corollaries 25.29 and 25.37. Assume that there exists an $a \subset \omega$ such that $\aleph_{1}^{L[a]}=\aleph_{1}$. We claim that there exists an uncountable $\boldsymbol{\Pi}_{1}^{1}$ set without a perfect subset. Let

$$
x \in A \leftrightarrow x \in L[a] \wedge x \in \mathrm{WO} \wedge \forall y<_{L[a]} x(\neg\|y\|=\|x\|) .
$$

A is a $\Sigma_{2}^{1}(a)$ subset of WO and for all $\alpha<\omega_{1}, A$ has exactly one element x such that $\|x\|=\alpha$. The rest of the proof proceeds as before, and we obtain a $\Pi_{1}^{1}(a)$ set of cardinality \aleph_{1} without a perfect subset.

Σ_{2}^{1} Well-Orderings and Σ_{2}^{1} Well-Founded Relations

The canonical well-ordering of constructible reals is Σ_{2}^{1}, and so if $V=L$ then there exists a Σ_{2}^{1} well-ordering of the set \boldsymbol{R} (and of \mathcal{N}). We now prove the converse: If there exists a Σ_{2}^{1} well-ordering of \boldsymbol{R} then all reals are constructible.

Theorem 25.39 (Mansfield). If < is a Σ_{2}^{1} well-ordering of \mathcal{N} then every real is constructible. More generally, if $<$ is $\Sigma_{2}^{1}(a)$ then $\mathcal{N} \subset L[a]$.

Proof. Let $<$ be a Σ_{2}^{1} well-ordering of \mathcal{N} and let us assume that there is a nonconstructible real. Let $T_{0}=\operatorname{Seq}(\{0,1\})$, and let $\boldsymbol{C}=\left[T_{0}\right]=\{0,1\}^{\omega}$ be the Cantor space. Let us consider trees $T \subset T_{0}$ and functions $f: T \rightarrow T_{0}$ such that $s \subset t$ implies $f(s) \subset f(t)$ and for every $x \in[T], \bigcup_{n=0}^{\infty} f(x \mid n) \in \boldsymbol{C}$. Every such function induces a continuous function from $[T]$ into \boldsymbol{C}, which we denote by f^{*}.

Lemma 25.40. If $T \subset T_{0}$ is a constructible perfect tree and if $f: T \rightarrow T_{0}$ is a constructible function such that f^{*} is one-to-one, then there exist a constructible perfect tree $U \subset T$ and a constructible $g: U \rightarrow T_{0}$ such that g^{*} is one-to-one, and $g^{*}(x)<f^{*}(x)$ for every $x \in[U]$.

It suffices to prove this lemma because then we can construct a sequence of trees $T_{0} \supset T_{1} \supset \ldots \supset T_{n} \supset \ldots$ and functions $f_{0}, f_{1}, \ldots, f_{n}, \ldots$ where f_{0} is the identity such that $f_{n+1}^{*}(x)<f_{n}^{*}(x)$ for all $x \in T_{n+1}$. Since all $\left[T_{n}\right]$ are compact sets, their intersection is nonempty and therefore there exists an x such that $f_{0}^{*}(x)>f_{1}^{*}(x)>\ldots>f_{n}^{*}(x)>\ldots$ contrary to the assumption that $<$ is a well-ordering.

Proof of Lemma 25.40. Let $T \subset T_{0}$ be a constructible tree and let $f: T \rightarrow T_{0}$ be constructible, such that f^{*} is one-to-one.

Since T is perfect, there exists a constructible function $h: T \rightarrow T_{0}$ such that $h^{*}:[T] \rightarrow \boldsymbol{C}$ is one-to-one and onto. For each $s \in T_{0}$, let \bar{s} be the "mirror image" of s, namely if $s=\langle s(0), \ldots, s(k)\rangle$, let $\bar{s}=\langle 1-s(0), \ldots, 1-s(k)\rangle$; for $x \in C, \bar{x}$ is defined similarly.

We claim that at least one of the sets

$$
A=\left\{x \in[T]: f^{*}(x)>h^{*}(x)\right\}, \quad B=\left\{x \in[T]: f^{*}(x)>\overline{h^{*}(x)}\right\}
$$

contains a nonconstructible element. Let z be the least nonconstructible element of \boldsymbol{C}, and let $x, y \in[T]$ be such that $h^{*}(x)=z$ and $h^{*}(y)=\bar{z}$. Then both x and y are nonconstructible and hence $f^{*}(x) \geq z$ and $f^{*}(y) \geq z$. Thus either $f^{*}(x)>z$ or $f^{*}(y)>z$ and so either A or B contains a nonconstructible element. For instance, assume that A does.

Since $<$ is Σ_{2}, and T, f, and h are constructible subsets of $H F$, the set A is $\Sigma_{2}^{1}(a)$ for some $a \in L$. By Lemma 25.24 there exists a constructible perfect tree U such that $[U] \subset A$. If we let $g=h \upharpoonright U$, then U and g satisfy the lemma.

The set WO is Π_{1}^{1} but not Σ_{1}^{1}. One consequence of this fact, related to the Boundedness Lemma, is that there is no $\boldsymbol{\Sigma}_{1}^{1}$ well-ordering of the reals, in fact every $\boldsymbol{\Sigma}_{1}^{1}$ well-ordering of a set of reals is countable. A more general statement holds:

Lemma 25.41. Every $\boldsymbol{\Sigma}_{1}^{1}$ well-founded relation on \mathcal{N} has countable height.
Proof. Assuming that some $\boldsymbol{\Sigma}_{1}^{1}$ well-founded relation on \mathcal{N} has height $\geq \omega_{1}$, we reach a contradiction by describing the set WO in a $\boldsymbol{\Sigma}_{1}^{1}$ way.

First consider the special case of well-orderings. Let E be a $\boldsymbol{\Sigma}_{1}^{1}$ wellordering and let us assume that its order-type is $\geq \omega_{1}$. Then for every $\alpha<\omega_{1}$ there is an order-preserving mapping of $(\alpha,<)$ into (\mathcal{N}, E). Conversely, if a countable linearly ordered set $(Q,<)$ can be embedded in (\mathcal{N}, E), then $(Q,<)$ is a well-ordering. Hence let E_{x} be, for each $x \in \mathcal{N}$, the relation coded by x (see (25.13)), and let LO be the arithmetical set of all x that code a linear ordering of \boldsymbol{N}. Then

$$
\begin{align*}
x \in \mathrm{WO} & \leftrightarrow x \in \mathrm{LO} \wedge(\exists f: \omega \rightarrow \mathcal{N}) \forall n \forall m \tag{25.35}\\
& \left(n E_{x} m \rightarrow(f(n), f(m)) \in E\right) \\
\leftrightarrow & x \in \mathrm{LO} \wedge \exists z \in \mathcal{N} \forall n \forall m\left(n E_{x} m \rightarrow\left(z_{n}, z_{m}\right) \in E\right),
\end{align*}
$$

where for each $z \in \mathcal{N}$ and each n, z_{n} is the element of \mathcal{N} defined by $z_{n}(k)=$ $z(\Gamma(n, k))$ for all $k \in \boldsymbol{N}$, where Γ is the pairing function. Now (25.35) gives a $\boldsymbol{\Sigma}_{1}^{1}$ description of WO, a contradiction.

In the general case when E is a $\boldsymbol{\Sigma}_{1}^{1}$ well-founded relation we observe that if α is a countable ordinal less than the height of E, then there exist a countable set $S \subset \mathcal{N}$ and a function f of S onto α such that for every $u \in S$ and every $\beta<f(u)$ there exists a $v \in S$ such that $v E u$ and $\beta \leq f(v)$ (namely $f(x)=\rho_{E}(x)$, and the countable set S is constructed with the help of the Principle of Dependent Choices). Conversely, if $(Q,<)$ is a linearly ordered set and if there is a function f from a subset of \mathcal{N} onto Q such that for every $u \in \operatorname{dom}(f)$ and every $q<f(u)$ there is $v \in \operatorname{dom}(f)$ such that $v E u$ and $q \leq f(v)$, then $(Q,<)$ is a well-ordering. Thus if E has height $\geq \omega_{1}$, we have

$$
\begin{equation*}
x \in \mathrm{WO} \leftrightarrow x \in \mathrm{LO} \wedge\left(\exists \text { countable } S=\left\{z_{n}: n \in \boldsymbol{N}\right\}\right) \tag{25.36}
\end{equation*}
$$

$(\exists f: S \xrightarrow{\text { onto }} \boldsymbol{N}) \forall n \forall k$ [if $\left(k, f\left(z_{n}\right)\right) \in E_{x}$, then
$\exists m$ such that $\left(z_{m}, z_{n}\right) \in E$ and either $k=f\left(z_{m}\right)$ or $\left.\left(k, f\left(z_{m}\right)\right) \in E_{x}\right]$.

Again, (25.36) can be written in a $\boldsymbol{\Sigma}_{1}^{1}$ manner, and we get a contradiction.

The next theorem gives an upper bound on heights of $\boldsymbol{\Sigma}_{2}^{1}$ well-founded relations.

Theorem 25.42 (Martin). Every $\boldsymbol{\Sigma}_{2}^{1}$ well-founded relation on \mathcal{N} has length $<\omega_{2}$.

Note that since every prewellordering is a well-founded relation, the theorem implies that $\boldsymbol{\delta}_{2}^{1} \leq \omega_{2}$, where

$$
\boldsymbol{\delta}_{2}^{1}=\sup \left\{\alpha: \alpha \text { is the length of a } \boldsymbol{\Sigma}_{2}^{1} \text { prewellordering }\right\} .
$$

Proof. Let $E \subset \mathcal{N} \times \mathcal{N}$ be a $\boldsymbol{\Sigma}_{2}^{1}$ relation. Let T be a tree on $\omega^{2} \times \omega_{1}$ such that for all $x, y \in \mathcal{N}$,

$$
\begin{equation*}
(x, y) \in E \leftrightarrow\left(\exists f: \omega \rightarrow \omega_{1}\right) \forall n(x \upharpoonright n, y \upharpoonright n, f\lceil n) \in T . \tag{25.37}
\end{equation*}
$$

As usual, for each $z \in \mathcal{N}$ and each $n \in \mathcal{N}$, let $z_{n} \in \mathcal{N}$ be such that $z_{n}(k)=$ $z(\Gamma(n, k))$ for all k; similarly, for each $f: \omega \rightarrow \omega_{1}$ and each n, let $f_{n}: \omega \rightarrow \omega_{1}$ be such that $f_{n}(k)=f(\Gamma(n, k))$ for all k. (Here Γ is the pairing function.)

Each of the following formulas is equivalent to the statement that the relation E is not well-founded:

$$
\begin{aligned}
& \exists x \forall m\left(x_{m+1}, x_{m}\right) \in E, \\
& \exists x \forall m \exists f \forall n\left(x_{m+1} \upharpoonright n, x_{m} \upharpoonright n, f \upharpoonright n\right) \in T, \\
& \exists x \exists f \forall m \forall n\left(x_{m+1} \upharpoonright n, x_{m} \upharpoonright n, f_{m} \upharpoonright n\right) \in T .
\end{aligned}
$$

It is easy to construct a tree U on $\omega \times \omega_{1}$ such that for all $x \in \mathcal{N}$ and all $f: \omega \rightarrow \omega_{1}$,
(25.38) $\forall m \forall n\left(x_{m+1} \upharpoonright n, x_{m} \upharpoonright n, f_{m} \upharpoonright n\right) \in T$ if and only if $\forall k(x \upharpoonright k, f \upharpoonright k) \in U$.

It follows from (25.38) that

$$
\begin{equation*}
E \text { is well-founded if and only if } U \text { is well-founded. } \tag{25.39}
\end{equation*}
$$

Now let $E \subset \mathcal{N} \times \mathcal{N}$ be a Σ_{2}^{1} well-founded relation; we want to show that its height is $<\omega_{2}$. Let T be a tree on $\omega^{2} \times \omega_{1}$ such that (25.37) holds for all $x, y \in \mathcal{N}$ and let U be the tree on $\omega \times \omega_{1}$ constructed from T as above; since E is well-founded, U is well-founded.

Let us consider a generic extension $V[G]$ of the universe in which ω_{1}^{V} is countable and $\omega_{2}^{V}=\omega_{1}^{V[G]}$. Let us argue in $V[G]$.

Let E^{*} be the relation on \mathcal{N} defined by (25.37). First we observe that $E \subset E^{*}$: If $x, y \in V$, then

$$
\begin{aligned}
(x, y) \in E & \leftrightarrow V \vDash T(x, y) \text { is ill-founded } \\
& \leftrightarrow V[G] \vDash T(x, y) \text { is ill-founded } \\
& \leftrightarrow(x, y) \in E^{*} .
\end{aligned}
$$

(because well-foundedness is absolute). We notice further that E^{*} is wellfounded: This is because by the construction of U (which is absolute) and
the definition of $E^{*}, V[G]$ satisfies (25.39), i.e.,

$$
E^{*} \text { is well-founded if and only if } U \text { is well-founded. }
$$

Hence E^{*} is well-founded, and height $(E) \leq \operatorname{height}\left(E^{*}\right)$.
The tree T is a tree on $\omega \times \omega_{1}^{V}$ and ω_{1}^{V} is a countable ordinal. Since $E^{*}=p[T]$, it follows that E^{*} is a $\boldsymbol{\Sigma}_{1}^{1}$ relation. By Lemma 25.41, the height of E^{*} is countable. It follows that height $(E)<\omega_{1}^{V[G]}=\omega_{2}^{V}$.

Now we can step back into the ground model and look at the result of the above argument: height $(E)<\omega_{2}$.

Both Theorem 25.42 and Lemma 25.41 are special cases of the more general Kunen-Martin Theorem:

Theorem 25.43. Let κ be an infinite cardinal. Every κ-Suslin well-founded relation on \mathcal{N} has height $<\kappa^{+}$.

Proof. Let < be a κ-Suslin well-founded relation on \mathcal{N}. We first associate with $<$ a tree \mathcal{T} on \mathcal{N} as follows:

$$
\begin{equation*}
\mathcal{T}=\left\{\left\langle x_{0}, \ldots, x_{n-1}\right\rangle: x_{n-1}<x_{n-2}<\ldots<x_{0}\right\}, \tag{25.40}
\end{equation*}
$$

(and $\langle x\rangle \in \mathcal{T}$ for all $x \in \mathcal{N}$). \mathcal{T} is well-founded and it suffices to prove that the height of \mathcal{T} is $<\kappa^{+}$.

As $<$ is κ-Suslin, there exists a tree T on $\omega \times \omega \times \kappa$ such that

$$
x<y \quad \text { if and only if } \exists f(x, y, f) \in[T] .
$$

Let W be the set of ill sequences (of nodes at the same level of T)

$$
w=\left\langle\left(s_{1}, s_{0}, h_{0}\right), \ldots,\left(s_{i+1}, s_{i}, h_{i}\right), \ldots,\left(s_{k}, s_{k-1}, h_{k-1}\right)\right\rangle
$$

with $\left(s_{i+1}, s_{i}, h_{i}\right) \in T$, and let

$$
\begin{array}{ll}
w^{\prime} \prec w \text { if and only if } & k=\operatorname{length}(w)<\operatorname{length}\left(w^{\prime}\right)=k^{\prime} \tag{25.41}\\
& \text { length }\left(s_{0}\right)<\operatorname{length}\left(s_{0}^{\prime}\right), \text { and } \\
& \forall i<k s_{i} \subset s_{i}^{\prime} \text { and } h_{i} \subset h_{i}^{\prime} .
\end{array}
$$

We claim that the relation \prec is well-founded. Otherwise, let $w_{n}=\left\langle\left(s_{i+1}^{n}\right.\right.$, $\left.\left.s_{i}^{n}, h_{i}^{n}\right): i<k_{n}\right\rangle$ be such that $w_{n+1} \prec w_{n}$ for all n. For each $i \in \omega$, let $x_{i}=\bigcup_{n=0}^{\infty} s_{i}^{n}$, and $f_{i}=\bigcup_{n=0}^{\infty} h_{i}^{n}$ (these exist by (25.41)). It follows that $\left(x_{i+1}, x_{i}, f_{i}\right) \in[T]$ for all i, hence $x_{i+1}<x_{i}$, and therefore $x_{0}>x_{1}>\ldots>$ $x_{i}>\ldots$, a contradiction.

The set W has cardinality κ and it suffices to find an order preserving mapping from $\mathcal{T}-\{\emptyset\}$ into (W, \prec). For every pair (x, y) such that $x<y$, the tree $T(x, y)$ on κ is not well-founded and has a branch h; let $h_{x, y}$ be the
leftmost branch of the tree $T(x, y)$. Now let $\pi: \mathcal{T}-\{\emptyset\} \rightarrow W$ be as follows: $\pi(\langle x\rangle)=\emptyset$ for every $x \in \mathcal{N}$, and for $k \geq 2$,

$$
\pi\left(\left\langle x_{0}, \ldots, x_{k-1}\right\rangle\right)=\left\langle\left(x_{1} \upharpoonright k, x_{0} \upharpoonright k, h_{x_{1}, x_{0}} \upharpoonright k\right), \ldots,\left(x_{k} \upharpoonright k, x_{k-1} \upharpoonright k, h_{x_{k}, x_{k-1}} \upharpoonright k\right)\right\rangle
$$

As $\pi\left(\left\langle x_{0}, \ldots, x_{k-1}, x_{k}\right\rangle\right) \prec \pi\left(\left\langle x_{0}, \ldots, x_{k-1}\right\rangle\right)$, the mapping is order-preserving, completing the proof.

Borel Codes

Every Borel set of reals is obtained, in fewer than ω_{1} steps, from open intervals by taking complements and countable unions. We shall show how this procedure can be coded by a function $c \in \omega^{\omega}$. We shall define the set BC of Borel codes and assign to each $c \in \mathrm{BC}$ a unique Borel set A_{c}. The code c not only describes the Borel set A_{c} but also describes the procedure by which the set A_{c} is constructed from basic open sets.

Let $I_{1}, I_{2}, \ldots, I_{k}, \ldots$ be a recursive enumeration of open intervals with rational endpoints (i.e., the sequence of the pairs of endpoints is rercursive). For each $c \in \mathcal{N}$, let

$$
\begin{equation*}
u(c) \quad \text { and } \quad v_{i}(c) \quad(i \in \boldsymbol{N}) \tag{25.42}
\end{equation*}
$$

be elements of \mathcal{N} defined as follows: If $d=u(c)$, then $d(n)=c(n+1)$ for all n; if $d=v_{i}(c)$, then $d(n)=c(\Gamma(i, n)+1)$ for all n (where Γ is the canonical one-to-one correspondence between $\boldsymbol{N} \times \boldsymbol{N}$ and $\boldsymbol{N})$.

For $0<\alpha<\omega_{1}$, we define sets Σ_{α} and $\Pi_{\alpha} \subset \mathcal{N}$ as follows:

$$
\begin{array}{ll}
c \in \Sigma_{1} & \text { if } c(0)>1 ; \tag{25.43}\\
c \in \Pi_{\alpha} & \text { if either } c \in \Sigma_{\beta} \cup \Pi_{\beta} \text { for some } \beta<\alpha \\
& \text { or } c(0)=0 \text { and } u(c) \in \Sigma_{\alpha} ; \\
c \in \Sigma_{\alpha}(\alpha>1) & \text { if either } c \in \Sigma_{\beta} \cup \Pi_{\beta} \text { for some } \beta<\alpha \\
& \text { or } c(0)=1 \text { and } v_{i}(c) \in \bigcup_{\beta<\alpha}\left(\Sigma_{\beta} \cup \Pi_{\beta}\right) \text { for all } i .
\end{array}
$$

If $c \in \Sigma_{\alpha}$ (if $c \in \Pi_{\alpha}$), we call c a $\boldsymbol{\Sigma}_{\alpha}^{0}$-code (a $\boldsymbol{\Pi}_{\alpha}^{0}$-code). Let BC, the set of all Borel codes, be

$$
\mathrm{BC}=\bigcup_{\alpha<\omega_{1}} \Sigma_{\alpha}=\bigcup_{\alpha<\omega_{1}} \Pi_{\alpha} .
$$

For every $c \in \mathrm{BC}$, we define a Borel set A_{c} as follows (we say that c codes A_{c}):
(25.44) if $c \in \Sigma_{1}$
if $c \in \Pi_{\alpha}$ and $c(0)=0$
if $c \in \Sigma_{\alpha}$ and $c(0)=1$
then $A_{c}=\bigcup\left\{I_{n}: c(n)=1\right\} ;$
then $A_{c}=\boldsymbol{R}-A_{u(c)}$;
then $A_{c}=\bigcup_{i=0}^{\infty} A_{v_{i}(c)}$.

It is clear that for every $\alpha>0$, if $c \in \Sigma_{\alpha}$ (if $c \in \Pi_{\alpha}$), then $A_{c} \in \boldsymbol{\Sigma}_{\alpha}^{0}$ $\left(A_{c} \in \boldsymbol{\Pi}_{\alpha}^{0}\right)$. Conversely, if B is a $\boldsymbol{\Sigma}_{\alpha}^{0}$ set (a $\boldsymbol{\Pi}_{\alpha}^{0}$ set), then there exists $c \in \Sigma_{\alpha}$ ($c \in \Pi_{\alpha}$) such that $B=A_{c}$. This is proved by induction on α using facts like: If $c_{i}, i \in \omega$ are elements of $\bigcup_{\beta<\alpha} \Pi_{\beta}$, then there is $c \in \Sigma_{\alpha}$ such that $c_{i}=v_{i}(c)$ for all $i \in \omega$.

Thus $\left\{A_{c}: c \in \mathrm{BC}\right\}$ is the collection of all Borel sets.
Lemma 25.44. The set BC of all Borel codes is Π_{1}^{1}.
Proof. Let us consider the following relation E on \mathcal{N} :

$$
\begin{align*}
x E y \text { if and only if } & \text { either } y(0)=0 \text { and } x=u(y), \tag{25.45}\\
& \text { or } y(0)=1 \text { and } x=v_{i}(y) \text { for some } i \in \omega .
\end{align*}
$$

The relation E is arithmetical. If $y \in \Sigma_{1}$, then y is E-minimal (i.e., $\operatorname{ext}_{E}(y)=$ $\emptyset)$ and vice versa; if $y \in \Pi_{\alpha}$ and $x E y$, then $x \in \Sigma_{\alpha}$, and if $y \in \Sigma_{\alpha}(\alpha>1)$ and $x E y$, then $x \in \bigcup_{\beta<\alpha}\left(\Sigma_{\beta} \cup \Pi_{\beta}\right)$.

We claim that

$$
\begin{align*}
y \in \mathrm{BC} & \leftrightarrow \tag{25.46}\\
& \qquad \text { is well-founded below } y \\
& \text { there is no }\left\langle z_{0}, z_{1}, \ldots z_{n}, \ldots\right\rangle \text { such that } z_{0}=y \\
& \text { and that } \forall n\left(z_{n+1} E z_{n}\right) .
\end{align*}
$$

By the remark following (25.45), if $y \in \mathrm{BC}$, then there can be no infinite descending sequence $z_{0}=y, z_{1} E z_{0}, z_{2} E z_{1}$, etc. Conversely, if E is wellfounded below y, let ρ denote the rank function for E on $\operatorname{ext}_{E}(y)$. By induction on $\rho(x)$, one can see that every $x \in \operatorname{ext}_{E}(y)$ is a Borel code, and finally that y is itself a Borel code.

Now (25.46) gives a Π_{1}^{1} definition of the set BC and the lemma follows.

Lemma 25.45. The properties $A_{c} \subset A_{d}, A_{c}=A_{d}$, and $A_{c}=\emptyset$ are Π_{1}^{1} properties of Borel codes.

Proof. We shall show that there are properties $P, Q \subset \boldsymbol{R} \times \mathcal{N}$ such that P is Π_{1}^{1} and Q is Σ_{1}^{1} and such that for every $c \in \mathrm{BC}$,

$$
\begin{equation*}
a \in A_{c} \leftrightarrow(a, c) \in P \leftrightarrow(a, c) \in Q . \tag{25.47}
\end{equation*}
$$

Then

$$
\begin{aligned}
& A_{c} \subset A_{d} \leftrightarrow c, d \in \mathrm{BC} \wedge \forall a((a, c) \in Q \rightarrow(a, d) \in P), \\
& A_{c}=A_{d} \leftrightarrow c, d \in \mathrm{BC} \wedge A_{c} \subset A_{d} \wedge A_{d} \subset A_{c} \\
& A_{c}=\emptyset \leftrightarrow c \in \mathrm{BC} \wedge \forall a(a, c) \notin Q
\end{aligned}
$$

To find P and Q, let $x \in \mathcal{N}$ be fixed. Let T be the smallest set $T \subset \mathcal{N}$ such that

$$
\begin{equation*}
x \in T, \text { and if } y \in T \text { and } z E y, \text { then } z \in T \tag{25.48}
\end{equation*}
$$

The set T is countable. Let $h: T \rightarrow\{0,1\}$ be a function with the following property: For all $y \in T$,
(25.49) if $y(0)>1$, then $h(y)=1$ if and only if
for some $n, y(n)=1$ and $a \in I_{n}$;
if $y(0)=0$, then $h(y)=1$ if and only if $h(u(y))=0$;
if $y(0)=1$, then $h(y)=1$ if and only if for some $i, h\left(v_{i}(y)\right)=1$.
Note that if x is a Borel code then there is a unique smallest countable set $T \subset \mathcal{N}$ with the property (25.48), and a unique function h with the property (25.49); moreover, for every $y \in T$ we have $h(y)=1$ if and only if $a \in A_{y}$. Thus we let
(25.50) $\quad(a, x) \in P \leftrightarrow(\forall$ countable $T \subset \mathcal{N})(\forall h: T \rightarrow\{0,1\})$

$$
\text { if }(25.48) \text { and }(25.49) \text { then } h(x)=1,
$$

and
(25.51) $\quad(a, x) \in Q \leftrightarrow(\exists$ countable $T \subset \mathcal{N})(\exists h: T \rightarrow\{0,1\})$

$$
(25.48) \wedge(25.49) \wedge h(x)=1
$$

and it is clear that if $c \in \mathrm{BC}$, then $a \in A_{c}$ if and only if $(a, c) \in P$ if and only if $(a, c) \in Q$.

It is a routine matter to verify that (25.50) can be written in Π_{1}^{1} way and (25.51) in a Σ_{1}^{1} way. (The quantifiers $\forall T, \forall h$, and $\exists T, \exists h$ are the only ones for which one needs quantifiers over \mathcal{N}; note that for instance, $\forall z(z E y \rightarrow$ $y \in T)$ in (25.48) can be written as

$$
\left.(y(0)=0 \rightarrow u(y) \in T) \wedge\left(y(0)=1 \rightarrow \forall i\left(v_{i}(y) \in T\right)\right) .\right)
$$

We shall now show that certain properties of Borel codes are absolute for transitive models of $\mathrm{ZF}+\mathrm{DC}$. (As usual, full $\mathrm{ZF}+\mathrm{DC}$ is not needed, and the absoluteness holds for adequate transitive models.) If M is a transitive model of $\mathrm{ZF}+\mathrm{DC}$ and $c \in \omega^{\omega}$ is in M, then because the set BC is Π_{1}^{1}, c is a Borel code if and only if $M \vDash c$ is a Borel code. By Lemma 25.45 the properties of the codes $A_{c} \subset A_{d}, A_{c}=A_{d}$, and $A_{c}=\emptyset$ are Π_{1}^{1} and therefore absolute: $A_{c}=A_{d}$ holds if and only if $A_{c}^{M}=A_{d}^{M}$, etc., where A_{c}^{M} denotes the Borel set in M coded by c. Moreover, since $a \in A_{c}$ is Π_{1}^{1}, it follows that $A_{c}^{M}=A_{c} \cap M$ for every Borel code $c \in M$.

Lemma 25.46. The following properties (of codes) are absolute for all transitive models M of $\mathrm{ZF}+\mathrm{DC}$:

$$
\begin{array}{ll}
A_{e}=A_{c} \cup A_{d}, & A_{e}=A_{c} \cap A_{d}, \\
A_{e}=\boldsymbol{R}-A_{c}, & A_{e}=A_{c} \triangle A_{d}, \quad A_{e}=\bigcup_{n=0}^{\infty} A_{c_{n}}
\end{array}
$$

(we assume that the codes c, d, e are in M, as is the sequence $\left\langle c_{n}: n \in \omega\right\rangle$).

We say that the operations $\cup, \cap,-, \triangle, \bigcup_{n=0}^{\infty}$ on Borel sets with codes in M are absolute for M.

Proof. If $c_{0}, c_{1}, \ldots, c_{n}, \ldots$ is a sequence of Borel codes in M, let $c \in \mathcal{N}$ be such that $c(0)=1$ and that $v_{i}(c)=c_{i}$ for all $i \in \omega$. Clearly, c is a Borel code, $c \in M$, and c codes (both in the universe and in M) the Borel set $\bigcup_{n=0}^{\infty} A_{c_{n}}$. Hence for any Borel code $e \in M$, we have

$$
A_{e}^{M}=\bigcup_{n=0}^{\infty} A_{c_{n}}^{M} \leftrightarrow A_{e}^{M}=A_{c}^{M} \leftrightarrow A_{e}=A_{c} \leftrightarrow A_{e}=\bigcup_{n=0}^{\infty} A_{c_{n}}
$$

because $A_{e}=A_{c}$ is absolute for M. Thus $A_{e}=\bigcup_{n=0}^{\infty} A_{c_{n}}$ is absolute.
An analogous argument shows that $\boldsymbol{R}-A_{c}$ is absolute, and the rest of the lemma follows easily because the operations \cap, and \triangle can be defined from \cup and -.

Exercises

25.1. If $A \subset S e q \times \omega$ is arithmetical then $\left\{(x, n):(x\lceil n, n) \in A\}\right.$ is Δ_{1}^{1}.
25.2. (i) Every arithmetical relation is Δ_{1}^{1}.
(ii) If $A \subset \mathcal{N} \times \mathcal{N}$ is arithmetical then $\exists x A$ is Σ_{1}^{1} and $\forall x A$ is Π_{1}^{1}.
25.3. The set $A=\{(x, z): z \notin \mathrm{WO} \vee\|x\| \leq\|z\|\}$ is Σ_{1}^{1}. Hence for each α, WO_{α} is $\Sigma_{1}^{1}(z)$ for each $z \in$ WO such that $\|z\|=\alpha$.
$\left[(x, z) \in A \leftrightarrow z \notin \mathrm{WO} \vee(\exists h: \boldsymbol{N} \rightarrow \boldsymbol{N}) \forall m \forall n\left(m E_{x} n \rightarrow h(m) E_{x} h(n)\right).\right]$
25.4. Every Σ_{1} sentence is absolute for all inner models; in fact for all transitive models $M \supset L_{\vartheta}$ where $\vartheta=\omega_{1}^{L}$.
[Use Shoenfield's Absoluteness Lemma and Lemma 25.25.]
25.5. Modify the proof of Theorem 25.32 to show that Σ_{2}^{1} has the prewellordering property.
25.6. Prove the prewellordering property of Σ_{2}^{1} from the prewellordering property of Π_{1}^{1}.

A collection \mathcal{C} of subsets of \mathcal{N} satisfies the reduction principle if for every pair $A, B \in \mathcal{C}$ there are disjoint $A^{\prime}, B^{\prime} \in \mathcal{C}$ such that $A^{\prime} \subset A, B^{\prime} \subset B$, and $A^{\prime} \cup B^{\prime}=$ $A \cup B . \mathcal{C}$ satisfies the separation principle if for every pair of disjoint sets $A, B \in \mathcal{C}$ there is a set E such that both E and $\neg E$ are in \mathcal{C}, and that $A \subset E$ and $B \subset \neg E$. Lemma 11.11 proves that the collection of all analytic sets satisfies the separation principle.
25.7. The collection of Π_{1}^{1} sets satisfies the reduction principle.
[Let φ and ψ be Π_{1}^{1} norms on the Π_{1}^{1} sets A and B and let $A^{\prime}=\{x \in A$: $\psi(x) \nless \varphi(x)\}$ and $B^{\prime}=\{x \in B: \varphi(x) \not \leq \psi(x)\}$.]
25.8. The collection of Σ_{2}^{1} sets satisfies the reduction principle.

The two exercises above hold also for $\Pi_{1}^{1}(a)$ and $\Sigma_{2}^{1}(a)$.
25.9. If a collection \mathcal{C} satisfies the reduction principle then the collection $\mathcal{C}^{*}=\{A$: $\neg A \in \mathcal{C}\}$ satisfies the separation principle.
[If $A, B \in \mathcal{C}^{*}$ are disjoint, then $\neg A \cup \neg B=\mathcal{N}^{r}$ and so if $A^{\prime}, B^{\prime} \in \mathcal{C}$ are disjoint such that $A^{\prime} \subset \neg A, B^{\prime} \subset \neg B$ and $A^{\prime} \cup B^{\prime}=\neg A \cup \neg B$, then $B^{\prime}=\neg A^{\prime}$ and both A^{\prime} and B^{\prime} are in \mathcal{C}^{*}.]

Hence the separation principle holds for Σ_{1}^{1} and for Π_{2}^{1} (and $\Sigma_{1}^{1}(a)$ and $\Pi_{2}^{1}(a)$).
25.10. There is no universal $\boldsymbol{\Delta}_{n}^{1}$ set, for any $n \in \boldsymbol{N}$, i.e., no $D \subset \mathcal{N}^{2}$ such that D is $\boldsymbol{\Delta}_{n}^{1}$ and that for every $\boldsymbol{\Delta}_{n}^{1}$ set $A \subset \mathcal{N}$ there is $v \in \mathcal{N}$ such that $A=\{x$: $(x, v) \in D\}$.
[Assume there is such a D and let $A=\{x:(x, x) \notin D\}$.]
25.11. The collection of $\boldsymbol{\Pi}_{1}^{1}$ sets (or $\boldsymbol{\Sigma}_{2}^{1}$ sets) does not satisfy the separation principle.
[The reason is that $\boldsymbol{\Pi}_{1}^{1}$ satisfies the reduction principle ($\boldsymbol{\Sigma}_{2}^{1}$ is similar). Let h be a homeomorphism of $\mathcal{N} \times \mathcal{N}$ onto \mathcal{N}, and let $U \subset \mathcal{N}^{2}$ be a universal $\boldsymbol{\Pi}_{1}^{1}$ set. Let $(x, h(u, v)) \in A$ if and only if $(x, u) \in U,(x, h(u, v)) \in B$ if and only if $(x, v) \in V$, and let A^{\prime}, B^{\prime} be disjoint Π_{1}^{1} sets such that $A^{\prime} \subset A, B^{\prime} \subset B$, and $A^{\prime} \cup B^{\prime}=A \cup B$. If there existed $E \in \Delta_{1}^{1}$ such that $A^{\prime} \subset E$ and $B^{\prime} \subset \neg E$, then E would be a universal $\boldsymbol{\Delta}_{1}^{1}$ set.]
25.12. Modify the proof of Theorem 25.34 to show that Σ_{2}^{1} has the scale property.
25.13. Prove the scale property of Σ_{2}^{1} from the scale property of Π_{1}^{1}.
25.14. Let $\left\langle\varphi_{n}: n \in \omega\right\rangle$ be a scale on A and let T be the tree $\left\{\left(s,\left\langle\alpha_{0}, \ldots, \alpha_{n-1}\right\rangle\right)\right.$: $(\exists x \in A) x \mid n=s$ and $\left.\forall i<n \alpha_{i}=\varphi_{i}(x)\right\}$. Show that $A=p[T]$ and that for each $x \in A, T(x)$ has a least branch.
25.15. Using the scale property of Σ_{2}^{1} prove the uniformization property of Σ_{2}^{1}.

Historical Notes

For classical descriptive set theory, see the books of Luzin [1930] and Kuratowski [1966]; the terminology is that of modern descriptive set theory based on the analogy with Kleene's hierarchies ([1955]).

The basic facts on $\boldsymbol{\Sigma}_{1}^{1}$ and $\boldsymbol{\Pi}_{1}^{1}$ sets are all in Luzin's book [1930] and some are of earlier origin: Lemma 25.10 was in effect proved by Lebesgue in [1905], and Corollary 25.13 and Lemma 25.17 were proved by Luzin and Sierpiński in [1923].

Theorem 25.19 appeared in Sierpiński [1925]. Theorem 25.36 is due to Kondô [1939].

Theorem 25.20 is due to Shoenfield [1961]. Previously, Mostowski had established absoluteness of Σ_{1}^{1} and Π_{1}^{1} predicates (Theorem 25.4). Lemma 25.25: Lévy [1965b].

The tree representation of Σ_{2}^{1} sets is implicit in Shoenfield's proof in [1961]. Lemma 25.22 is due to Kechris and Moschovakis [1972].

Theorem 25.23 is due to Mansfield [1970] and Solovay [1969]. Lemma 25.24 was formulated and first proved by Mansfield.

Theorem 25.26 and corollaries: In his announcement [1938] Gödel stated that the Axiom of Constructibility implies that there exists a nonmeasurable $\boldsymbol{\Delta}_{2}^{1}$ set and an uncountable $\boldsymbol{\Pi}_{1}^{1}$ set without a perfect subset. Gödel did not publish the proof but gave an outline in the second printing (in 1951) of his monograph [1940].

Novikov in [1951] gave a proof of the corollaries (Kuratowski's paper [1948] contains somewhat weaker results) and Addison in [1959] worked out the details of Gödel outline of the proof of the theorem.

Lemma 25.30: Solovay [1967].
For scales and uniformization, see Moschovakis' book [1980]. Moschovakis introduced scales in [1971].

Theorem 25.38: Solovay [1969].
Theorem 25.39: Mansfield [1975].
Theorem 25.42 (as well as the present proof) is due to Martin; and Theorem 25.43 is due to Kunen and Martin, the present proof is Kunen's.

Borel codes are as in Solovay [1970].
The reduction and separation principles were introduced by Kuratowski; they are discussed in detail in Kuratowski's book [1966] and in Addison [1959].

Exercise 25.7: Kuratowski [1936].

