27. Combinatorial Principles in L

The Fine Structure Theory

In his paper [1972], Ronald Jensen embarked on a detailed analysis of the levels of the constructible hierarchy. The resulting theory, the fine structure theory, describes precisely how new sets arise in the construction of L, and has significant applications. Historically, the first application of the fine structure theory was Jensen's proof of \square_{κ} in L, and we shall use that as a motivation for the introduction of fine-structural concepts. We have already described another, later, application of Jensen's theory, the Covering Theorem 18.30. While Magidor's proof presented in Chapter 18 does not use the full force of the fine structure theory, it can serve as a starting point toward the study of fine structure.

We have seen that the constructible hierarchy is Σ_{1}, in a uniform way, and we have also seen the role played by the condensation arguments. In particular we mention Lemma 18.38, the Condensation Lemma, stating that every Σ_{1}-elementary submodel of L_{α} is isomorphic to some L_{γ}, for every infinite ordinal α.

Every L_{α} (for $\alpha \geq \omega$) has a Σ_{1} Skolem function, with a Σ_{1} definition independent of α. Precisely, there is a Σ_{0} formula Φ such that for every $\alpha \geq \omega$, the (partial) function $h_{\alpha}: \omega \times L_{\alpha} \rightarrow L_{\alpha}$ defined by

$$
\begin{equation*}
y=h_{\alpha}(n, x) \leftrightarrow\left(L_{\alpha}, \in\right) \vDash \exists z \Phi(n, x, y, z) \tag{27.1}
\end{equation*}
$$

is a $\Sigma_{1} S k o l e m$ function for L_{α} in the sense that for every $X \subset L_{\alpha}$,

$$
\begin{equation*}
h_{\alpha} "(\omega \times X)=H_{1}^{\alpha}(X) \tag{27.2}
\end{equation*}
$$

is the Σ_{1} Skolem hull of X in L_{α}. This can be deduced by using the Σ_{1} well-ordering $<_{L}$, as in (18.5). (For details, we refer the reader to Devlin's book [1984], in particular Lemma II.6.5.)

In Chapter 18 we introduced Σ_{n} Skolem functions for $n>1$ as well, but mentioned (following Definition 18.40) that a Σ_{n} Skolem function is not necessarily a Σ_{n} function. In fact, for $n>1$ there is no uniform Σ_{2} Skolem function (in the sense of (27.1)-(27.2)); for details, see Exercises on pages 106-107 in Devlin's book [1984], or Proposition 2 in Friedman's [1997].

To overcome this obstacle, Jensen introduced an elaborate machinery by which arguments about Σ_{n} predicates on L_{α} can be reduced to arguments about Σ_{1} predicates on a structure $\left(L_{\rho}, A\right)$ which in some sense describes the Σ_{n} properties on L_{α}.

The Principle \square_{κ}

We recall (cf. (23.4)) that for an uncountable cardinal κ, a square-sequence is a sequence $\left\langle C_{\alpha}: \alpha \in \operatorname{Lim}\left(\kappa^{+}\right)\right\rangle$such that every C_{α} is closed unbounded in α, $\left|C_{\alpha}\right|<\kappa$ whenever $\operatorname{cf} \alpha<\kappa$, and if $\bar{\alpha}$ is a limit point of C_{α} then $C_{\bar{\alpha}}=C_{\alpha} \cap \bar{\alpha}$. In [1972], Jensen proved that in L, every uncountable cardinal κ has a squaresequence.

Theorem 27.1 (Jensen). If $V=L$ then \square_{κ} holds for every uncountable cardinal κ.

To illustrate how the proof of \square_{κ} uses condensation principles, and to introduce the fine structure theory, we shall now outline the construction of C_{α} in the most important special case.

First we observe that it suffices to define the sets C_{α} for a closed unbounded set of $\alpha<\kappa^{+}$; a square-sequence is then easily produced. Thus we consider only the $\alpha \in \operatorname{Lim}\left(\kappa^{+}\right)$that satisfy

$$
\begin{equation*}
\alpha>\kappa \text { and } L_{\alpha} \vDash \forall \gamma<\alpha|\gamma| \leq \kappa \tag{27.3}
\end{equation*}
$$

these α 's form a closed unbounded set.
As α is a singular limit ordinal, there is a stage of the constructible hierarchy where that is witnessed. Let $\beta=\beta(\alpha) \geq \alpha$ be the least β such that there is a cofinal subset of α of smaller order-type that is definable over L_{β}. Let $n=n(\alpha)$ be the least positive integer such that there exists such a subset that is Σ_{n} over L_{β} (with parameters in L_{β}).

We outline the construction of C_{α} for the special case when β is a limit ordinal and $n=1$. (In general one has to consider also successor β 's and $n>1$-this is where the fine structure comes in.)

Using our assumption on α one proves that there exists a function g, Σ_{1} over L_{β}, that maps κ onto L_{β} : Firstly, since there exists a $\Sigma_{1}\left(L_{\beta}\right)$ subset of α that is not in L_{β} (by minimality of $\beta(\alpha)$), there exists a $\Sigma_{1}\left(L_{\beta}\right)$ function that maps α onto L_{β} (Exercise 27.1). Then, using (27.3), one gets a Σ_{1} function on κ.

Moreover, we can find such a function g in a canonical way. Since g exists, we have $L_{\beta}=H_{1}^{\beta}(\kappa \cup p)$, the Σ_{1}-Skolem hull of $\kappa \cup p$ in L_{β}, where p is some finite subset of L_{β}, and therefore

$$
\begin{equation*}
L_{\beta}=h_{\beta} "(\omega \times(\kappa \cup p)) \tag{27.4}
\end{equation*}
$$

where h_{β} is the canonical Σ_{1} Skolem function from (27.1). Disregarding the parameter p (which in general is taken to be the $<_{L}$-least such p), we obtain
from h_{β} (uniformly) a Σ_{1} function g_{β} mapping κ onto L_{β}; using (27.1) we find a Σ_{0} formula Ψ such that

$$
\begin{equation*}
g_{\beta}(\nu)=y \leftrightarrow\left(\exists z \in L_{\beta}\right) \Psi(\nu, y, z) . \tag{27.5}
\end{equation*}
$$

Now we construct C_{α} as an increasing continuous transfinite sequence $\left\langle\alpha_{\xi}\right.$: $\xi<\vartheta\rangle$ of limit ordinals $<\alpha$ with limit α. Simultaneously, we construct ordinals $\mu_{\xi}<\beta$ and $\nu_{\xi}<\kappa$, with $\left\langle\mu_{\xi}: \xi<\vartheta\right\rangle$ increasing and continuous, as follows: Given $\alpha_{\xi}<\alpha$ and $\mu_{\xi}<\beta$, we let

$$
\begin{align*}
& \nu_{\xi}=\text { least } \nu \text { such that } \alpha_{\xi}<g_{\beta}(\nu)<\alpha \text { and } L_{g_{\beta}(\nu)} \vDash\left|\alpha_{\xi}\right|=\kappa, \tag{27.6}\\
& \mu_{\xi+1}=\text { least } \mu \text { such that } \alpha_{\xi}, \mu_{\xi}, g_{\beta}\left(\nu_{\xi}\right) \in H_{1}^{\mu}(\kappa) \text { and }\left(\exists z \in L_{\mu}\right) \\
& \Psi\left(\nu_{\xi}, g_{\beta}\left(\nu_{\xi}\right), z\right) .
\end{align*}
$$

It follows from the assumptions on α that the least ordinal ϑ such that $\lim _{\xi \rightarrow \vartheta} \mu_{\xi}=\beta(\alpha)$ is the least ordinal with $\lim _{\xi \rightarrow \vartheta} \alpha_{\xi}=\alpha$, producing the set $C_{\alpha}=\left\{\alpha_{\xi}: \xi<\vartheta\right\}$, with $\vartheta \leq \kappa$. The canonical Σ_{1} definition (27.5) of g_{β} is the key to the coherence property (23.4)(ii) of the C_{α} 's. Let $\bar{\alpha}<\alpha$ be a limit point of $C_{\alpha}, \bar{\alpha}=\alpha_{\lambda}$ where λ is limit. Let $\bar{\mu}=\mu_{\lambda}$, and let $L_{\bar{\beta}}$ be the transitive collapse of $H_{1}^{\bar{\mu}}(\kappa)$. Let $e: L_{\bar{\beta}} \rightarrow L_{\beta}$ be the inverse of the transitive collapse; e is Σ_{1}-elementary. Using condensation arguments, one proves that $\bar{\alpha} \subset H_{1}^{\bar{\mu}}(\kappa)$ (and therefore $e\lceil\bar{\alpha}$ is the identity), $\bar{\beta}=\beta(\bar{\alpha}), e(\bar{\alpha})=\alpha$, and finally that the definition of $C_{\bar{\alpha}}=\left\{\bar{\alpha}_{\xi}: \xi<\lambda\right\}$ agrees with the definition of C_{α} up to λ. In other words, $C_{\bar{\alpha}}=C_{\alpha} \cap \bar{\alpha}$.

This completes the outline for the special case. When $n(\alpha)=1$ and $\beta(\alpha)$ is a successor ordinal, it can be shown that $\operatorname{cf} \alpha=\omega$ and this case is sufficiently exceptional to allow to choose C_{α} a sequence of order-type ω, without limit points. When $n(\alpha)>1$, the proof requires the machinery of the fine structure theory: the model $\left(L_{\beta(\alpha)}, \in\right)$ is replaced by $\left(L_{\rho}, \in, A\right)$ where ρ is $(n-1)$-projectum of β, allowing the use of canonical Σ_{1}-Skolem functions for models $\left(L_{\rho}, \in, A\right)$.

A complete proof of Theorem 27.1 can be found in Jensen's paper [1972] or in Devlin's book [1984]. There have been several attempts at simplification of the proof; among the more recent published proofs we mention Friedman [1997] and Friedman and Koepke [1997].

As Jensen pointed out in [1972], his proof of \square_{κ} in L shows that if κ^{+}is not Mahlo in L then \square_{κ} holds. As a consequence the consistency strength of the failure of Square is at least that of a Mahlo cardinal. By a result of Solovay (Exercise 27.2), the consistency strength of $\neg \square_{\omega_{1}}$ is that of a Mahlo cardinal.

We also note a result of Solovay from [1974] that the existence of supercompact cardinals implies the failure of Square (Exercise 27.3).

The Jensen Hierarchy

One of the technical obstacles in the analysis how constructible sets arise in the hierarchy L_{α} is that the sets L_{α} are not closed under the formation of ordered pairs. This can be overcome by modifying the constructible hierarchy in an inessential way. The resulting hierarchy J_{α} has become the preferred tool for studying the fine structure of L and of more general inner models.

Definition 27.2 (Rudimentary Functions).
(i) $F\left(x_{1}, \ldots, x_{n}\right)=x_{i} \quad(i=1, \ldots, n)$, $F\left(x_{1}, \ldots, x_{n}\right)=\left\{x_{i}, x_{j}\right\} \quad(i, j=1, \ldots, n)$, $F\left(x_{1}, \ldots, x_{n}\right)=x_{i}-x_{j} \quad(i, j=1, \ldots, n)$ are rudimentary.
(ii) If G is rudimentary, then so is

$$
F\left(y, x_{1}, \ldots, x_{n-1}\right)=\bigcup_{z \in y} g\left(z, x_{1}, \ldots, x_{n-1}\right) .
$$

(iii) A composition of rudimentary functions is rudimentary.

The rudimentary closure of a set X is the smallest $Y \supset X$ closed under all rudimentary functions. If X is transitive then so is its rudimentary closure, and for every transitive set M, let

$$
\begin{equation*}
\operatorname{rud}(M)=\text { the rudimentary closure of } M \cup\{M\} . \tag{27.8}
\end{equation*}
$$

It can be shown that for every transitive set M,

$$
\begin{equation*}
\operatorname{rud}(M) \cap P(M)=\operatorname{def}(M) \tag{27.9}
\end{equation*}
$$

(compare with Corollary 13.8).
Definition 27.3 (The Jensen Hierarchy).
(i) $J_{0}=\emptyset, J_{\alpha+1}=\operatorname{rud}\left(J_{\alpha}\right)$,
(ii) $J_{\alpha}=\bigcup_{\beta<\alpha} J_{\beta}$ if α is a limit ordinal.

Each J_{α} is transitive, the hierarchy is cumulative, and for each α,

$$
J_{\alpha} \subset V_{\omega \alpha} \quad \text { and } \quad J_{\alpha} \cap O r d=\omega \alpha
$$

From (27.9) it follows that

$$
J_{\alpha+1} \cap P\left(J_{\alpha}\right)=\operatorname{def}\left(J_{\alpha}\right)
$$

The exact relationship between the J_{α} 's and the L_{α} 's is not important, but we have

$$
\begin{equation*}
J_{\alpha}=L_{\alpha} \text { for all } \alpha \text { such that } \alpha=\omega \alpha . \tag{27.10}
\end{equation*}
$$

Every J_{α} is closed under $\{x, y\}, \bigcup x, x \times y$, and if A is a Σ_{0} subset of J_{α} then $A \cap x \in J_{\alpha}$ for every $x \in J_{\alpha}$. This has the effect that

$$
\left\langle J_{\xi}: \xi<\alpha\right\rangle
$$

is uniformly Σ_{1} over J_{α}, and there is a well-ordering $<_{J}$ of L such that its restriction to J_{α} is (uniformly) Σ_{1} over J_{α}. Also, there is a (uniform) Σ_{1} function over J_{α} that maps $\omega \alpha$ onto J_{α}. Similarly as for the L_{α}, every J_{α} has a canonical Σ_{1} Skolem function h_{α} (analogous to (27.1) and (27.2)).

The fine structure theory capitalizes on the fact that the existence of a uniform Σ_{1} Skolem function relativizes to models $\left(J_{\alpha}, A\right)$ where A is a oneplace predicate as long as

$$
\begin{equation*}
A \cap u \in J_{\alpha} \text { for all } u \in J_{\alpha} \tag{27.11}
\end{equation*}
$$

such models $\left(J_{\alpha}, A\right)$ are called amenable. There is a Σ_{0} formula Φ of the language (\in, A) such that for every α and every amenable model $\left(J_{\alpha}, A\right)$, the (partial) function $h_{\alpha, A}: \omega \times J_{\alpha} \rightarrow J_{\alpha}$ defined by

$$
\begin{equation*}
y=h_{\alpha, A}(n, x) \leftrightarrow\left(J_{\alpha}, \in, A\right) \vDash \exists z \Phi(n, x, y, z) \tag{27.12}
\end{equation*}
$$

is a Σ_{1} Skolem function for $\left(J_{\alpha}, A\right)$.

Projecta, Standard Codes and Standard Parameters

Definition 27.4. For $n>0$, the Σ_{n}-projectum ρ_{α}^{n} of α is the smallest ordinal $\rho \leq \alpha$ such that there exists a $\Sigma_{n}\left(J_{\alpha}\right)$ function f such that f " $J_{\rho}=J_{\alpha}$; for $n=0$, let $\rho_{\alpha}^{0}=\alpha$.

An argument similar to Exercise 27.1 is used to prove that ρ_{α}^{n} is the smallest ρ such that there exists a $\Sigma_{n}\left(J_{\alpha}\right)$ subset of $\omega \rho$ not in J_{α}.

The main feature of the fine structure is that a predicate definable over J_{α} can be reduced to a Σ_{1} predicate over an amenable structure $\left(J_{\rho}, A\right)$ where ρ is a projectum of α. For each α and each $n>0$ there exists a set $A_{\alpha}^{n} \subset J_{\rho_{\alpha}^{n}}$ that is Σ_{n} over J_{α} such that $\left(J_{\rho_{\alpha}^{n}}, A_{\alpha}^{n}\right)$ is amenable, and such that

$$
\begin{equation*}
\Sigma_{1}\left(J_{\rho_{\alpha}^{n}}, A_{\alpha}^{n}\right)=P\left(J_{\rho_{\alpha}^{n}}\right) \cap \Sigma_{n+1}\left(J_{\alpha}\right) . \tag{27.13}
\end{equation*}
$$

For $n=0$, we let $A_{\alpha}^{0}=\emptyset$. The sets A_{α}^{n} are called standard codes.
If P is a Σ_{n+1} predicate over J_{α}, let f be a $\Sigma_{n}\left(J_{\alpha}\right)$ function that maps $J_{\rho_{\alpha}^{n}}$ onto J_{α}. Then $f_{-1}(P)$ is a $\Sigma_{n+1}\left(J_{\alpha}\right)$ subset of $J_{\rho_{\alpha}^{n}}$ and therefore, by (27.13), Σ_{1} over the amenable model $\left(J_{\rho_{\alpha}^{n}}, A_{\alpha}^{n}\right)$. This reduction is canonical, as both the standard codes, and the Σ_{n} functions $f: J_{\rho_{\alpha}^{n}} \rightarrow J_{\alpha}$ are canonical. Precisely, we define standard codes along with standard parameters p_{α}^{n}, by induction on n : $p_{\alpha}^{0}=\emptyset$ and
(27.14) p_{α}^{n+1} is the $<J_{J}$-least $p \in J_{\rho_{\alpha}^{n}}$ such that $J_{\rho_{\alpha}^{n}}$ is the Σ_{1}-Skolem hull of $J_{\rho_{\alpha}^{n+1}} \cup p$ in $J_{\rho_{\alpha}^{n}} ;$

$$
\begin{equation*}
A_{\alpha}^{n+1}=\left\{(k, x):\left(J_{\rho_{\alpha}^{n}}, A_{\alpha}^{n}\right) \vDash \varphi_{k}\left(x, p_{\alpha}^{n+1}\right)\right\} \tag{27.15}
\end{equation*}
$$

where $\varphi_{k}, k \in \omega$, is a recursive enumeration of the Σ_{1} formulas.
Then a $\Sigma_{n}\left(J_{\alpha}\right)$ function from $J_{\rho_{\alpha}^{n}}$ onto J_{α} can be produced from the canonical Σ_{1} Skolem functions and the standard parameters via (27.14). The fundamental property of standard codes is the following Condensation Lemma:

Lemma 27.5. Let $\left(J_{\gamma}, A\right)$ be amenable and let

$$
e:\left(J_{\gamma}, A\right) \rightarrow\left(J_{\rho_{\alpha}^{n}}, A_{\alpha}^{n}\right)
$$

be a Σ_{0}-elementary embedding. There exists a unique $\bar{\alpha}$ such that $\gamma=\rho_{\bar{\alpha}}^{n}$ and $A=A_{\bar{\alpha}}^{n}$. The embedding e extends to a unique Σ_{n}-elementary embedding

$$
\bar{e}: J_{\bar{\alpha}} \rightarrow J_{\alpha}
$$

such that $\bar{e}\left(p_{\bar{\alpha}}^{i}\right)=p_{\alpha}^{i}$ for all $i=1, \ldots, n$. Moreover, if e is Σ_{m}-elementary then \bar{e} is Σ_{n+m}-elementary.

A detailed account of the fine structure theory can be found in Jensen's paper [1972], or in Devlin's book [1984].

Diamond Principles

Let κ be a regular uncountable cardinal and let E be a stationary subset of κ. $\diamond(E)$, or (more precisely) $\diamond_{\kappa}(E)$, is the following principle (23.1):
(27.16) There exists a sequence of sets $\left\langle S_{\alpha}: \alpha \in E\right\rangle$ with $S_{\alpha} \subset \alpha$ such that for every $X \subset \kappa$, the set $\left\{\alpha \in E: X \cap \alpha=S_{\alpha}\right\}$ is a stationary subset of κ.
When $E=\kappa, \diamond_{\kappa}(\kappa)$ is denoted by $\diamond_{\kappa} . \diamond_{\kappa}$ is a generalization of \diamond from Theorem 13.21, and can be proved under $V=L$ by a similar argument (Exercise 27.4).

Gregory's Theorem 23.2 shows that under GCH, $\diamond_{\kappa^{+}}$holds for every successor cardinal κ^{+}, in fact proving $\diamond\left(E_{\lambda}^{\kappa^{+}}\right)$whenever $\lambda<\operatorname{cf} \kappa$. This was extended by Shelah in [1979] by showing, under GCH, that $\diamond\left(E_{\lambda}^{\kappa^{+}}\right)$holds whenever $\lambda \neq \mathrm{cf} \kappa$, and if κ is singular, then GCH and \square_{κ} together imply $\diamond\left(E_{\mathrm{cf} \kappa}^{\kappa^{+}}\right)$. See also Devlin [1984], Lemma IV.2.8. For $\kappa=\aleph_{1}$, GCH yields a weak version of \diamond. In [1978], Devlin and Shelah formulate and prove, under the assumption $2^{\aleph_{0}}<2^{\aleph_{1}}$ the following statement:
(27.17) For every $F:\{0,1\}^{<\omega_{1}} \rightarrow\{0,1\}$ there exists a $g \in\{0,1\}^{\omega_{1}}$ such that for every $f \in\{0,1\}^{\omega_{1}}$, the set $\left\{\alpha<\omega_{1}: F(f\lceil\alpha)=g(\alpha)\}\right.$ is stationary.
(27.17) is a consequence of \diamond and fails under $\mathrm{MA}_{\aleph_{1}}$.

Trees in L

Let κ be an infinite cardinal. Generalizing Definition 9.12, we have:
Definition 27.6. A κ^{+}-Suslin tree is a tree of height κ^{+}such that every branch and every antichain have cardinality at most κ.

The following result generalizes Theorem 15.26:
Theorem 27.7 (Jensen). If $V=L$ then for every infinite cardinal κ there exists a κ^{+}-Suslin tree.

When κ is regular, the proof is a straightforward generalization of the construction of a Suslin tree using \diamond : instead we use $\diamond\left(E_{\kappa}^{\kappa^{+}}\right)$. We construct a tree by induction on levels. At limit levels α of cofinality $<\kappa$ we extend all branches in T_{α}; since $\kappa^{<\kappa}=\kappa$, the α th level has size κ. If $\operatorname{cf} \alpha=\kappa$ then we use Diamond to destroy potential antichains of size κ^{+}. Note that since all branches have been extended at lower cofinalities, every $x \in T_{\alpha}$ has an α branch in T_{α} going through x. The proof that the resulting tree is a κ^{+}-Suslin tree is exactly as in Theorem 15.26.

When κ is singular, this approach does not work as there are κ^{+}-branches in T_{α} when $\mathrm{cf} \alpha=\mathrm{cf} \kappa$. By not extending all of them we cannot guarantee that at a later stage β, T_{β} has β-branches at all. Jensen's proof succeeds by involving not only \diamond, but the \square_{κ} principle as well. The proof shows that if \square_{κ} holds and if $\diamond_{\kappa^{+}}(E)$ for all E, then a κ^{+}-Suslin tree exists. For a proof, see Devlin [1984], Theorem IV.2.4.

Let us recall (Definition 9.24) that a tree of height ω_{1} is a Kurepa tree if it has countable levels and at least \aleph_{2} uncountable branches.

Theorem 27.8 (Solovay). If $V=L$ then there exists a Kurepa tree.
Proof. Assume $V=L$. We shall construct a family of subsets of ω_{1} that satisfy (9.12).

For each $\alpha<\omega_{1}$, there is a smallest elementary submodel M of $\left(L_{\omega_{1}}, \in\right)$ such that $\alpha \in M$. Moreover (see Exercise 13.17), $M=L_{\gamma}$ for some $\gamma<\omega_{1}$, and we denote γ by $f(\alpha)$:

$$
\begin{equation*}
f(\alpha)=\text { the least } \gamma \text { such that } \alpha \in L_{\gamma} \prec\left(L_{\omega_{1}}, \in\right) . \tag{27.18}
\end{equation*}
$$

Let \mathcal{F} be the following family of subsets of ω_{1} :

$$
\begin{equation*}
\mathcal{F}=\left\{X \subset \omega_{1}: X \cap \alpha \in L_{f(\alpha)} \text { for every } \alpha<\omega_{1}\right\} \tag{27.19}
\end{equation*}
$$

It is immediately clear that $\{X \cap \alpha: X \in \mathcal{F}\}$ is countable for each $\alpha<\omega_{1}$; and hence if we show that $|\mathcal{F}|=\aleph_{2}, \mathcal{F}$ will satisfy (9.12).

Assume that $|\mathcal{F}| \leq \aleph_{1}$. Then \mathcal{F} has an enumeration

$$
\begin{equation*}
C=\left\langle X_{\xi}: \xi<\omega_{1}\right\rangle \tag{27.20}
\end{equation*}
$$

and any such enumeration is in $L_{\omega_{2}}$. If we let C be the $<_{L}$-least such C in $L_{\omega_{2}}$, then since the function f is a definable element of $L_{\omega_{2}}$ (by the definition (27.18)) and the X_{ξ} satisfy (27.19) in $\left(L_{\omega_{2}}, \in\right)$, it follows that C is a definable element of $\left(L_{\omega_{2}}, \in\right)$.

Now, we construct an elementary chain of submodels of ($L_{\omega_{2}}, \in$):

$$
N_{0} \prec N_{1} \prec \ldots \prec N_{\nu} \prec \ldots \prec\left(L_{\omega_{2}}, \in\right) \quad\left(\nu<\omega_{1}\right)
$$

as follows: N_{0} is the smallest elementary submodel of $L_{\omega_{2}} ; N_{\nu+1}$ is the smallest $N \prec L_{\omega_{2}}$ such that $N_{\nu} \subset N$ and $N_{\nu} \in N$; if η is a limit ordinal, then $N_{\eta}=\bigcup_{\nu<\eta} N_{\nu}$. Note that each N_{ν} is countable, and $\omega_{1} \cap N_{\nu}=\alpha_{\nu}$, for some $\alpha_{\nu}<\omega_{1}$ (see Exercise 13.18). Moreover,

$$
\begin{equation*}
\left\langle\alpha_{\nu}: \nu<\omega_{1}\right\rangle \tag{27.21}
\end{equation*}
$$

is a continuous increasing sequence of countable ordinals.
Now, we let $X=\left\{\alpha_{\nu}: \alpha_{\nu} \notin X_{\nu}\right\}$. Obviously, $X \neq X_{\xi}$ for all $\xi<\omega_{1}$, and we shall show that X satisfies the condition in (27.19), which will contradict the assumption that (27.20) is an enumeration of all elements of \mathcal{F}.

We want to show that $X \cap \alpha \in L_{f(\alpha)}$ for all $\alpha<\omega_{1}$. By induction on α, if α is not a limit point of the sequence (27.21), then let α_{ν} be the largest $\alpha_{\nu}<\alpha$. Then either $X \cap \alpha=X \cap \alpha_{\nu}$ or $X \cap \alpha=\left(X \cap \alpha_{\nu}\right) \cup\left\{\alpha_{\nu}\right\} ;$ in either case, since $X \cap \alpha_{\nu} \in L_{f\left(\alpha_{\nu}\right)} \subset L_{f(\alpha)}$ (by the induction hypothesis), we have $X \cap \alpha \in L_{f(\alpha)}$. Thus it suffices to show that $X \cap \alpha_{\eta} \in L_{f\left(\alpha_{\eta}\right)}$ whenever η is a limit ordinal.

We shall show that
(i) $\left\langle\alpha_{\nu}: \nu<\eta\right\rangle \in L_{f\left(\alpha_{\eta}\right)}$;
(ii) $\left\langle X_{\xi} \cap \alpha_{\eta}: \xi<\alpha_{\eta}\right\rangle \in L_{f\left(\alpha_{\eta}\right)}$.

Since $L_{f\left(\alpha_{\eta}\right)}$ is a model of ZF^{-}, the set $X \cap \alpha_{\eta}$ has the following definition in $L_{f\left(\alpha_{\eta}\right)}$:

$$
X \cap \alpha=\left\{\alpha_{\nu}: \nu<\eta \text { and } \alpha_{\nu} \notin X_{\nu} \cap \alpha_{\eta}\right\} .
$$

For each $\nu<\omega_{1}$, let π_{ν} be the transitive collapse of N_{ν}. Each N_{ν} is isomorphic to some $L_{\delta(\nu)}$, and since $\omega_{1} \cap N_{\nu}=\alpha_{\nu}$, we have $\pi_{\nu}\left(\omega_{1}\right)=\alpha_{\nu}$. Since C is a definable element of $L_{\omega_{2}}$, we have $C \in N_{\nu}$ for all ν and one can see that $\pi_{\nu}(C)=\left\langle X_{\xi} \cap \alpha_{\nu}: \xi<\alpha_{\nu}\right\rangle$.

Note that α_{η} is uncountable in $L_{\delta(\eta)}$, while it is countable in $L_{f\left(\alpha_{\eta}\right)}$. It follows that $\delta(\eta)<f\left(\alpha_{\eta}\right)$, and we have $\pi_{\eta}(C) \in L_{\delta(\eta)} \subset L_{f\left(\alpha_{\eta}\right)}$, which proves (27.22)(ii).

To prove (27.22)(i), let us construct, inside $L_{f\left(\alpha_{\eta}\right)}$ (which is a model of ZF^{-}), an elementary chain $N_{\nu}^{\prime}, \nu<\eta$ of submodels of $\left(L_{\delta(\eta)}, \in\right)$: N_{0}^{\prime} is the
smallest elementary submodel of $L_{\delta(\eta)} ; N_{\nu+1}^{\prime}$ is the smallest $N \prec L_{\delta(\eta)}$ such that $N_{\nu}^{\prime} \cup\left\{N_{\nu}^{\prime}\right\} \subset N$, etc. It is not difficult to show, by induction on $\nu<\eta$, that for each ν, N_{ν}^{\prime} is isomorphic to N_{ν}. Then the transitive collapse of N_{ν}^{\prime} is $L_{\delta(\nu)}$, and so $\left\langle L_{\delta(\nu)}: \nu<\eta\right\rangle \in L_{f\left(\alpha_{\eta}\right)}$. It follows that $\left\langle\alpha_{\nu}: \nu<\eta\right\rangle \in L_{f\left(\alpha_{\eta}\right)}$, proving (27.22)(i).

One consequence of the foregoing proof is that a Kurepa tree exists unless \aleph_{2} is inaccessible in L (Exercise 27.5). This is complemented by the following consistency result:

Theorem 27.9 (Silver [1971c]). If there exists an inaccessible cardinal then there is a generic extension in which there are no Kurepa trees.

Proof. Let λ be an inaccessible cardinal. Let $(P,<)$ be the Lévy collapse of λ to \aleph_{2} : forcing conditions are countable functions p on subsets of $\lambda \times \omega_{1}$ such that $p(\alpha, \xi)<\alpha$ for every $(\alpha, \xi) \in \operatorname{dom}(p)$ and p is stronger than q if $p \supset q$.
$(P,<)$ is \aleph_{0}-closed, and so V and $V[G]$ have the same countable sequences in V. Also, $\aleph_{1}^{V[G]}=\aleph_{1}$, and $\aleph_{2}^{V[G]}=\lambda$.

Lemma 27.10. If P is an \aleph_{0}-closed notion of forcing and T is an ω_{1}-tree in the ground model such that every level of T is countable, then T has no new branches in $V[G]$.

Proof. Assume that T has a branch $b \in V[G]$ that is not in V; since $V[G]$ has no new countable sets, b has length ω_{1}. There is a name \dot{b} for b and a condition $p_{0} \in G$ such that $p_{0} \Vdash \dot{b} \neq \check{a}$ for all $a \in V$. We construct, by induction, conditions $p_{s}<p_{0}$ and nodes $x_{s} \in T$ for all finite sequences s of 0 's and 1's. Having constructed p_{s}, we can find two incomparable nodes $x_{s}{ }^{\circ}$ and $x_{s}{ }^{1}$ both $>x_{s}$, and two conditions p_{s-0} and p_{s-1}, both stronger than p_{s} such that $p_{s ~_{0}} \Vdash x_{s ~_{0}} \in \dot{b}$ and $p_{s \frown 1} \Vdash x_{s \frown 1} \in \dot{b}$. Moreover, we can find such $x_{s ~_{0}}$ and x_{s-1} at the same level of T. Let $\alpha<\omega_{1}$ be such that all x_{s} lie below level α in T. For each $f: \omega \rightarrow\{0,1\}$, let p_{f} be a condition stronger than all $p_{f \upharpoonright n}, n \in \omega$. Since $p_{0} \Vdash \dot{b}$ is uncountable, there exist $q<p_{f}$ and x_{f} at the α th level of T such that $q \Vdash x_{f} \in \dot{b}$. Now it is clear that $x_{f} \neq x_{g}$ whenever f and g are distinct $0-1$ functions on ω. Thus the α th level of T has at least $2^{\aleph_{0}}$ elements, contrary to our assumption.

It follows immediately from the lemma that in $V[G]$, no tree $T \in V$ whose levels are countable can be a Kurepa tree: Since every branch of T in $V[G]$ is in V, T has at most $\left(2^{\aleph_{1}}\right)^{V}$ branches, but $\left(2^{\aleph_{1}}\right)^{V}<\lambda=\aleph_{2}^{V[G]}$, and so T has (in $V[G]$) fewer than \aleph_{2} branches.

A similar argument can be used for any tree in $V[G]$, with a slight modification. For each $\alpha<\lambda$, let P_{α} denote the set of all conditions whose domain is a subset of $\alpha \times \omega_{1}$; similarly, let $P^{\alpha}=\left\{p \in P: \operatorname{dom}(p) \subset(\kappa-\alpha) \times \omega_{1}\right\}$. Clearly, P is (isomorphic to) the product $P_{\alpha} \times P^{\alpha}$. Let $X \in V[G]$ be a subset of ω_{1}, and let \dot{X} be a name of X; since P satisfies the λ-chain condition, there exists for each $\xi<\omega_{1}$ a set of conditions $W_{\xi} \subset P$ of size less than λ such
that $\|\xi \in \dot{X}\|=\sum\left\{p: p \in W_{\xi}\right\}$. There exists an $\alpha<\lambda$ such that $W_{\xi} \subset P_{\alpha}$, for all $\xi<\omega_{1}$. It follows that $X \in V\left[G \cap P_{\alpha}\right]$.

Now let $T \in V[G]$ be an ω_{1}-tree with countable levels. There exists an $\alpha<\lambda$ such that $T \in V\left[G \cap P_{\alpha}\right]$. By the Product Lemma, $G \cap P^{\alpha}$ is P^{α}-generic over $V\left[G \cap P_{\alpha}\right]$ and $V[G]=V\left[G \cap P_{\alpha}\right]\left[G \cap P^{\alpha}\right]$. Since $V\left[G \cap P_{\alpha}\right]$ and V have the same countable sequences in V, it follows that P^{α} is \aleph_{0}-closed not only in V, but also $V\left[G \cap P_{\alpha}\right] \vDash P^{\alpha}$ is \aleph_{0}-closed. Thus Lemma 27.10 applies and every branch of T in $V[G]$ is in $V\left[G \cap P_{\alpha}\right]$. However, $\left(2^{\aleph_{1}}\right)^{V\left[G \cap P_{\alpha}\right]}<\lambda=\aleph_{2}^{V[G]}$, and so T is not a Kurepa tree in $V[G]$. This completes the proof.

Canonical Functions on ω_{1}

For ordinal functions on ω_{1}, let $f<g$ if $\left\{\xi<\omega_{1}: f(\xi)<g(\xi)\right\}$ contains a closed unbounded set. The rank of f in $<$ is the Galvin-Hajnal norm $\|f\|$; cf. Definition 24.4. By induction on α, the α th canonical function f_{α} is defined (if it exists) as the <-least ordinal function greater than each $f_{\beta}, \beta<\alpha$. If f_{α} exists then it is unique up to the equivalence $=I_{I_{\mathrm{NS}}}$. Lemma 24.5 shows that for every $\alpha<\omega_{2}$ the α th canonical function exists; see also Exercise 27.6.

It is possible that the constant function ω_{1} is the ω_{2} nd canonical function (see Exercise 27.7) but this is known to have large cardinal consequences; in particular, in L there is a function $f: \omega_{1} \rightarrow \omega_{1}$ such that $\|f\|=\omega_{2}$ (Exercise 27.8).

If canonical functions f_{α} exist for all α, then the ideal I_{NS} is precipitous (Exercise 27.10) and hence there is an inner model with a measurable cardinal. Conversely, a combination of the method from Jech and Mitchell [1983] with the proof of Theorem 23.10 yields the consistency, relative to a measurable cardinal, of canonical functions for all α.

The following result shows that in L, the ω_{2} nd canonical function does not exist.

Theorem 27.11 (Hajnal). If $V=L$ then there is no ω_{2} nd canonical function on ω_{1}.

Proof. Assume $V=L$, and assume that there is an ω_{2} nd canonical function. This statement can be expressed in $L_{\omega_{2}}$:

$$
\begin{aligned}
& \left(\exists f: \omega_{1} \rightarrow \omega_{1}\right) \forall \eta\left(f_{\eta}<f\right) \text { and } \\
& (\forall \text { stationary } S)\left(\forall g<_{S} f\right)(\exists \text { stationary } T \subset S) \exists \eta g \upharpoonright T=f_{\eta} \upharpoonright T .
\end{aligned}
$$

Let γ be the least ordinal such that $\left(L_{\gamma}, \in\right)$ is elementarily equivalent to $\left(L_{\omega_{2}}, \in\right)$. Let f be the ω_{2} nd canonical function in ($\left.L_{\gamma}, \in\right)$ and let $\delta=\omega_{1}^{L_{\gamma}}$. We shall find a $\xi<\delta$ such that $\left(L_{\xi}, \in\right) \equiv L_{\gamma}$, reaching a contradiction.

Consider the generic ultrapower of L_{γ} by the nonstationary ideal $\left(I_{\mathrm{NS}}\right)^{L_{\gamma}}$ on $\delta=\omega_{1}^{L_{\gamma}}$ (using functions in L_{γ}). As f is the $\omega_{2}^{L_{\gamma}}$ nd canonical function, the
ultraproduct $\prod_{\xi<\delta} f(\xi) / G$ has order-type γ, and moreover, the ultraproduct $\mathrm{Ult}_{G}=\prod_{\xi<\delta} L_{f(\xi)} / G$ is isomorphic to L_{γ}. Thus if a sentence σ is true in (L_{γ}, \in) then it is forced to be true in Ult_{G} by every stationary $S \subset \delta$ in L_{γ}, and so if we let

$$
T_{\sigma}=\left\{\xi<\delta: L_{f(\xi)} \vDash \sigma\right\},
$$

then (since $f \in L_{\gamma}$) $T_{\sigma} \in L_{\gamma}$ and

$$
L_{\gamma} \vDash T_{\sigma} \text { contains a closed unbounded set. }
$$

If $\left\{\sigma_{n}: n \in \omega\right\}$ enumerates all sentences of ZF , then $\left\langle T_{\sigma_{n}}: n<\omega\right\rangle \in L_{\gamma}$, and
$L_{\gamma} \vDash \bigcap\left\{T_{\sigma_{n}}: n \in \omega\right.$ and $T_{\sigma_{n}}$ contains a closed unbounded set $\} \neq \emptyset$.
If ξ is an element of this intersection, then $L_{f(\xi)} \equiv L_{\gamma}$.
The existence of an ω_{2} nd canonical function is not a large cardinal property, as this consistency result shows:

Theorem 27.12 (Jech-Shelah). There is a generic extension of L in which the ω_{2} nd canonical function exists.

The model is obtained by first adding (by forcing with countable conditions) an increasing sequence $\left\langle f_{\alpha}: \alpha \leq \omega_{2}\right\rangle$ of ordinal functions from ω_{1} into ω_{1}. Then one uses an iterated forcing, with countable support of length ω_{2}, that successively destroys all stationary subsets of ω_{1} that witness that the sequence $\left\langle f_{\alpha}: \alpha \leq \omega_{2}\right\rangle$ is not canonical. For details, consult Jech and Shelah [1989].

Exercises

27.1. Let $\alpha \leq \beta$ be limit ordinals and assume that there exists a set $Z \subset \alpha$ that is Σ_{1} over L_{β} but $Z \notin L_{\beta}$. Then there exists a $\Sigma_{1}\left(L_{\beta}\right)$ function g such that $g^{\prime \prime} \alpha=L_{\beta}$.
[First show that there is a Σ_{1} function $g: \alpha \rightarrow \beta$ unbounded in β. Let $Z=$ $\left\{\xi<\alpha:\left(\exists y \in L_{\beta}\right) \varphi(\xi, y, p)\right\}$ where φ is Σ_{0}, and let $g(\xi)$ be the least η such that $\left(\exists y \in L_{\eta}\right) \varphi$.]
27.2. If a Mahlo cardinal λ is Lévy collapsed to \aleph_{2} (by countable conditions) then $\square_{\omega_{1}}$ fails in the extension.
27.3. If κ is supercompact then \square_{λ} fails for all $\lambda \geq \kappa$.
27.4. If $V=L$ then $\diamond_{\kappa}(E)$ holds for every regular uncountable κ and every stationary $E \subset \kappa$.
27.5. If \aleph_{2} is not inaccessible in L then a Kurepa tree exists.
[There exists an $A \subset \omega_{1}$ such that $\omega_{1}^{L[A]}=\omega_{1}$ and $\omega_{2}^{L[A]}=\omega_{2}$; modify Theorem 27.8 to construct a Kurepa tree in $L[A]$.]
27.6. If $\omega_{1} \leq \alpha<\omega_{2}$, and if g is a one-to-one function of ω_{1} onto α, let $f(\xi)=$ the order-type of $g " \xi$. Show that f is the α th canonical function.
27.7. If I_{NS} is \aleph_{2}-saturated then the constant function ω_{1} is the \aleph_{2} nd canonical function.
27.8. In L, find a function $f: \omega_{1} \rightarrow \omega_{1}$ of norm ω_{2}.
[As in the proof of Theorem 27.8.]
27.9. If $f: \omega_{1} \rightarrow O r d$ and S is stationary then $\|f\|_{S}=\alpha$ if S forces $j(f)\left(\omega_{1}^{V}\right)=\alpha$ in $P\left(\omega_{1}\right) / I_{\mathrm{NS}}$.
27.10. If a canonical f_{α} exists for every α, then I_{NS} is precipitous.

Historical Notes

The fine structure theory was introduced by Jensen in [1972]. The paper gives, among others, proofs of \square_{κ} and of the existence of κ^{+}-Suslin trees in L. It also formulates a combinatorial principle \diamond^{+}that implies the existence of a Kurepa tree (abstracting Solovay's proof given here). Silver's model with no Kurepa trees appears in [1971c]. Theorem 27.11 is an unpublished result of András Hajnal from 1976; the model in Theorem 27.11 is from Jech and Shelah [1989].

Exercises 27.2, 27.3: Solovay.
Exercise 27.4: Jensen.

