
27. Combinatorial Principles in L

The Fine Structure Theory

In his paper [1972], Ronald Jensen embarked on a detailed analysis of the
levels of the constructible hierarchy. The resulting theory, the fine structure
theory, describes precisely how new sets arise in the construction of L, and has
significant applications. Historically, the first application of the fine structure
theory was Jensen’s proof of �κ in L, and we shall use that as a motivation
for the introduction of fine-structural concepts. We have already described
another, later, application of Jensen’s theory, the Covering Theorem 18.30.
While Magidor’s proof presented in Chapter 18 does not use the full force of
the fine structure theory, it can serve as a starting point toward the study of
fine structure.

We have seen that the constructible hierarchy is Σ1, in a uniform way,
and we have also seen the role played by the condensation arguments. In
particular we mention Lemma 18.38, the Condensation Lemma, stating that
every Σ1-elementary submodel of Lα is isomorphic to some Lγ , for every
infinite ordinal α.

Every Lα (for α ≥ ω) has a Σ1 Skolem function, with a Σ1 definition
independent of α. Precisely, there is a Σ0 formula Φ such that for every
α ≥ ω, the (partial) function hα : ω × Lα → Lα defined by

(27.1) y = hα(n, x) ↔ (Lα,∈) � ∃z Φ(n, x, y, z)

is a Σ1 Skolem function for Lα in the sense that for every X ⊂ Lα,

(27.2) hα“(ω × X) = Hα
1 (X)

is the Σ1 Skolem hull of X in Lα. This can be deduced by using the
Σ1 well-ordering <L, as in (18.5). (For details, we refer the reader to De-
vlin’s book [1984], in particular Lemma II.6.5.)

In Chapter 18 we introduced Σn Skolem functions for n > 1 as well,
but mentioned (following Definition 18.40) that a Σn Skolem function is not
necessarily a Σn function. In fact, for n > 1 there is no uniform Σ2 Skolem
function (in the sense of (27.1)–(27.2)); for details, see Exercises on pages
106–107 in Devlin’s book [1984], or Proposition 2 in Friedman’s [1997].
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To overcome this obstacle, Jensen introduced an elaborate machinery by
which arguments about Σn predicates on Lα can be reduced to arguments
about Σ1 predicates on a structure (Lρ, A) which in some sense describes the
Σn properties on Lα.

The Principle �κ

We recall (cf. (23.4)) that for an uncountable cardinal κ, a square-sequence is
a sequence 〈Cα : α ∈ Lim(κ+)〉 such that every Cα is closed unbounded in α,
|Cα| < κ whenever cf α < κ, and if ᾱ is a limit point of Cα then Cᾱ = Cα∩ ᾱ.
In [1972], Jensen proved that in L, every uncountable cardinal κ has a square-
sequence.

Theorem 27.1 (Jensen). If V = L then �κ holds for every uncountable
cardinal κ.

To illustrate how the proof of �κ uses condensation principles, and to
introduce the fine structure theory, we shall now outline the construction
of Cα in the most important special case.

First we observe that it suffices to define the sets Cα for a closed un-
bounded set of α < κ+; a square-sequence is then easily produced. Thus we
consider only the α ∈ Lim(κ+) that satisfy

(27.3) α > κ and Lα � ∀γ < α |γ| ≤ κ;

these α’s form a closed unbounded set.
As α is a singular limit ordinal, there is a stage of the constructible hi-

erarchy where that is witnessed. Let β = β(α) ≥ α be the least β such that
there is a cofinal subset of α of smaller order-type that is definable over Lβ.
Let n = n(α) be the least positive integer such that there exists such a subset
that is Σn over Lβ (with parameters in Lβ).

We outline the construction of Cα for the special case when β is a limit
ordinal and n = 1. (In general one has to consider also successor β’s and
n > 1—this is where the fine structure comes in.)

Using our assumption on α one proves that there exists a function g,
Σ1 over Lβ, that maps κ onto Lβ: Firstly, since there exists a Σ1(Lβ) subset
of α that is not in Lβ (by minimality of β(α)), there exists a Σ1(Lβ) function
that maps α onto Lβ (Exercise 27.1). Then, using (27.3), one gets a Σ1 func-
tion on κ.

Moreover, we can find such a function g in a canonical way. Since g exists,
we have Lβ = Hβ

1 (κ ∪ p), the Σ1-Skolem hull of κ∪ p in Lβ , where p is some
finite subset of Lβ, and therefore

(27.4) Lβ = hβ“(ω × (κ ∪ p)),

where hβ is the canonical Σ1 Skolem function from (27.1). Disregarding the
parameter p (which in general is taken to be the <L-least such p), we obtain
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from hβ (uniformly) a Σ1 function gβ mapping κ onto Lβ ; using (27.1) we
find a Σ0 formula Ψ such that

(27.5) gβ(ν) = y ↔ (∃z ∈ Lβ)Ψ(ν, y, z).

Now we construct Cα as an increasing continuous transfinite sequence 〈αξ :
ξ < ϑ〉 of limit ordinals < α with limit α. Simultaneously, we construct
ordinals µξ < β and νξ < κ, with 〈µξ : ξ < ϑ〉 increasing and continuous, as
follows: Given αξ < α and µξ < β, we let

νξ = least ν such that αξ < gβ(ν) < α and Lgβ(ν) � |αξ| = κ,(27.6)
µξ+1 = least µ such that αξ, µξ, gβ(νξ) ∈ Hµ

1 (κ) and (∃z ∈ Lµ)
Ψ(νξ, gβ(νξ), z).

(27.7)

It follows from the assumptions on α that the least ordinal ϑ such that
limξ→ϑ µξ = β(α) is the least ordinal with limξ→ϑ αξ = α, producing the set
Cα = {αξ : ξ < ϑ}, with ϑ ≤ κ. The canonical Σ1 definition (27.5) of gβ

is the key to the coherence property (23.4)(ii) of the Cα’s. Let ᾱ < α be
a limit point of Cα, ᾱ = αλ where λ is limit. Let µ̄ = µλ, and let Lβ̄ be the
transitive collapse of H µ̄

1 (κ). Let e : Lβ̄ → Lβ be the inverse of the transitive
collapse; e is Σ1-elementary. Using condensation arguments, one proves that
ᾱ ⊂ H µ̄

1 (κ) (and therefore e�ᾱ is the identity), β̄ = β(ᾱ), e(ᾱ) = α, and
finally that the definition of Cᾱ = {ᾱξ : ξ < λ} agrees with the definition
of Cα up to λ. In other words, Cᾱ = Cα ∩ ᾱ.

This completes the outline for the special case. When n(α) = 1 and
β(α) is a successor ordinal, it can be shown that cf α = ω and this case is
sufficiently exceptional to allow to choose Cα a sequence of order-type ω,
without limit points. When n(α) > 1, the proof requires the machinery of
the fine structure theory: the model (Lβ(α),∈) is replaced by (Lρ,∈, A) where
ρ is (n − 1)-projectum of β, allowing the use of canonical Σ1-Skolem functions
for models (Lρ,∈, A).

A complete proof of Theorem 27.1 can be found in Jensen’s paper [1972]
or in Devlin’s book [1984]. There have been several attempts at simplifi-
cation of the proof; among the more recent published proofs we mention
Friedman [1997] and Friedman and Koepke [1997]. ��

As Jensen pointed out in [1972], his proof of �κ in L shows that if κ+ is
not Mahlo in L then �κ holds. As a consequence the consistency strength
of the failure of Square is at least that of a Mahlo cardinal. By a result of
Solovay (Exercise 27.2), the consistency strength of ¬�ω1 is that of a Mahlo
cardinal.

We also note a result of Solovay from [1974] that the existence of super-
compact cardinals implies the failure of Square (Exercise 27.3).
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The Jensen Hierarchy

One of the technical obstacles in the analysis how constructible sets arise in
the hierarchy Lα is that the sets Lα are not closed under the formation of
ordered pairs. This can be overcome by modifying the constructible hierarchy
in an inessential way. The resulting hierarchy Jα has become the preferred
tool for studying the fine structure of L and of more general inner models.

Definition 27.2 (Rudimentary Functions).

(i) F (x1, . . . , xn) = xi (i = 1, . . . , n),
F (x1, . . . , xn) = {xi, xj} (i, j = 1, . . . , n),
F (x1, . . . , xn) = xi − xj (i, j = 1, . . . , n)
are rudimentary.

(ii) If G is rudimentary, then so is

F (y, x1, . . . , xn−1) =
⋃

z∈y
g(z, x1, . . . , xn−1).

(iii) A composition of rudimentary functions is rudimentary.

The rudimentary closure of a set X is the smallest Y ⊃ X closed under all
rudimentary functions. If X is transitive then so is its rudimentary closure,
and for every transitive set M , let

(27.8) rud(M) = the rudimentary closure of M ∪ {M}.

It can be shown that for every transitive set M ,

(27.9) rud(M) ∩ P (M) = def(M)

(compare with Corollary 13.8).

Definition 27.3 (The Jensen Hierarchy).

(i) J0 = ∅, Jα+1 = rud(Jα),
(ii) Jα =

⋃
β<α Jβ if α is a limit ordinal.

Each Jα is transitive, the hierarchy is cumulative, and for each α,

Jα ⊂ Vωα and Jα ∩ Ord = ωα.

From (27.9) it follows that

Jα+1 ∩ P (Jα) = def(Jα).

The exact relationship between the Jα’s and the Lα’s is not important, but
we have

(27.10) Jα = Lα for all α such that α = ωα.
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Every Jα is closed under {x, y},
⋃

x, x×y, and if A is a Σ0 subset of Jα then
A ∩ x ∈ Jα for every x ∈ Jα. This has the effect that

〈Jξ : ξ < α〉

is uniformly Σ1 over Jα, and there is a well-ordering <J of L such that
its restriction to Jα is (uniformly) Σ1 over Jα. Also, there is a (uniform)
Σ1 function over Jα that maps ωα onto Jα. Similarly as for the Lα, every Jα

has a canonical Σ1 Skolem function hα (analogous to (27.1) and (27.2)).
The fine structure theory capitalizes on the fact that the existence of

a uniform Σ1 Skolem function relativizes to models (Jα, A) where A is a one-
place predicate as long as

(27.11) A ∩ u ∈ Jα for all u ∈ Jα;

such models (Jα, A) are called amenable. There is a Σ0 formula Φ of the
language (∈, A) such that for every α and every amenable model (Jα, A), the
(partial) function hα,A : ω × Jα → Jα defined by

(27.12) y = hα,A(n, x) ↔ (Jα,∈, A) � ∃z Φ(n, x, y, z)

is a Σ1 Skolem function for (Jα, A).

Projecta, Standard Codes and Standard Parameters

Definition 27.4. For n > 0, the Σn-projectum ρn
α of α is the smallest ordi-

nal ρ ≤ α such that there exists a Σn(Jα) function f such that f“Jρ = Jα;
for n = 0, let ρ0

α = α.

An argument similar to Exercise 27.1 is used to prove that ρn
α is the

smallest ρ such that there exists a Σn(Jα) subset of ωρ not in Jα.
The main feature of the fine structure is that a predicate definable over Jα

can be reduced to a Σ1 predicate over an amenable structure (Jρ, A) where
ρ is a projectum of α. For each α and each n > 0 there exists a set An

α ⊂ Jρn
α

that is Σn over Jα such that (Jρn
α
, An

α) is amenable, and such that

(27.13) Σ1(Jρn
α
, An

α) = P (Jρn
α
) ∩ Σn+1(Jα).

For n = 0, we let A0
α = ∅. The sets An

α are called standard codes.
If P is a Σn+1 predicate over Jα, let f be a Σn(Jα) function that maps Jρn

α

onto Jα. Then f−1(P ) is a Σn+1(Jα) subset of Jρn
α

and therefore, by (27.13),
Σ1 over the amenable model (Jρn

α
, An

α). This reduction is canonical, as both
the standard codes, and the Σn functions f : Jρn

α
→ Jα are canonical. Pre-

cisely, we define standard codes along with standard parameters pn
α, by in-

duction on n: p0
α = ∅ and

pn+1
α is the <J -least p ∈ Jρn

α
such that Jρn

α
is the Σ1-Skolem hull of

Jρn+1
α

∪ p in Jρn
α
;

(27.14)



550 Part III. Selected Topics

An+1
α = {(k, x) : (Jρn

α
, An

α) � ϕk(x, pn+1
α )}(27.15)

where ϕk, k ∈ ω, is a recursive enumeration of the Σ1 formulas.
Then a Σn(Jα) function from Jρn

α
onto Jα can be produced from the

canonical Σ1 Skolem functions and the standard parameters via (27.14).
The fundamental property of standard codes is the following Condensation
Lemma:

Lemma 27.5. Let (Jγ , A) be amenable and let

e : (Jγ , A) → (Jρn
α
, An

α)

be a Σ0-elementary embedding. There exists a unique ᾱ such that γ = ρn
ᾱ and

A = An
ᾱ. The embedding e extends to a unique Σn-elementary embedding

ē : Jᾱ → Jα

such that ē(pi
ᾱ) = pi

α for all i = 1, . . . , n. Moreover, if e is Σm-elementary
then ē is Σn+m-elementary. ��

A detailed account of the fine structure theory can be found in Jensen’s
paper [1972], or in Devlin’s book [1984].

Diamond Principles

Let κ be a regular uncountable cardinal and let E be a stationary subset of κ.
♦(E), or (more precisely) ♦κ(E), is the following principle (23.1):

(27.16) There exists a sequence of sets 〈Sα : α ∈ E〉 with Sα ⊂ α such that
for every X ⊂ κ, the set {α ∈ E : X ∩ α = Sα} is a stationary
subset of κ.

When E = κ, ♦κ(κ) is denoted by ♦κ. ♦κ is a generalization of ♦ from
Theorem 13.21, and can be proved under V = L by a similar argument
(Exercise 27.4).

Gregory’s Theorem 23.2 shows that under GCH, ♦κ+ holds for every suc-
cessor cardinal κ+, in fact proving ♦(Eκ+

λ ) whenever λ < cf κ. This was
extended by Shelah in [1979] by showing, under GCH, that ♦(Eκ+

λ ) holds
whenever λ �= cf κ, and if κ is singular, then GCH and �κ together im-
ply ♦(Eκ+

cf κ). See also Devlin [1984], Lemma IV.2.8. For κ = ℵ1, GCH yields
a weak version of ♦. In [1978], Devlin and Shelah formulate and prove, under
the assumption 2ℵ0 < 2ℵ1 the following statement:

(27.17) For every F : {0, 1}<ω1 → {0, 1} there exists a g ∈ {0, 1}ω1 such
that for every f ∈ {0, 1}ω1, the set {α < ω1 : F (f�α) = g(α)} is
stationary.

(27.17) is a consequence of ♦ and fails under MAℵ1 .
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Trees in L

Let κ be an infinite cardinal. Generalizing Definition 9.12, we have:

Definition 27.6. A κ+-Suslin tree is a tree of height κ+ such that every
branch and every antichain have cardinality at most κ.

The following result generalizes Theorem 15.26:

Theorem 27.7 (Jensen). If V = L then for every infinite cardinal κ there
exists a κ+-Suslin tree.

When κ is regular, the proof is a straightforward generalization of the
construction of a Suslin tree using ♦: instead we use ♦(Eκ+

κ ). We construct
a tree by induction on levels. At limit levels α of cofinality < κ we extend
all branches in Tα; since κ<κ = κ, the αth level has size κ. If cf α = κ then
we use Diamond to destroy potential antichains of size κ+. Note that since
all branches have been extended at lower cofinalities, every x ∈ Tα has an α-
branch in Tα going through x. The proof that the resulting tree is a κ+-Suslin
tree is exactly as in Theorem 15.26.

When κ is singular, this approach does not work as there are κ+-branches
in Tα when cf α = cf κ. By not extending all of them we cannot guarantee
that at a later stage β, Tβ has β-branches at all. Jensen’s proof succeeds by
involving not only ♦, but the �κ principle as well. The proof shows that if
�κ holds and if ♦κ+(E) for all E, then a κ+-Suslin tree exists. For a proof,
see Devlin [1984], Theorem IV.2.4.

Let us recall (Definition 9.24) that a tree of height ω1 is a Kurepa tree if
it has countable levels and at least ℵ2 uncountable branches.

Theorem 27.8 (Solovay). If V = L then there exists a Kurepa tree.

Proof. Assume V = L. We shall construct a family of subsets of ω1 that
satisfy (9.12).

For each α < ω1, there is a smallest elementary submodel M of (Lω1 ,∈)
such that α ∈ M . Moreover (see Exercise 13.17), M = Lγ for some γ < ω1,
and we denote γ by f(α):

(27.18) f(α) = the least γ such that α ∈ Lγ ≺ (Lω1 ,∈).

Let F be the following family of subsets of ω1:

(27.19) F = {X ⊂ ω1 : X ∩ α ∈ Lf(α) for every α < ω1}.

It is immediately clear that {X ∩ α : X ∈ F} is countable for each α < ω1;
and hence if we show that |F| = ℵ2, F will satisfy (9.12).
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Assume that |F| ≤ ℵ1. Then F has an enumeration

(27.20) C = 〈Xξ : ξ < ω1〉

and any such enumeration is in Lω2. If we let C be the <L-least such C
in Lω2, then since the function f is a definable element of Lω2 (by the def-
inition (27.18)) and the Xξ satisfy (27.19) in (Lω2 ,∈), it follows that C is
a definable element of (Lω2 ,∈).

Now, we construct an elementary chain of submodels of (Lω2 ,∈):

N0 ≺ N1 ≺ . . . ≺ Nν ≺ . . . ≺ (Lω2 ,∈) (ν < ω1)

as follows: N0 is the smallest elementary submodel of Lω2 ; Nν+1 is the small-
est N ≺ Lω2 such that Nν ⊂ N and Nν ∈ N ; if η is a limit ordinal, then
Nη =

⋃
ν<η Nν . Note that each Nν is countable, and ω1 ∩Nν = αν , for some

αν < ω1 (see Exercise 13.18). Moreover,

(27.21) 〈αν : ν < ω1〉

is a continuous increasing sequence of countable ordinals.
Now, we let X = {αν : αν /∈ Xν}. Obviously, X �= Xξ for all ξ < ω1, and

we shall show that X satisfies the condition in (27.19), which will contradict
the assumption that (27.20) is an enumeration of all elements of F .

We want to show that X ∩ α ∈ Lf(α) for all α < ω1. By induction on α,
if α is not a limit point of the sequence (27.21), then let αν be the largest
αν < α. Then either X ∩ α = X ∩ αν or X ∩ α = (X ∩ αν) ∪ {αν}; in either
case, since X ∩ αν ∈ Lf(αν) ⊂ Lf(α) (by the induction hypothesis), we have
X ∩ α ∈ Lf(α). Thus it suffices to show that X ∩ αη ∈ Lf(αη) whenever η is
a limit ordinal.

We shall show that

(i) 〈αν : ν < η〉 ∈ Lf(αη);
(ii) 〈Xξ ∩ αη : ξ < αη〉 ∈ Lf(αη).

(27.22)

Since Lf(αη) is a model of ZF−, the set X ∩ αη has the following definition
in Lf(αη):

X ∩ α = {αν : ν < η and αν /∈ Xν ∩ αη}.
For each ν < ω1, let πν be the transitive collapse of Nν . Each Nν is

isomorphic to some Lδ(ν), and since ω1 ∩ Nν = αν , we have πν(ω1) = αν .
Since C is a definable element of Lω2 , we have C ∈ Nν for all ν and one can
see that πν(C) = 〈Xξ ∩ αν : ξ < αν〉.

Note that αη is uncountable in Lδ(η), while it is countable in Lf(αη).
It follows that δ(η) < f(αη), and we have πη(C) ∈ Lδ(η) ⊂ Lf(αη), which
proves (27.22)(ii).

To prove (27.22)(i), let us construct, inside Lf(αη) (which is a model
of ZF−), an elementary chain N ′

ν , ν < η of submodels of (Lδ(η),∈): N ′
0 is the
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smallest elementary submodel of Lδ(η); N ′
ν+1 is the smallest N ≺ Lδ(η) such

that N ′
ν ∪ {N ′

ν} ⊂ N , etc. It is not difficult to show, by induction on ν < η,
that for each ν, N ′

ν is isomorphic to Nν . Then the transitive collapse of N ′
ν

is Lδ(ν), and so 〈Lδ(ν) : ν < η〉 ∈ Lf(αη). It follows that 〈αν : ν < η〉 ∈ Lf(αη),
proving (27.22)(i). ��

One consequence of the foregoing proof is that a Kurepa tree exists unless
ℵ2 is inaccessible in L (Exercise 27.5). This is complemented by the following
consistency result:

Theorem 27.9 (Silver [1971c]). If there exists an inaccessible cardinal
then there is a generic extension in which there are no Kurepa trees.

Proof. Let λ be an inaccessible cardinal. Let (P, <) be the Lévy collapse of λ
to ℵ2: forcing conditions are countable functions p on subsets of λ× ω1 such
that p(α, ξ) < α for every (α, ξ) ∈ dom(p) and p is stronger than q if p ⊃ q.

(P, <) is ℵ0-closed, and so V and V [G] have the same countable sequences
in V . Also, ℵV [G]

1 = ℵ1, and ℵV [G]
2 = λ.

Lemma 27.10. If P is an ℵ0-closed notion of forcing and T is an ω1-tree
in the ground model such that every level of T is countable, then T has no
new branches in V [G].

Proof. Assume that T has a branch b ∈ V [G] that is not in V ; since V [G] has
no new countable sets, b has length ω1. There is a name ḃ for b and a condition
p0 ∈ G such that p0 � ḃ �= ǎ for all a ∈ V . We construct, by induction,
conditions ps < p0 and nodes xs ∈ T for all finite sequences s of 0’s and 1’s.
Having constructed ps, we can find two incomparable nodes xs�0 and xs�1

both > xs, and two conditions ps�0 and ps�1, both stronger than ps such
that ps�0 � xs�0 ∈ ḃ and ps�1 � xs�1 ∈ ḃ. Moreover, we can find such xs�0

and xs�1 at the same level of T . Let α < ω1 be such that all xs lie below
level α in T . For each f : ω → {0, 1}, let pf be a condition stronger than all
pf�n, n ∈ ω. Since p0 � ḃ is uncountable, there exist q < pf and xf at the
αth level of T such that q � xf ∈ ḃ. Now it is clear that xf �= xg whenever f
and g are distinct 0–1 functions on ω. Thus the αth level of T has at least 2ℵ0

elements, contrary to our assumption. ��

It follows immediately from the lemma that in V [G], no tree T ∈ V whose
levels are countable can be a Kurepa tree: Since every branch of T in V [G] is
in V , T has at most (2ℵ1)V branches, but (2ℵ1)V < λ = ℵV [G]

2 , and so T has
(in V [G]) fewer than ℵ2 branches.

A similar argument can be used for any tree in V [G], with a slight modifi-
cation. For each α < λ, let Pα denote the set of all conditions whose domain
is a subset of α × ω1; similarly, let Pα = {p ∈ P : dom(p) ⊂ (κ − α) × ω1}.
Clearly, P is (isomorphic to) the product Pα×Pα. Let X ∈ V [G] be a subset
of ω1, and let Ẋ be a name of X ; since P satisfies the λ-chain condition, there
exists for each ξ < ω1 a set of conditions Wξ ⊂ P of size less than λ such
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that ‖ξ ∈ Ẋ‖ =
∑

{p : p ∈ Wξ}. There exists an α < λ such that Wξ ⊂ Pα,
for all ξ < ω1. It follows that X ∈ V [G ∩ Pα].

Now let T ∈ V [G] be an ω1-tree with countable levels. There exists an
α < λ such that T ∈ V [G∩Pα]. By the Product Lemma, G∩Pα is Pα-generic
over V [G∩Pα] and V [G] = V [G∩Pα][G∩Pα]. Since V [G∩Pα] and V have the
same countable sequences in V , it follows that Pα is ℵ0-closed not only in V ,
but also V [G ∩ Pα] � Pα is ℵ0-closed. Thus Lemma 27.10 applies and every
branch of T in V [G] is in V [G∩Pα]. However, (2ℵ1)V [G∩Pα] < λ = ℵV [G]

2 , and
so T is not a Kurepa tree in V [G]. This completes the proof. ��

Canonical Functions on ω1

For ordinal functions on ω1, let f < g if {ξ < ω1 : f(ξ) < g(ξ)} contains
a closed unbounded set. The rank of f in < is the Galvin-Hajnal norm ‖f‖;
cf. Definition 24.4. By induction on α, the αth canonical function fα is defined
(if it exists) as the <-least ordinal function greater than each fβ , β < α. If fα

exists then it is unique up to the equivalence =INS . Lemma 24.5 shows that
for every α < ω2 the αth canonical function exists; see also Exercise 27.6.

It is possible that the constant function ω1 is the ω2nd canonical function
(see Exercise 27.7) but this is known to have large cardinal consequences;
in particular, in L there is a function f : ω1 → ω1 such that ‖f‖ = ω2

(Exercise 27.8).
If canonical functions fα exist for all α, then the ideal INS is precipitous

(Exercise 27.10) and hence there is an inner model with a measurable cardi-
nal. Conversely, a combination of the method from Jech and Mitchell [1983]
with the proof of Theorem 23.10 yields the consistency, relative to a measur-
able cardinal, of canonical functions for all α.

The following result shows that in L, the ω2nd canonical function does
not exist.

Theorem 27.11 (Hajnal). If V = L then there is no ω2nd canonical func-
tion on ω1.

Proof. Assume V = L, and assume that there is an ω2nd canonical function.
This statement can be expressed in Lω2 :

(∃f : ω1 → ω1)∀η (fη < f) and

(∀ stationary S)(∀g <S f)(∃ stationary T ⊂ S)∃η g�T = fη�T .

Let γ be the least ordinal such that (Lγ ,∈) is elementarily equivalent to
(Lω2 ,∈). Let f be the ω2nd canonical function in (Lγ ,∈) and let δ = ω

Lγ

1 .
We shall find a ξ < δ such that (Lξ,∈) ≡ Lγ , reaching a contradiction.

Consider the generic ultrapower of Lγ by the nonstationary ideal (INS)Lγ

on δ = ω
Lγ

1 (using functions in Lγ). As f is the ω
Lγ

2 nd canonical function, the
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ultraproduct
∏

ξ<δ f(ξ)/G has order-type γ, and moreover, the ultraproduct
UltG =

∏
ξ<δ Lf(ξ)/G is isomorphic to Lγ . Thus if a sentence σ is true in

(Lγ ,∈) then it is forced to be true in UltG by every stationary S ⊂ δ in Lγ ,
and so if we let

Tσ = {ξ < δ : Lf(ξ) � σ},
then (since f ∈ Lγ) Tσ ∈ Lγ and

Lγ � Tσ contains a closed unbounded set.

If {σn : n ∈ ω} enumerates all sentences of ZF, then 〈Tσn : n < ω〉 ∈ Lγ , and

Lγ �
⋂
{Tσn : n ∈ ω and Tσn contains a closed unbounded set} �= ∅.

If ξ is an element of this intersection, then Lf(ξ) ≡ Lγ . ��

The existence of an ω2nd canonical function is not a large cardinal prop-
erty, as this consistency result shows:

Theorem 27.12 (Jech-Shelah). There is a generic extension of L in which
the ω2nd canonical function exists.

The model is obtained by first adding (by forcing with countable condi-
tions) an increasing sequence 〈fα : α ≤ ω2〉 of ordinal functions from ω1

into ω1. Then one uses an iterated forcing, with countable support of
length ω2, that successively destroys all stationary subsets of ω1 that wit-
ness that the sequence 〈fα : α ≤ ω2〉 is not canonical. For details, consult
Jech and Shelah [1989].

Exercises

27.1. Let α ≤ β be limit ordinals and assume that there exists a set Z ⊂ α
that is Σ1 over Lβ but Z /∈ Lβ . Then there exists a Σ1(Lβ) function g such that
g“α = Lβ.

[First show that there is a Σ1 function g : α → β unbounded in β. Let Z =
{ξ < α : (∃y ∈ Lβ)ϕ(ξ, y, p)} where ϕ is Σ0, and let g(ξ) be the least η such that
(∃y ∈ Lη)ϕ.]

27.2. If a Mahlo cardinal λ is Lévy collapsed to ℵ2 (by countable conditions) then
�ω1 fails in the extension.

27.3. If κ is supercompact then �λ fails for all λ ≥ κ.

27.4. If V = L then ♦κ(E) holds for every regular uncountable κ and every sta-
tionary E ⊂ κ.

27.5. If ℵ2 is not inaccessible in L then a Kurepa tree exists.
[There exists an A ⊂ ω1 such that ωL[A]

1 = ω1 and ωL[A]
2 = ω2; modify Theo-

rem 27.8 to construct a Kurepa tree in L[A].]
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27.6. If ω1 ≤ α < ω2, and if g is a one-to-one function of ω1 onto α, let f(ξ) = the
order-type of g“ξ. Show that f is the αth canonical function.

27.7. If INS is ℵ2-saturated then the constant function ω1 is the ℵ2nd canonical
function.

27.8. In L, find a function f : ω1 → ω1 of norm ω2.
[As in the proof of Theorem 27.8.]

27.9. If f : ω1 → Ord and S is stationary then ‖f‖S = α if S forces j(f)(ωV
1 ) = α

in P (ω1)/INS.

27.10. If a canonical fα exists for every α, then INS is precipitous.

Historical Notes

The fine structure theory was introduced by Jensen in [1972]. The paper gives,
among others, proofs of �κ and of the existence of κ+-Suslin trees in L. It also
formulates a combinatorial principle ♦+ that implies the existence of a Kurepa
tree (abstracting Solovay’s proof given here). Silver’s model with no Kurepa trees
appears in [1971c]. Theorem 27.11 is an unpublished result of András Hajnal
from 1976; the model in Theorem 27.11 is from Jech and Shelah [1989].

Exercises 27.2, 27.3: Solovay.
Exercise 27.4: Jensen.


