
28. More Applications of Forcing

In this chapter we present a selection of forcing constructions related to topics
discussed earlier in the book.

A Nonconstructible ∆1
3 Real

By Shoenfield’s Absoluteness Theorem, every Π1
2 or Σ1

2 real is constructible;
on the other hand 0� is a ∆1

3 real. We now present a model due to Jensen
that produces a nonconstructible ∆1

3 real by forcing over L.

Theorem 28.1 (Jensen). There is a generic extension L[a] of L such that
a is a ∆1

3 real.

The construction is a combination of perfect set forcing and arguments
using the ♦-principle. Let us consider perfect trees p ⊂ Seq({0, 1}), cf. (15.24).
The stem of a perfect tree p is the maximal s ∈ Seq({0, 1}) such that for every
t ∈ p, either t ⊂ s or s ⊂ t. If p is a perfect tree and if s ∈ p, we denote by p�s
the perfect tree {t ∈ p : t ⊂ s or t ⊃ s}.

Assume that P is a set of perfect trees, partially ordered by ⊂, such that
if p ∈ P and s ∈ p, then p�s ∈ P , and let G be an L-generic filter on P .
Then there is a unique f ∈ {0, 1}ω which is a branch in every p ∈ G; and
conversely, G = {p ∈ P : f is a branch in p}. Therefore L[G] = L[f ], and we
call f P -generic over L. Note that f ∈ {0, 1}ω is P -generic over L if and only
if for every constructible predense set X ⊂ P , f is a branch in some p ∈ X .

Similarly, a generic filter G on P × P corresponds to a unique pair (a, b)
such that for each (p, q) ∈ G, a is a branch in p and b is a branch in q. A pair
(a, b) is (P ×P )-generic over L if and only if for every constructible predense
set X ⊂ P × P , there exists a pair (p, q) ∈ X such that a is a branch in p
and b is a branch in q.

In Chapter 15 we used the Fusion Lemma for perfect trees. Let T =
{T (s) : s ∈ Seq({0, 1})} be a collection of perfect trees such that for every s,

(i) T (s) is a perfect tree whose stem has length ≥ length(s).
(ii) T (s�0) ⊂ T (s) and T (s�1) ⊂ T (s).
(iii) T (s�0) and T (s�1) have incompatible stems.

(28.1)
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If T satisfies (28.1), we say that T is fusionable and we let

(28.2) F(T ) =
∞⋂

n=0

⋃
s∈{0,1}n

T (s).

For each fusionable T , p = F(T ) (the fusion of T ) is a perfect tree; and for
each s, if t is the stem of ps = T (s), then p�t is stronger than both p and ps.

We shall not use the set of all perfect trees as the notion of forcing; rather
we shall construct a set P of perfect trees with the property that if p ∈ P and
s ∈ p, then p�s ∈ P . We shall construct P such that if a is P -generic over L,
then a is the only P -generic set in L[a], and such that {n ∈ N : a(n) = 1} is
(in L[a]) a ∆1

3 subset of N .
We shall construct P as the union of countable sets

P0 ⊂ P1 ⊂ . . . ⊂ Pα ⊂ . . . (α < ω1)

of perfect trees. The construction uses the ♦-principle. There is a ♦-sequence
〈Sα : α < ω1〉 that is ∆1 over Lω1 ; let us fix such a sequence. Also, let us fix
a ∆1 over Lω1 function τ that is a one-to-one mapping of Lω1 onto ω1.

We shall now construct the sequence P0 ⊂ P1 ⊂ . . . ⊂ Pα ⊂ . . .:

(28.3) P0 = the set of all p0�s where p0 is the full binary tree, p0 =
Seq({0, 1}), and s ∈ p0;

Pα =
⋃

β<α

Pβ if α is a limit ordinal.

Pα+1 = Pα∪Qα+1 where Qα+1 is a set of perfect trees defined as follows:

Let Pα = {pα
n : n ∈ ω}; and let us consider the <L-least such enumeration.

Let Xα and Yα be the following countable collections of subsets of Pα and
and Pα × Pα respectively:

Xα contains:
(i) all Qβ , β ≤ α,
(ii) all X ⊂ Pα such that τ“X = Sβ for some β ≤ α.

(28.4)

Yα contains:
(i) Qβ × Qβ for all β ≤ α;
(ii) all Y ⊂ Pα × Pα such that τ“Y = Sβ for some β ≤ α.

There exists a family {Tn : n ∈ ω} of fusionable collections of elements of Pα

such that:

(i) Tn(∅) = pα
n for all n;

(ii) for every X ∈ Xα, if X is predense in Pα, then for every n ∈ N
and every h ∈ N there is k ≥ h such that for each s ∈ {0, 1}k,
there exists an x ∈ X such that Tn(s) ≤ x;

(iii) for every Y ∈ Yα, if Y is predense in Pα ×Pα, then for every n,
every m, and every h there is a k ≥ h such that for each s ∈
{0, 1}k and each t ∈ {0, 1}k; if either n �= m or s �= t, then there
exists (x, y) ∈ Y such that (Tn(s), Tm(t)) ≤ (x, y).

(28.5)
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A family {Tn : n ∈ ω} with properties (28.5)(i)–(iii) is easily constructed
because Xα and Yα are countable. We denote {T α

n : n ∈ ω} the <L-least such
family, and let

(28.6) Qα+1 = {p�s : p = F(T α
n ) for some n, and s ∈ p}.

We let P =
⋃

α<ω1
Pα. The following sequence of lemmas will show that

if a ∈ {0, 1}ω is P -generic over L, then in L[a] the set {n : a(n) = 1} is ∆1
3.

Lemma 28.2. For each α, Qα+1 is dense in Pα+1, and Qα+1 × Qα+1 is
dense in Pα+1 × Pα+1.

Proof. It suffices to show that below each p ∈ Pα there is some q ∈ Qα+1. If
p ∈ Pα, the p = pα

n for some n, and F(Tn) ⊂ Tn(∅) = p. ��

Lemma 28.3. For each α, if X ∈ Xα is predense in Pα, then X is predense
in Pα+1; if Y ∈ Yα is predense in Pα×Pα, then Y is predense in Pα+1×Pα+1.
Consequently, if X ∈ Xα is predense in Pα (if Y ∈ Yα is predense in Pα×Pα),
then X is predense in P (Y is predense in P × P ).

Proof. Let X ∈ Xα be predense in Pα; we have to show that for each p�n ∈
Qα+1 there is a stronger q ∈ Qα+1 such that q ≤ x for some x ∈ X . Let
p = F(Tn) and let u ∈ p. Let h = length(u). There is k ≥ h such that n
and k satisfy (28.5)(ii). There is s ∈ {0, 1}k such that u ∈ Tn(s); let v be the
stem of Tn(s). Then p�v ≤ Tn(s) and Tn(s) ≤ x for some x ∈ X .

A similar argument, using (28.5)(iii), shows that if Y ∈ Yα is predense in
Pα × Pα, then Y is predense in Pα+1 × Pα+1.

Since the sequences Xα, α < ω1, and Yα, α < ω1, are increasing, it
follows by induction that X is predense in every Pβ , β < ω1, and hence in P .
Similarly for Y . ��

Lemma 28.4. P × P satisfies the countable chain condition (and hence
P also satisfies the countable chain condition).

Proof. Here we use ♦. Let us assume that Y ⊂ P × P is a maximal in-
compatible set of conditions in P × P and that Y is uncountable. Since
each Pα is countable, it is easy to see that the set of all α < ω1 such that
τ(Y ∩ (Pα ×Pα)) = τ(Y )∩ω1 is closed unbounded (τ is the one-to-one func-
tion of Lω1 onto ω1). Then it is not much more difficult to see that the set of
all α < ω1 such that Y ∩(Pα×Pα) is a maximal antichain in Pα×Pα, is closed
unbounded (compare this argument with the ♦-construction of a Suslin tree
in L).

By ♦, there exists an α such that Y ′ = Y ∩ (Pα × Pα) is predense in
Pα × Pα and that τ(Y ′) = Sα. Therefore Y ′ ∈ Yα and by Lemma 28.3, Y ′ is
predense in P × P . It follows that Y ′ = Y . Thus Y is countable. ��
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Lemma 28.5.

(i) If a ∈ {0, 1}ω, then a is P -generic over L if and only if for every
α < ω1 there is some n ∈ N such that a is a branch in F(T α

n ).
(ii) If a �= b ∈ {0, 1}ω, then (a, b) is (P × P )-generic over L if and only

if for every α < ω1 there exist n, m ∈ N such that a is a branch
in F(T α

n ) and b is a branch in F(T α
m).

Proof. (i) Let a be P -generic and let α < ω1. Since Qα+1 is dense in Pα+1

and because Qα+1 ∈ Xα+1, Qα+1 is predense in P . By the genericity of a,
there exists a q ∈ Qα+1 such that a is a branch in q. But q = p�s where
p = F(T α

n ) for some n and s ∈ p, and clearly a is a branch in p.
Conversely, let us assume that the condition is satisfied. Let X ⊂ P be

a maximal antichain; we wish to show that a is a branch in some x ∈ X . By
Lemma 28.4, X is countable, and there is an α such that X ∈ Xα. Let n ∈ N
be such that a is a branch in F(T α

n ).
By (28.5)(ii), there is k ∈ N such that each Tn(s), s ∈ {0, 1}k, is stronger

than some x ∈ X . Since a is a branch in F(Tn), it is clear that there is
a unique s ∈ {0, 1}k such that a is a branch in Tn(s). But if x ∈ X is such
that Tn(s) ⊂ x, then a is also a branch in x.

(ii) The proof that the condition is necessary is analogous to (i). Thus let
us assume that the condition is satisfied and let Y ⊂ P × P be a maximal
antichain; we want to find (x, y) ∈ Y such that a is a branch in x and b is
a branch in y. Again, there is α such that Y ∈ Yα. Let n and m ∈ N be such
that a is a branch in F(T α

n ) and that b is in F(T α
m).

Let h ∈ N be such that a�h �= b�h; by (28.5)(iii), there is some k ∈ N such
that for each s, t ∈ {0, 1}k, if either n �= m or s �= t, then (Tn(s), Tm(t)) ≤
(x, y) for some (x, y) ∈ Y . There is a unique pair s, t such that a is a branch
in x and b is a branch in y where (x, y) is some element of Y such that
(Tn(s), Tm(t)) ≤ (x, y). ��

Corollary 28.6. If a and b are P -generic over L and a �= b, then (a, b) is
(P × P )-generic over L. ��

Corollary 28.7. If a is P -generic over L, then L[a] � a is the only P -generic
over L.

Proof. If a �= b and if both a and b are P -generic over L, then by the Product
Lemma, b is a P -generic over L[a] and hence b /∈ L[a]. ��

Lemma 28.8. The set H = {a : a is P -generic over L} is Π1 over HC.

Proof. It follows from the construction of P that the function α �→ 〈T α
n :

n ∈ ω〉 is ∆1 over LωL
1
. Since LωL

1
is a Σ1 set over HC , the function is ∆1

over HC . By Lemma 28.5,

a ∈ H ↔ (∀α < ωL
1 )(∃n ∈ ω) a is a branch in F(T α

n )

and hence H is Π1 over HC . ��
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Corollary 28.9. If a is a P -generic over L and A = {n ∈ N : a(n) = 1},
then L[a] � A is a ∆1

3 subset of N .

Proof. We have in L[a]

n ∈ A ↔ (∃a ∈ N )(a ∈ H and a(n) = 1) ↔ (∀a ∈ N )(a ∈ H → a(n) = 1).

Since H is Π1 over HC , it is a Π1
2 subset of N . It follows that A is ∆1

3. ��

Namba Forcing

By Jensen’s Covering Theorem if λ is a regular cardinal in L and V is a generic
extension of L, then either cf λ = |λ| or λ < ℵ2. In other words, the only
nontrivial change of cofinality is to make |λ| = ℵ1 and cf λ = ω. The following
model, due to Namba, does exactly that:

Theorem 28.10 (Namba). Assume CH. There is a generic extension V [G]
such that ℵV [G]

1 = ℵ1 and cfV [G](ωV
2 ) = ω.

Proof. Let S be the set of all finite sequences of ordinals less than ω2, S =
ω<ω

2 . A tree is a set T ⊂ S such that if t ∈ T and s = t�n for some n, then
s ∈ T . A nonempty tree T ⊂ S is perfect if every t ∈ T has ℵ2 extensions
s ⊃ t in T . (Note that then every t ∈ T has ℵ2 incompatible extensions in T .)
In analogy with perfect sets in the Baire space, we have a Cantor-Bendixson
analysis of trees T ⊂ S: Let

T ′ = {t ∈ T : t has ℵ2 extensions in T}

and let T0 = T , Tα+1 = T ′
α, Tα =

⋂
β<α Tβ if α is limit. Let θ < ω3 be the

least θ such that T ′
θ = Tθ. Then Tθ is either empty or perfect.

If T has no perfect T̄ ⊂ T , then the above procedure leads to Tθ = ∅, and
we can associate with each t ∈ T an ordinal number

(28.7) hT (t) = the least α such that t /∈ Tα+1.

If s ⊂ t, then hT (s) ≥ hT (t), and for every t ∈ T ,

(28.8) |{s ∈ T : t ⊂ s and hT (s) = hT (t)}| < ℵ2.

Now let us describe the notion of forcing.
Let P be the set of all perfect trees T ⊂ S, partially ordered by inclusion.

We shall show that in the generic extension, ω2 has cofinality ω and ω1 is
preserved.

If G is a generic set of conditions, we define in V [G] a function f : ω → ωV
2

as follows:

f(n) = α ↔ ∀T ∈ G ∃s ∈ T such that s(n) = α.

An easy argument using genericity of G shows that f(n) is uniquely defined
for each n and that the function f maps ω cofinally into ωV

2 .
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We shall prove now that ω1 is preserved in the extension by showing
that every f : ω → {0, 1} in V [G] is in the ground model. Thus let T be
a condition, and let ḟ be a name such that

T � ḟ is a function from ω into {0, 1}.

We shall find a stronger condition that decides each ḟ(n); that is, we shall
find a function g : ω → {0, 1} such that some condition stronger than T
forces ḟ(n) = g(n), for all n.

We proceed as follows. By induction on length of s, we construct, for each
s ∈ S, conditions Ts and numbers αs ∈ {0, 1} such that:

(i) if s1 ⊂ s2, then Ts1 ⊃ Ts2 ,
(ii) if length(s) = n, then Ts � ḟ(n) = αs,
(iii) for every n, the conditions Ts, s ∈ ωn

2 , are mutually incompat-
ible, and moreover, there are mutually incompatible sequences
ts ∈ S, s ∈ ωn

2 , such that for each s ∈ ωn
2 , ts ∈ Ts and for all

t ∈ Ts, either t ⊂ ts or ts ⊂ t.

(28.9)

The “moreover” clause in (iii) is stronger than incompatibility of the condi-
tions and implies that any condition stronger than

⋃
s∈ωn

2
Ts is compatible

with some Ts, s ∈ ωn
2 .

The construction of conditions satisfying (28.9) is straightforward: We
let t∅ = ∅ and T∅ ⊂ T be any condition that decides ḟ(0): T∅ � ḟ(0) =
α∅. Having defined Ts, ts, and αs for s ∈ ωn

2 we first pick ℵ2 incompatible
extensions ts�i, i < ω2, of ts in Ts, and then find Ts�i ⊂ Ts and αs�i, i < ω2,
such that Ts�i � ḟ(n + 1) = αs�i and that each t ∈ Ts�i is compatible
with ts�i. Note that if s1 ⊂ s2, then ts1 ⊂ ts2 .

For any function g : ω → {0, 1}, we define a tree T (g) ⊂ S (not necessarily
a perfect tree) as follows: If β̄ = 〈β0, . . . , βn〉 is a finite sequence of zeros and
ones, we let

(28.10) T (β̄) =
⋃
{Ts : s ∈ ωn

2 and 〈β0, . . . , βn〉 = 〈α∅, . . . , αs�k, . . . , αs〉}

and

(28.11) T (g) =
∞⋂

n=1
T (g�n).

Each T (β̄) is a condition (a perfect tree) and by the remark following (28.9),
we have

T (β̄) � ḟ(k) = βk (k = 0, . . . , n).

Thus if we show that there is at least one g : ω → {0, 1} such that the
tree T (g) contains a perfect subtree, our proof will be complete.

Lemma 28.11. There exists some g : ω → {0, 1} such that T (g) contains
a perfect subtree.
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Proof. Let us assume that no T (g) has a perfect subtree. Then by (28.8)
there exists, for each g : ω → {0, 1}, a function hg : T (g) → ω3 such that
hg(s) ≥ hg(t) whenever s ⊂ t, and that for each t ∈ T (g), there are at most ℵ1

elements s ⊃ t in T (g) such that hg(s) = hg(t).
By induction, we construct a sequence s0 ⊂ s1 ⊂ . . . ⊂ sn ⊂ . . . such

that for all n, sn ∈ ωn
2 . At stage n we consider the node tsn of Tsn . Since

there are only ℵ1 functions g : ω → {0, 1}, there exists an i < ω2 such that
hg(ts �

n i) < hg(tsn) for all g for which hg(ts �
n i) is defined. We let sn+1 = s�

n i.
Given the sequence sn, n = 0, 1, . . . , we consider the function g(n) = αsn ,

n < ω. By (28.10) and (28.11), each tsn belongs to T (g), and so hg(tsn) is
defined for all n. However, then the sequence hg(ts0) > hg(ts1) > . . . of
ordinals is descending, a contradiction. ��

A Cohen Real Adds a Suslin Tree

We proved earlier that Suslin trees exist in L, and that adding generically
a subset of ω1 with countable conditions adds a Suslin tree. It turns out that
adding a Cohen real also adds a Suslin tree. This result is due to Shelah; the
following proof is due to Todorčević.

Theorem 28.12 (Shelah). If r is a Cohen real over V then in V [r] there
exists a Suslin tree.

Proof. We start with an alternative construction of an Aronszajn tree, a mod-
ification of the construction in Theorem 9.16.

Lemma 28.13. There exists an ω1-sequence of functions 〈eα : α < ω1〉 such
that

(i) eα is a one-to-one function from α into ω, for each α < ω1;
(ii) for all α < β < ω1, eα(ξ) = eβ(ξ) for all but finitely many

ξ < α.

(28.12)

Proof. Exercise 28.1 (or see Kunen [1980], Theorem II.5.9). ��

The set {eα�β : α, β ∈ ω1} ordered by inclusion is a tree. Since every
node at level α is a finite change of eα, all levels are countable; there are no
uncountable branches and so the tree is an Aronszajn tree (Exercise 28.2).

For any function r : ω → ω, consider the tree

(28.13) Tr = {r ◦ (eα�β) : α, β ∈ ω1};

again, Tr is an ω1-tree whose all levels are countable (but need not be Aron-
szajn in general). We prove Theorem 28.12 by showing that if 〈eα : α < ω1〉
is, in V , a sequence that satisfies (28.12) and if r is a Cohen real over V , then
in V [G], Tr is a Suslin tree.
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We show that Tr has no uncountable antichains; this, and an easy argu-
ment using genericity of r, also shows that Tr has no uncountable branches.
If Tr has an uncountable antichain then, because every uncountable subset
of ω1 in V [r] has an uncountable subset in V (Exercise 28.3), there exist in V ,
an uncountable set W ⊂ ω1 and a function 〈α(β) : β ∈ W 〉 such that

(28.14) {r ◦ (eα(β)�β) : β ∈ W}

is an antichain.
For each β ∈ W , let tβ = eα(β)�β, and let p be a Cohen forcing condition;

we shall find a stronger condition q and β1, β2 ∈ W that forces that ṙ◦tβ1 and
ṙ ◦ tβ2 are compatible functions; therefore no condition forces that (28.14) is
an antichain in Tr.

Let p = 〈p(0), . . . , p(n − 1)〉. For each β ∈ W , let Xβ be the finite set
{ξ < β : tβ(ξ) < n}. By the ∆-Lemma (Theorem 9.18) there exist a finite
set S ⊂ ω1 and an uncountable Z ⊂ W such that when β1, β2 ∈ Z, then
Xβ1 ∩ Xβ2 = S and that tβ1�S = tβ2�S.

Now let β1 < β2 be two elements of Z. We claim that there exists a con-
dition q ⊃ p such that q ◦ (tβ2�β1) = q ◦ tβ1 (q obliterates the disagreement).
Such a condition q forces ṙ ◦ tβ1 ⊂ ṙ ◦ tβ2 .

To construct q, let m be greater than tβi(ξ), i = 1, 2, for each ξ < β1

such that tβ1(ξ) �= tβ2(ξ). Let k be such that n ≤ k < m. If there exist
ξ, η < β1 such that tβ2(η) = k and tβ1(η) = tβ2(ξ), let l = tβ1(ξ) and let
q(k) = p(l). More generally, let f = t−1

β1
◦ tβ2 and let f i, i < ω, denote the

i-th iterate of f . If there exist ξ, η < β1 such that tβ2(η) = k and η = f i(ξ)
for some i, let l = tβ1(ξ) and let q(k) = p(l). Otherwise, let q(k) = 0. Verify
that q obliterates the disagreement. ��

Consistency of Borel’s Conjecture

A set X of real numbers has strong measure zero if for every sequence 〈εn :
n < ω〉 of positive real numbers there is a sequence 〈In : n < ω〉 of intervals
with length(In) ≤ εn such that X ⊂

⋃∞
n=0 In.

Borel’s Conjecture. All strong measure zero sets are countable.

Borel’s Conjecture fails under CH—see Exercise 26.18. The following the-
orem shows that it is consistent with ZFC:

Theorem 28.14 (Laver). Assuming GCH there is a generic extension V [G]
in which 2ℵ0 = ℵ2 and Borel’s Conjecture holds.

Laver’s proof uses the countable support iteration (of length ω2) of a forc-
ing notion that adds a Laver real. We shall now describe this forcing. (Subse-
quently, Laver proved that an iteration of Mathias forcing also yields Borel’s
Conjecture).
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Definition 28.15. A tree p ⊂ Seq is a Laver tree if it has a stem, i.e.,
a maximal node sp ∈ p such that sp ⊂ t or t ⊂ sp for all t ∈ p, and

(28.15) ∀t ∈ p if t ⊃ sp then the set Sp(t) = {a ∈ ω : t�a ∈ p} is infinite.

Laver forcing has as forcing conditions Laver trees, partially ordered by
inclusion. If G is a generic set of Laver trees, let

(28.16) f =
⋃
{sp : p ∈ G};

the function f : ω → ω is a Laver real. Since

G = {p : sp ⊂ f and ∀n ≥ |s| f(n) ∈ Sp(f�n)}

we have V [G] = V [f ].
Consider a canonical enumeration of Seq in which s appears before t if

s ⊂ t and s�a appears before s�(a + 1). If p is a Laver tree, then the part
of p above the stem is isomorphic to Seq and we have an enumeration sp

0 = sp,
sp
1, . . . , sp

n, . . . of {t ∈ p : t ⊃ sp}, for every Laver tree p. Let

(28.17) q ≤n p if q ≤ p and sp
i = sq

i for all i = 0, . . . , n

(in particular q ≤0 p means that q ≤ p and p and q have the same stem).
A fusion sequence is a sequence of Laver trees such that

p0 ≥0 p1 ≥1 p2 ≥2 . . . ≥n . . . .

Lemma 28.16. If {pn}∞n=0 is a fusion sequence then p =
⋂∞

n=0 pn is a Laver
tree (the fusion of {pn}∞n=0), and p ≤n pn for all n.

Proof. Let s0 bet the stem of p0. Then s0 is the stem of p, and the set
Sp(s0) =

⋂
n Spn(s0) is infinite. For every a ∈ Sp(s0), the set Sp(s�

0 a) =⋂
n Spn(s�

0 a) is infinite, and so on. ��

If p is a Laver tree and s ∈ p, then p�s is the Laver tree {t ∈ p : t ⊂ s or
t ⊃ s}. Let p be a Laver tree and let n ≥ 0. For each i ≤ n, let pi be the tree
with stem sp

i that is the union of all p�(sp
i
�a) where a ∈ Sp(sp

i ) and sp
i
�a is

not one of the sp
j , j ≤ n. The trees p0, . . . , pn (the n-components of p) form

a maximal set of incompatible subtrees of p.
Let q0, . . . , qn be the Laver trees such that qi ≤0 pi for all i = 0, . . . , n.

The amalgamation of {q0, . . . , qn} into p is the tree

(28.18) r = q0 ∪ . . . ∪ qn;

we have r ≤n p.

Lemma 28.17. If p � Ẋ : ω → V then there exists a q ≤0 p and a count-
able A such that q � Ẋ ⊂ A.
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Proof. Let {un}n be a sequence of natural numbers such that each number
appears infinitely often. We shall construct a fusion sequence {pn}n with
p0 = p, and finite sets An so that the fusion forces Ẋ ⊂

⋃
n An. At stage n,

let p0, . . . , pn be the n-components of the Laver tree pn. For each i = 0,
. . . , n if there exist a condition qi ≤0 pi and some ai

n such that

(28.19) qi � Ẋ(un) = ai
n

we choose such qi and ai
n (otherwise let qi = pi). Let An be the collection of

the ai
n, and let pn+1 be the amalgamation of {q0, . . . , qn} into pn. We have

pn+1 ≤n pn.
Let p∞ be the fusion of {pn}∞n=0 and let A =

⋃∞
n=0 An. We have p∞ ≤0 p;

to prove that p∞ � Ẋ ⊂ A, let q ≤ p∞ and let u ∈ ω. Let q̄ ≤ q and a be
such such that q̄ � Ẋ(n) = a. Let n be large enough so that u = un and that
the stem of q̄ is in the set {spn

0 , . . . , spn
n }, say s = spn

i .
Let pi be the ith n-component of pn. As q̄ ∩ pi ≤0 pi and decides Ẋ(un),

we have chosen ai
n = a at that stage, and therefore a ∈ A, and q̄ � Ẋ(u) ∈ A.

Hence p∞ � Ẋ ⊂ A. ��

Corollary 28.18. The Laver forcing preserves ℵ1. ��

The following property of the Laver forcing is reminiscent of Prikry and
Mathias forcings:

Lemma 28.19. Let p � ϕ1 ∨ . . . ∨ ϕk. Then there exists some q ≤0 p such
that

(28.20) ∃i ≤ k q � ϕi.

Proof. Assume to the contrary that the lemma fails. Let s be the stem of p;
there are only finitely many a ∈ Sp(s) such that some q ≤0 p�(s�a) satis-
fies (28.20). By removing the part of p above these finitely many nodes we
obtain p1 ≤0 p. For every s�a ∈ p1 there are only finitely many b ∈ Sp(s�a)
such that ∃q ≤0 p1�(s�a�b) with property (28.20). By removing all such b’s
(and the nodes above them) we get p2 ≤1 p1. Continuing in this way we
construct a fusion sequence p ≥0 p1 ≥1 p2 ≥2 . . . and r =

⋂∞
n=0 pn. If t ∈ r,

then there is no q ≤0 r�t with property (28.20). But then no q ≤ r forces
∃i ≤ k ϕi, a contradiction. ��

The main idea of Laver’s proof is the following property of the Laver forc-
ing. It shows that forcing with Laver trees kills uncountable strong measure
zero sets.

Lemma 28.20. Let G be a generic set for the Laver forcing. Every set of
reals in the ground model that has strong measure zero in V [G] is countable
in V [G].

We begin by proving two technical lemmas:
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Lemma 28.21. Let p be a Laver tree with stem s and let ẋ be a name for
a real in [0, 1]. Then there exist a condition q ≤0 p and a real u such that for
every ε > 0,

q�(s�a) � |ẋ − u| < ε

for all but finitely many a ∈ Sq(s).

Proof. Let {tn}n be an enumeration of {s�a : a ∈ Sp(s)}. For each n we
find, by Lemma 28.19, a condition qn ≤0 p�tn and an interval Jn = [m

n , m+1
n ]

such that qn � ẋ ∈ Jn. There is a sequence 〈kn : n < ω〉 so that the Jkn form
a decreasing sequence converging to a unique real u. Let q =

⋃∞
n=0 qkn . ��

Lemma 28.22. Let p be a condition with stem s and let 〈ẋn : n < ω〉 be
a sequence of names for reals. Then there exist a condition q ≤0 p and a set
of reals {ut : t ∈ q, t ⊃ s} such that for every ε > 0 and every t ∈ q, t ⊃ s,
for all but finitely many a ∈ Sq(t),

q�(t�a) � |ẋk − ut| < ε

where k = length(t) − length(s).

Proof. Using Lemma 28.21 we get p1 ≤0 p and us. For every immediate
successor t of s in p1, we get qt ≤0 p1�t and ut, and let p2 =

⋃
t qt. By

repeating this argument, we build a fusion sequence p ≥0 p1 ≥1 p2 ≥2 . . .,
and let q =

⋂∞
n=0 pn. ��

Proof of Lemma 28.20. Let f be the Laver real, and let

(28.21) εn = 1/f(n).

We shall show that if X ∈ V is uncountable, then for some n, the sequence
〈εk : k ≥ n〉 witness that X does not have strong measure zero.

Thus let X ∈ V be a subset of [0, 1] and let p be such that p � X has
strong measure zero. Let s be the stem of p of length n. Let 〈ẋk : k ≥ n〉
be a sequence of names of reals, and for each k ≥ n let İk be the interval of
length ε̇k centered at ẋk. Let us assume that p � X ⊂

⋃
k≥n İk. We shall find

a stronger condition that forces that X is countable.
Let q ≤0 p and {ut : t ∈ q, t ⊃ s} be a condition and a countable set of

reals obtained in Lemma 28.22. We will show that q � X ⊂ {ut}t.
Let v /∈ {ut : t ∈ q, t ⊃ s}; we shall find some r ≤ q such that r � v /∈ İk,

for all k ≥ n. We construct r by induction on the levels of q; at stage k ≥ n
we ensure that r � v /∈ İk.

We describe the construction for k = n; this can be repeated for all k ≥ n.
Let ε = |v−us|/2. For all but finitely many a ∈ Sq(s), q�(s�a) � |ẋn−us| <
ε. Since q�(s�a) � ε̇n = 1/ḟ(n) = 1/a, we have q�(s�a) � |ẋn − v| > ε̇n, or
v /∈ İn, for all but finitely many a. Thus we ensure r � v /∈ İn by removing
finitely many successors of s. ��
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Laver’s model for the consistency of Borel’s Conjecture is obtained by
iteration with countable support of length ω2. At each stage of the itera-
tion, one adds a Laver real by forcing with Laver trees. If the ground model
satisfies GCH, then the iteration preserves cardinals and cofinalities, makes
2ℵ0 = ℵ2, and the resulting model satisfies Borel’s Conjecture.

We state the relevant properties of Laver’s model without proof:

Firstly, for every countable set X of ordinals in V [G] there is a set Y ∈ V ,
countable in V , such that X ⊂ Y . This is the analog of Lemma 28.17 (see
Lemma 6(iii) of Laver [1976]) and implies that ℵ1 is preserved by the iteration.
In Chapter 31 we prove a more general result, showing that this property is
preserved by countable support iteration of proper forcing.

Secondly, the iteration satisfies the ℵ2-chain condition (Lemma 10(ii) of
Laver [1976]). This can be proved as in Exercise 16.20, or Lemma 23.11,
by first showing that for every α < ω2, the Laver iteration of length α has
a dense subset of cardinality ℵ1. Again, this is a general property of countable
support iteration of proper forcing, when at each stage, the βth iterate Q̇β

has cardinality ℵ1.
The key property of Laver’s iteration is that there are no uncountable

strong measure zero sets in V [G]. If X is a set of reals of size ℵ1 in V [G],
then because of the ℵ2-chain condition, X appears at some stage V [Gα],
and by forcing a Laver real, one makes X not to have strong measure zero
in V [Gα+1]. However, one has to show that X fails to have strong mea-
sure zero in V [G], not just in V [Gα+1]. The main technical lemma (Laver’s
Lemma 15) proves that, and is analogous to Lemma 28.20, working with
iteration of Laver forcing rather than with Laver trees only.

In his paper [1983] Baumgartner gives the consistency proof of Borel’s
Conjecture using the countable support iteration of Mathias forcing. His
Theorem 7.1 shows that the iteration of either Laver or Mathias forcing pre-
serves ℵ1, and if CH holds in the ground model then iteration of length ω2

satisfies the ℵ2-chain condition. He also gives a detailed proof of Borel’s Con-
jecture in the iteration of Mathias forcing.

κ+-Aronszajn Trees

Theorem 9.16 states that there exists an Aronszajn tree, i.e., a tree of
length ω1 with countable levels and no branch of length ω1. In Chapter 9 we
also defined what it means for an infinite cardinal κ to have the tree property:
Every tree of height κ and levels of size < κ has a branch of length κ. When
κ is inaccessible then the tree property is equivalent to weak compactness.

Let κ+ be a successor cardinal. A tree of height κ+ is a κ+-Aronszajn
tree if its levels have size at most κ and it has no branch of length κ+. When
κ is singular, the tree property of κ+ is related to large cardinals; we shall
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now address the case when κ is regular. We discuss the case of ℵ2 as it easily
generalizes to any successor of a regular. The construction in Theorem 9.16
generalizes to ℵ2 under the assumption that 2ℵ0 = ℵ1 (see Exercises 28.5
and 28.6). It follows that an ℵ2-Aronszajn tree exists unless there is a weakly
compact cardinal in L:

Theorem 28.23 (Silver). If there exists no ℵ2-Aronszajn tree then ℵ2 is
a weakly compact cardinal in L.

Proof. If ℵ2 is a successor cardinal in L, then there exists some A ⊂ ω1 such
that ℵL[A]

1 = ℵ1 and ℵL[A]
2 = ℵ2. In L[A], 2ℵ0 = ℵ1 holds and therefore there

exists a special ℵ2-Aronszajn tree T . But then T is a special ℵ2-Aronszajn
tree in V . Thus if there are no ℵ2-Aronszajn trees, ℵ2 is inaccessible in L.

To show that λ = ℵ2 is weakly compact in L if λ has the tree property,
let B ∈ L be (in L) a λ-complete algebra of subsets of λ and |B| = λ. We
shall find a λ-complete nonprincipal ultrafilter U on B with U ∈ L. (Then,
by the argument in Lemma 10.18, it follows that λ is weakly compact in L.)

Let α < (λ+)L be a limit ordinal such that B ∈ Lα and Lα � |B| = λ.
Let {Xξ : ξ < λ} be an enumeration, in L, of P (λ)∩Lα, and let T be the set
of all constructible functions f ∈ {0, 1}<λ such that∣∣⋂{Xξ : f(ξ) = 1} ∩

⋂
{λ − Xξ : f(ξ) = 0}

∣∣ = λ.

Since λ is inaccessible in L, T is a λ-tree with levels of size < λ.
Since λ has the tree property, T has a branch of length λ, a function

F : λ → {0, 1} such that F �ν ∈ T for all ν < λ. If we let D = {Xξ : F (ξ) = 1}
then D is (in V ) a λ-complete nonprincipal ultrafilter on P (λ) ∩ Lα. Let
Ult = UltD Lα be the ultrapower of Lα by D (using functions in Lα), let Lβ

be its transitive collapse and let j : Lα → Lβ be the corresponding elementary
embedding.

If e ∈ Lα is an enumeration of B, e : λ → B, then E = j(e) ∈ Lβ and
U = {e(ξ) : λ ∈ E(ξ)} is a constructible λ-complete nonprincipal ultrafilter
on B. ��

The following theorem shows that it is consistent (relative to a weakly
compact cardinal) that there exist no ℵ2-Aronszajn trees.

Theorem 28.24 (Mitchell). If κ is a weakly compact cardinal then there
is a generic extension in which κ = ℵ2, 2ℵ0 = ℵ2, and there exists no ℵ2-
Aronszajn tree.

The model is obtained by a two-stage iteration P ∗ Q̇. The forcing P = Pκ

adds κ Cohen reals to the ground model; let G = Gκ be generic on P ; for each
α < κ, let Pα be the forcing for adding α Cohen reals, and let Gα = G∩Pα.

In V [G], consider the forcing conditions q for adding κ Cohen subsets
of ω1: q is a 0–1 function on a countable subset of κ. Let Q be the set of all
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such q that satisfy, in addition, the requirement that

q�α ∈ V [Gα] (all α < κ).

This amounts to forcing with pairs (p, q) where p ∈ P and q is a countable
function on a subset of κ with values q(α) ∈ B(Pα) (then if G is generic on P ,
we have q̄ ∈ Q where q̄(α) = 1 if q(α) ∈ G and q̄(α) = 0 if q(α) /∈ G).

We list some properties of P ∗ Q̇ which are not difficult to verify. Let G
be generic on P and let H be V [G]-generic on Q.

First, every countable set of ordinals in V [G][H ] is in V [G]. Hence ℵ1 is
preserved.

Second, every cardinal between ℵ1 and κ is collapsed: If ℵ1 ≤ δ < κ, let
t be the following function on ω1:

t(α) = {n ∈ ω : ∃f ∈ H f(δ + ω · α + n) = 1}.

The function maps ω1 onto P (ω)V [Gδ+ω1 ] which has cardinality δ.
Third, P ∗ Q̇ satisfies the κ-chain condition. This is proved similarly to

the κ-chain condition of the Lévy collapse.
Finally, it is clear that 2ℵ0 = κ in V [G][H ]. The main technical lemma

(Lemma 3.8 of Mitchell [1972/73]) asserts the following: For α < κ let Qα =
{q ∈ Q : dom(q) ⊂ α}, and Hα = H ∩ Qα. If γ < κ is a regular uncountable
cardinal and if t ∈ V [G][H ] is an ordinal function on γ such that t�α ∈
V [Gγ ][Hγ ] for all α < γ, then t ∈ V [Gγ ][Hγ ].

Now one shows that κ has the tree property in V [G][H ] as follows: Let
B = B(P ∗ Q̇) and let Ṫ be a B-name for a binary relation on κ that is
in V [G][H ] a tree of height κ with levels of size < κ. There is a closed
unbounded set C ⊂ κ such that if γ ∈ C is an inaccessible cardinal then
Bγ = B(Pγ ∗ Q̇γ) is a complete Boolean subalgebra of B(P ∗ Q̇) and that
Ṫ ∩ (γ × γ) is a Bγ-valued name for Ṫ �γ, the first γ levels of Ṫ .

To show that Ṫ has a branch of length κ, assume that it has none; that this
is so in V B is a Π1

1 sentence true in (κ, B, Ṫ ) and since κ is Π1
1-indescribable,

the same is true in V Bγ : Ṫ �γ has no branch of length γ in V Bγ . But any
node in the γth level of T produces an ordinal function on γ whose initial
segments are in V Bγ ; by the technical lemma alluded to above, the function
itself is in V Bγ , and is a branch in Ṫ �γ. A contradiction. ��

A related result is the following theorem that we state without proof:

Theorem 28.25 (Laver-Shelah). If there exists a weakly compact cardinal
then there exists a generic extension in which 2ℵ0 = ℵ1 and there exists no
ℵ2-Suslin tree. ��

(In the Laver-Shelah model, 2ℵ1 is greater than ℵ2.)
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Exercises

28.1. Find 〈eα : α < ω1〉 such that each eα : α → ω is one-to-one and if α < β
then eα and eβ�α differ at only finitely many places.

[Construct the eα by induction on α, such that for every α, ω − ran(eα) is
infinite.]

28.2. Given 〈eα : α < ω1〉 as in Exercise 28.1, show that the set 〈eα�β : α, β ∈ ω1〉
is an Aronszajn tree.

28.3. If r is a Cohen real over V , then for every uncountable X ⊂ ω1 in V [r] there
exists an uncountable Y ⊂ X in V .

[The notion of forcing is countable.]

28.4. A Laver real eventually dominates every g : ω → ω in V .

28.5. If 2ℵ0 = ℵ1, then there exists an ℵ2-Aronszajn tree.
[Imitate the proof of Theorem 9.16. Let Q be the lexicographically ordered

set ω<ω
1 ; every α < ω2 embeds in any interval of Q. Construct T using bounded

increasing sequences in Q of length < ω2. At limit steps of cofinality ω extend all
branches that represent bounded sequences in Q; here we use 2ℵ0 = ℵ1.]

28.6. The tree constructed in Exercise 28.5 is special, i.e., the union of ℵ1 an-
tichains.

[Compare with Exercises 9.8 and 9.9.]

Historical Notes

The construction of a nonconstructible ∆1
3 real in Theorem 28.1 is as in Jensen

[1970]. Namba’s forcing appeared in Namba [1971]; in [1976] Bukovský obtains the
same result by a somewhat different forcing construction. The result that adding
a Cohen real adds a Suslin tree is due to Shelah [1984]; the present proof is due to
Todorčević [1987] (for details see Bagaria [1994]).

The consistency of Borel’s Conjecture is due to Laver [1976].
For the construction of a κ+-Aronszajn tree if 2<κ = κ, see Specker [1949]. The

consistency proof of the tree property for ℵ2, as well as the proof of Silver’s Theo-
rem 28.23 appeared in Mitchell [1972/73]. Theorem 28.25 is in Laver-Shelah [1981].


