28. More Applications of Forcing

In this chapter we present a selection of forcing constructions related to topics discussed earlier in the book.

A Nonconstructible Δ_{3}^{1} Real

By Shoenfield's Absoluteness Theorem, every Π_{2}^{1} or Σ_{2}^{1} real is constructible; on the other hand 0^{\sharp} is a Δ_{3}^{1} real. We now present a model due to Jensen that produces a nonconstructible Δ_{3}^{1} real by forcing over L.

Theorem 28.1 (Jensen). There is a generic extension $L[a]$ of L such that a is a Δ_{3}^{1} real.

The construction is a combination of perfect set forcing and arguments using the \diamond-principle. Let us consider perfect trees $p \subset S e q(\{0,1\})$, cf. (15.24). The stem of a perfect tree p is the maximal $s \in \operatorname{Seq}(\{0,1\})$ such that for every $t \in p$, either $t \subset s$ or $s \subset t$. If p is a perfect tree and if $s \in p$, we denote by $p \upharpoonright s$ the perfect tree $\{t \in p: t \subset s$ or $t \supset s\}$.

Assume that P is a set of perfect trees, partially ordered by \subset, such that if $p \in P$ and $s \in p$, then $p \upharpoonright s \in P$, and let G be an L-generic filter on P. Then there is a unique $f \in\{0,1\}^{\omega}$ which is a branch in every $p \in G$; and conversely, $G=\{p \in P: f$ is a branch in $p\}$. Therefore $L[G]=L[f]$, and we call $f P$-generic over L. Note that $f \in\{0,1\}^{\omega}$ is P-generic over L if and only if for every constructible predense set $X \subset P, f$ is a branch in some $p \in X$.

Similarly, a generic filter G on $P \times P$ corresponds to a unique pair (a, b) such that for each $(p, q) \in G, a$ is a branch in p and b is a branch in q. A pair (a, b) is $(P \times P)$-generic over L if and only if for every constructible predense set $X \subset P \times P$, there exists a pair $(p, q) \in X$ such that a is a branch in p and b is a branch in q.

In Chapter 15 we used the Fusion Lemma for perfect trees. Let $T=$ $\{T(s): s \in \operatorname{Seq}(\{0,1\})\}$ be a collection of perfect trees such that for every s,
(28.1) (i) $T(s)$ is a perfect tree whose stem has length \geq length (s).
(ii) $T\left(s^{\frown} 0\right) \subset T(s)$ and $T(s \frown 1) \subset T(s)$.
(iii) $T\left(s^{\frown}\right)$ and $T\left(s^{\frown} 1\right)$ have incompatible stems.

If T satisfies (28.1), we say that T is fusionable and we let

$$
\begin{equation*}
\mathcal{F}(T)=\bigcap_{n=0}^{\infty} \bigcup_{s \in\{0,1\}^{n}} T(s) \tag{28.2}
\end{equation*}
$$

For each fusionable $T, p=\mathcal{F}(T)$ (the fusion of T) is a perfect tree; and for each s, if t is the stem of $p_{s}=T(s)$, then $p \upharpoonright t$ is stronger than both p and p_{s}.

We shall not use the set of all perfect trees as the notion of forcing; rather we shall construct a set P of perfect trees with the property that if $p \in P$ and $s \in p$, then $p \upharpoonright s \in P$. We shall construct P such that if a is P-generic over L, then a is the only P-generic set in $L[a]$, and such that $\{n \in \boldsymbol{N}: a(n)=1\}$ is (in $L[a]$) a Δ_{3}^{1} subset of \boldsymbol{N}.

We shall construct P as the union of countable sets

$$
P_{0} \subset P_{1} \subset \ldots \subset P_{\alpha} \subset \ldots \quad\left(\alpha<\omega_{1}\right)
$$

of perfect trees. The construction uses the \diamond-principle. There is a \diamond-sequence $\left\langle S_{\alpha}: \alpha<\omega_{1}\right\rangle$ that is Δ_{1} over $L_{\omega_{1}}$; let us fix such a sequence. Also, let us fix a Δ_{1} over $L_{\omega_{1}}$ function τ that is a one-to-one mapping of $L_{\omega_{1}}$ onto ω_{1}.

We shall now construct the sequence $P_{0} \subset P_{1} \subset \ldots \subset P_{\alpha} \subset \ldots$:
(28.3) $\quad P_{0}=$ the set of all $p_{0} \upharpoonright s$ where p_{0} is the full binary tree, $p_{0}=$ $\operatorname{Seq}(\{0,1\})$, and $s \in p_{0}$;
$P_{\alpha}=\bigcup_{\beta<\alpha} P_{\beta}$ if α is a limit ordinal.
$P_{\alpha+1}=P_{\alpha} \cup Q_{\alpha+1}$ where $Q_{\alpha+1}$ is a set of perfect trees defined as follows:
Let $P_{\alpha}=\left\{p_{n}^{\alpha}: n \in \omega\right\}$; and let us consider the $<_{L}$-least such enumeration. Let \mathcal{X}_{α} and \mathcal{Y}_{α} be the following countable collections of subsets of P_{α} and and $P_{\alpha} \times P_{\alpha}$ respectively:
\mathcal{X}_{α} contains:
(i) all $Q_{\beta}, \beta \leq \alpha$,
(ii) all $X \subset P_{\alpha}$ such that τ " $X=S_{\beta}$ for some $\beta \leq \alpha$.
\mathcal{Y}_{α} contains:
(i) $Q_{\beta} \times Q_{\beta}$ for all $\beta \leq \alpha$;
(ii) all $Y \subset P_{\alpha} \times P_{\alpha}$ such that $\tau " Y=S_{\beta}$ for some $\beta \leq \alpha$.

There exists a family $\left\{T_{n}: n \in \omega\right\}$ of fusionable collections of elements of P_{α} such that:
(28.5) (i) $T_{n}(\emptyset)=p_{n}^{\alpha}$ for all n;
(ii) for every $X \in \mathcal{X}_{\alpha}$, if X is predense in P_{α}, then for every $n \in \boldsymbol{N}$ and every $h \in \boldsymbol{N}$ there is $k \geq h$ such that for each $s \in\{0,1\}^{k}$, there exists an $x \in X$ such that $T_{n}(s) \leq x$;
(iii) for every $Y \in \mathcal{Y}_{\alpha}$, if Y is predense in $P_{\alpha} \times P_{\alpha}$, then for every n, every m, and every h there is a $k \geq h$ such that for each $s \in$ $\{0,1\}^{k}$ and each $t \in\{0,1\}^{k}$; if either $n \neq m$ or $s \neq t$, then there exists $(x, y) \in Y$ such that $\left(T_{n}(s), T_{m}(t)\right) \leq(x, y)$.

A family $\left\{T_{n}: n \in \omega\right\}$ with properties (28.5)(i)-(iii) is easily constructed because \mathcal{X}_{α} and \mathcal{Y}_{α} are countable. We denote $\left\{T_{n}^{\alpha}: n \in \omega\right\}$ the $<_{L}$-least such family, and let

$$
\begin{equation*}
Q_{\alpha+1}=\left\{p \upharpoonright s: p=\mathcal{F}\left(T_{n}^{\alpha}\right) \text { for some } n, \text { and } s \in p\right\} . \tag{28.6}
\end{equation*}
$$

We let $P=\bigcup_{\alpha<\omega_{1}} P_{\alpha}$. The following sequence of lemmas will show that if $a \in\{0,1\}^{\omega}$ is P-generic over L, then in $L[a]$ the set $\{n: a(n)=1\}$ is Δ_{3}^{1}.

Lemma 28.2. For each $\alpha, Q_{\alpha+1}$ is dense in $P_{\alpha+1}$, and $Q_{\alpha+1} \times Q_{\alpha+1}$ is dense in $P_{\alpha+1} \times P_{\alpha+1}$.

Proof. It suffices to show that below each $p \in P_{\alpha}$ there is some $q \in Q_{\alpha+1}$. If $p \in P_{\alpha}$, the $p=p_{n}^{\alpha}$ for some n, and $\mathcal{F}\left(T_{n}\right) \subset T_{n}(\emptyset)=p$.

Lemma 28.3. For each α, if $X \in \mathcal{X}_{\alpha}$ is predense in P_{α}, then X is predense in $P_{\alpha+1}$; if $Y \in \mathcal{Y}_{\alpha}$ is predense in $P_{\alpha} \times P_{\alpha}$, then Y is predense in $P_{\alpha+1} \times P_{\alpha+1}$. Consequently, if $X \in \mathcal{X}_{\alpha}$ is predense in $P_{\alpha}\left(\right.$ if $Y \in \mathcal{Y}_{\alpha}$ is predense in $\left.P_{\alpha} \times P_{\alpha}\right)$, then X is predense in $P(Y$ is predense in $P \times P)$.

Proof. Let $X \in \mathcal{X}_{\alpha}$ be predense in P_{α}; we have to show that for each $p \upharpoonright n \in$ $Q_{\alpha+1}$ there is a stronger $q \in Q_{\alpha+1}$ such that $q \leq x$ for some $x \in X$. Let $p=\mathcal{F}\left(T_{n}\right)$ and let $u \in p$. Let $h=\operatorname{length}(u)$. There is $k \geq h$ such that n and k satisfy (28.5)(ii). There is $s \in\{0,1\}^{k}$ such that $u \in T_{n}(s)$; let v be the stem of $T_{n}(s)$. Then $p \upharpoonright v \leq T_{n}(s)$ and $T_{n}(s) \leq x$ for some $x \in X$.

A similar argument, using (28.5)(iii), shows that if $Y \in \mathcal{Y}_{\alpha}$ is predense in $P_{\alpha} \times P_{\alpha}$, then Y is predense in $P_{\alpha+1} \times P_{\alpha+1}$.

Since the sequences $\mathcal{X}_{\alpha}, \alpha<\omega_{1}$, and $\mathcal{Y}_{\alpha}, \alpha<\omega_{1}$, are increasing, it follows by induction that X is predense in every $P_{\beta}, \beta<\omega_{1}$, and hence in P. Similarly for Y.

Lemma 28.4. $P \times P$ satisfies the countable chain condition (and hence P also satisfies the countable chain condition).

Proof. Here we use \diamond. Let us assume that $Y \subset P \times P$ is a maximal incompatible set of conditions in $P \times P$ and that Y is uncountable. Since each P_{α} is countable, it is easy to see that the set of all $\alpha<\omega_{1}$ such that $\tau\left(Y \cap\left(P_{\alpha} \times P_{\alpha}\right)\right)=\tau(Y) \cap \omega_{1}$ is closed unbounded (τ is the one-to-one function of $L_{\omega_{1}}$ onto $\left.\omega_{1}\right)$. Then it is not much more difficult to see that the set of all $\alpha<\omega_{1}$ such that $Y \cap\left(P_{\alpha} \times P_{\alpha}\right)$ is a maximal antichain in $P_{\alpha} \times P_{\alpha}$, is closed unbounded (compare this argument with the \diamond-construction of a Suslin tree in L).

By \diamond, there exists an α such that $Y^{\prime}=Y \cap\left(P_{\alpha} \times P_{\alpha}\right)$ is predense in $P_{\alpha} \times P_{\alpha}$ and that $\tau\left(Y^{\prime}\right)=S_{\alpha}$. Therefore $Y^{\prime} \in \mathcal{Y}_{\alpha}$ and by Lemma 28.3, Y^{\prime} is predense in $P \times P$. It follows that $Y^{\prime}=Y$. Thus Y is countable.

Lemma 28.5.

(i) If $a \in\{0,1\}^{\omega}$, then a is P-generic over L if and only if for every $\alpha<\omega_{1}$ there is some $n \in \boldsymbol{N}$ such that a is a branch in $\mathcal{F}\left(T_{n}^{\alpha}\right)$.
(ii) If $a \neq b \in\{0,1\}^{\omega}$, then (a, b) is $(P \times P)$-generic over L if and only if for every $\alpha<\omega_{1}$ there exist $n, m \in \boldsymbol{N}$ such that a is a branch in $\mathcal{F}\left(T_{n}^{\alpha}\right)$ and b is a branch in $\mathcal{F}\left(T_{m}^{\alpha}\right)$.

Proof. (i) Let a be P-generic and let $\alpha<\omega_{1}$. Since $Q_{\alpha+1}$ is dense in $P_{\alpha+1}$ and because $Q_{\alpha+1} \in \mathcal{X}_{\alpha+1}, Q_{\alpha+1}$ is predense in P. By the genericity of a, there exists a $q \in Q_{\alpha+1}$ such that a is a branch in q. But $q=p \upharpoonright s$ where $p=\mathcal{F}\left(T_{n}^{\alpha}\right)$ for some n and $s \in p$, and clearly a is a branch in p.

Conversely, let us assume that the condition is satisfied. Let $X \subset P$ be a maximal antichain; we wish to show that a is a branch in some $x \in X$. By Lemma 28.4, X is countable, and there is an α such that $X \in \mathcal{X}_{\alpha}$. Let $n \in \boldsymbol{N}$ be such that a is a branch in $\mathcal{F}\left(T_{n}^{\alpha}\right)$.

By (28.5)(ii), there is $k \in \boldsymbol{N}$ such that each $T_{n}(s), s \in\{0,1\}^{k}$, is stronger than some $x \in X$. Since a is a branch in $\mathcal{F}\left(T_{n}\right)$, it is clear that there is a unique $s \in\{0,1\}^{k}$ such that a is a branch in $T_{n}(s)$. But if $x \in X$ is such that $T_{n}(s) \subset x$, then a is also a branch in x.
(ii) The proof that the condition is necessary is analogous to (i). Thus let us assume that the condition is satisfied and let $Y \subset P \times P$ be a maximal antichain; we want to find $(x, y) \in Y$ such that a is a branch in x and b is a branch in y. Again, there is α such that $Y \in \mathcal{Y}_{\alpha}$. Let n and $m \in \boldsymbol{N}$ be such that a is a branch in $\mathcal{F}\left(T_{n}^{\alpha}\right)$ and that b is in $\mathcal{F}\left(T_{m}^{\alpha}\right)$.

Let $h \in \boldsymbol{N}$ be such that $a \upharpoonright h \neq b \upharpoonright h$; by (28.5)(iii), there is some $k \in \boldsymbol{N}$ such that for each $s, t \in\{0,1\}^{k}$, if either $n \neq m$ or $s \neq t$, then $\left(T_{n}(s), T_{m}(t)\right) \leq$ (x, y) for some $(x, y) \in Y$. There is a unique pair s, t such that a is a branch in x and b is a branch in y where (x, y) is some element of Y such that $\left(T_{n}(s), T_{m}(t)\right) \leq(x, y)$.
Corollary 28.6. If a and b are P-generic over L and $a \neq b$, then (a, b) is $(P \times P)$-generic over L.

Corollary 28.7. If a is P-generic over L, then $L[a] \vDash a$ is the only P-generic over L.

Proof. If $a \neq b$ and if both a and b are P-generic over L, then by the Product Lemma, b is a P-generic over $L[a]$ and hence $b \notin L[a]$.
Lemma 28.8. The set $H=\{a: a$ is P-generic over $L\}$ is Π_{1} over $H C$.
Proof. It follows from the construction of P that the function $\alpha \mapsto\left\langle T_{n}^{\alpha}\right.$: $n \in \omega\rangle$ is Δ_{1} over $L_{\omega_{1}^{L}}$. Since $L_{\omega_{1}^{L}}$ is a Σ_{1} set over $H C$, the function is Δ_{1} over HC. By Lemma 28.5,

$$
a \in H \leftrightarrow\left(\forall \alpha<\omega_{1}^{L}\right)(\exists n \in \omega) a \text { is a branch in } \mathcal{F}\left(T_{n}^{\alpha}\right)
$$

and hence H is Π_{1} over $H C$.

Corollary 28.9. If a is a P-generic over L and $A=\{n \in \boldsymbol{N}: a(n)=1\}$, then $L[a] \vDash A$ is a Δ_{3}^{1} subset of \boldsymbol{N}.

Proof. We have in $L[a]$

$$
n \in A \leftrightarrow(\exists a \in \mathcal{N})(a \in H \text { and } a(n)=1) \leftrightarrow(\forall a \in \mathcal{N})(a \in H \rightarrow a(n)=1) .
$$

Since H is Π_{1} over $H C$, it is a Π_{2}^{1} subset of \mathcal{N}. It follows that A is Δ_{3}^{1}.

Namba Forcing

By Jensen's Covering Theorem if λ is a regular cardinal in L and V is a generic extension of L, then either $\operatorname{cf} \lambda=|\lambda|$ or $\lambda<\aleph_{2}$. In other words, the only nontrivial change of cofinality is to make $|\lambda|=\aleph_{1}$ and cf $\lambda=\omega$. The following model, due to Namba, does exactly that:

Theorem 28.10 (Namba). Assume CH. There is a generic extension $V[G]$ such that $\aleph_{1}^{V[G]}=\aleph_{1}$ and $\mathrm{cf}^{V[G]}\left(\omega_{2}^{V}\right)=\omega$.
Proof. Let S be the set of all finite sequences of ordinals less than $\omega_{2}, S=$ $\omega_{2}^{<\omega}$. A tree is a set $T \subset S$ such that if $t \in T$ and $s=t \upharpoonright n$ for some n, then $s \in T$. A nonempty tree $T \subset S$ is perfect if every $t \in T$ has \aleph_{2} extensions $s \supset t$ in T. (Note that then every $t \in T$ has \aleph_{2} incompatible extensions in T.) In analogy with perfect sets in the Baire space, we have a Cantor-Bendixson analysis of trees $T \subset S$: Let

$$
T^{\prime}=\left\{t \in T: t \text { has } \aleph_{2} \text { extensions in } T\right\}
$$

and let $T_{0}=T, T_{\alpha+1}=T_{\alpha}^{\prime}, T_{\alpha}=\bigcap_{\beta<\alpha} T_{\beta}$ if α is limit. Let $\theta<\omega_{3}$ be the least θ such that $T_{\theta}^{\prime}=T_{\theta}$. Then T_{θ} is either empty or perfect.

If T has no perfect $\bar{T} \subset T$, then the above procedure leads to $T_{\theta}=\emptyset$, and we can associate with each $t \in T$ an ordinal number

$$
\begin{equation*}
h_{T}(t)=\text { the least } \alpha \text { such that } t \notin T_{\alpha+1} . \tag{28.7}
\end{equation*}
$$

If $s \subset t$, then $h_{T}(s) \geq h_{T}(t)$, and for every $t \in T$,

$$
\begin{equation*}
\mid\left\{s \in T: t \subset s \text { and } h_{T}(s)=h_{T}(t)\right\} \mid<\aleph_{2} . \tag{28.8}
\end{equation*}
$$

Now let us describe the notion of forcing.
Let P be the set of all perfect trees $T \subset S$, partially ordered by inclusion. We shall show that in the generic extension, ω_{2} has cofinality ω and ω_{1} is preserved.

If G is a generic set of conditions, we define in $V[G]$ a function $f: \omega \rightarrow \omega_{2}^{V}$ as follows:

$$
f(n)=\alpha \leftrightarrow \forall T \in G \exists s \in T \text { such that } s(n)=\alpha .
$$

An easy argument using genericity of G shows that $f(n)$ is uniquely defined for each n and that the function f maps ω cofinally into ω_{2}^{V}.

We shall prove now that ω_{1} is preserved in the extension by showing that every $f: \omega \rightarrow\{0,1\}$ in $V[G]$ is in the ground model. Thus let T be a condition, and let \dot{f} be a name such that

$$
T \Vdash \dot{f} \text { is a function from } \omega \text { into }\{0,1\} .
$$

We shall find a stronger condition that decides each $\dot{f}(n)$; that is, we shall find a function $g: \omega \rightarrow\{0,1\}$ such that some condition stronger than T forces $\dot{f}(n)=g(n)$, for all n.

We proceed as follows. By induction on length of s, we construct, for each $s \in S$, conditions T_{s} and numbers $\alpha_{s} \in\{0,1\}$ such that:
(i) if $s_{1} \subset s_{2}$, then $T_{s_{1}} \supset T_{s_{2}}$,
(ii) if length $(s)=n$, then $T_{s} \Vdash \dot{f}(n)=\alpha_{s}$,
(iii) for every n, the conditions $T_{s}, s \in \omega_{2}^{n}$, are mutually incompatible, and moreover, there are mutually incompatible sequences $t_{s} \in S, s \in \omega_{2}^{n}$, such that for each $s \in \omega_{2}^{n}, t_{s} \in T_{s}$ and for all $t \in T_{s}$, either $t \subset t_{s}$ or $t_{s} \subset t$.

The "moreover" clause in (iii) is stronger than incompatibility of the conditions and implies that any condition stronger than $\bigcup_{s \in \omega_{2}^{n}} T_{s}$ is compatible with some $T_{s}, s \in \omega_{2}^{n}$.

The construction of conditions satisfying (28.9) is straightforward: We let $t_{\emptyset}=\emptyset$ and $T_{\emptyset} \subset T$ be any condition that decides $\dot{f}(0)$: $T_{\emptyset} \Vdash \dot{f}(0)=$ α_{\emptyset}. Having defined T_{s}, t_{s}, and α_{s} for $s \in \omega_{2}^{n}$ we first pick \aleph_{2} incompatible extensions $t_{s}{ }_{i}, i<\omega_{2}$, of t_{s} in T_{s}, and then find $T_{s}{ }_{i} \subset T_{s}$ and $\alpha_{s}{ }^{\circ}, i<\omega_{2}$, such that $T_{s \supset i} \Vdash \dot{f}(n+1)=\alpha_{s \frown i}$ and that each $t \in T_{s \frown i}$ is compatible with $t_{s \sim i}$. Note that if $s_{1} \subset s_{2}$, then $t_{s_{1}} \subset t_{s_{2}}$.

For any function $g: \omega \rightarrow\{0,1\}$, we define a tree $T(g) \subset S$ (not necessarily a perfect tree) as follows: If $\bar{\beta}=\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle$ is a finite sequence of zeros and ones, we let

$$
\begin{equation*}
T(\bar{\beta})=\bigcup\left\{T_{s}: s \in \omega_{2}^{n} \text { and }\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle=\left\langle\alpha_{\emptyset}, \ldots, \alpha_{s \mid k}, \ldots, \alpha_{s}\right\rangle\right\} \tag{28.10}
\end{equation*}
$$

and

$$
\begin{equation*}
T(g)=\bigcap_{n=1}^{\infty} T(g \upharpoonright n) . \tag{28.11}
\end{equation*}
$$

Each $T(\bar{\beta})$ is a condition (a perfect tree) and by the remark following (28.9), we have

$$
T(\bar{\beta}) \Vdash \dot{f}(k)=\beta_{k} \quad(k=0, \ldots, n) .
$$

Thus if we show that there is at least one $g: \omega \rightarrow\{0,1\}$ such that the tree $T(g)$ contains a perfect subtree, our proof will be complete.

Lemma 28.11. There exists some $g: \omega \rightarrow\{0,1\}$ such that $T(g)$ contains a perfect subtree.

Proof. Let us assume that no $T(g)$ has a perfect subtree. Then by (28.8) there exists, for each $g: \omega \rightarrow\{0,1\}$, a function $h_{g}: T(g) \rightarrow \omega_{3}$ such that $h_{g}(s) \geq h_{g}(t)$ whenever $s \subset t$, and that for each $t \in T(g)$, there are at most \aleph_{1} elements $s \supset t$ in $T(g)$ such that $h_{g}(s)=h_{g}(t)$.

By induction, we construct a sequence $s_{0} \subset s_{1} \subset \ldots \subset s_{n} \subset \ldots$ such that for all $n, s_{n} \in \omega_{2}^{n}$. At stage n we consider the node $t_{s_{n}}$ of $T_{s_{n}}$. Since there are only \aleph_{1} functions $g: \omega \rightarrow\{0,1\}$, there exists an $i<\omega_{2}$ such that $h_{g}\left(t_{s_{n} i}\right)<h_{g}\left(t_{s_{n}}\right)$ for all g for which $h_{g}\left(t_{s_{n} i}\right)$ is defined. We let $s_{n+1}=s_{n}^{\overparen{ }} i$.

Given the sequence $s_{n}, n=0,1, \ldots$, we consider the function $g(n)=\alpha_{s_{n}}$, $n<\omega$. By (28.10) and (28.11), each $t_{s_{n}}$ belongs to $T(g)$, and so $h_{g}\left(t_{s_{n}}\right)$ is defined for all n. However, then the sequence $h_{g}\left(t_{s_{0}}\right)>h_{g}\left(t_{s_{1}}\right)>\ldots$ of ordinals is descending, a contradiction.

A Cohen Real Adds a Suslin Tree

We proved earlier that Suslin trees exist in L, and that adding generically a subset of ω_{1} with countable conditions adds a Suslin tree. It turns out that adding a Cohen real also adds a Suslin tree. This result is due to Shelah; the following proof is due to Todorčević.

Theorem 28.12 (Shelah). If r is a Cohen real over V then in $V[r]$ there exists a Suslin tree.

Proof. We start with an alternative construction of an Aronszajn tree, a modification of the construction in Theorem 9.16.

Lemma 28.13. There exists an ω_{1}-sequence of functions $\left\langle e_{\alpha}: \alpha<\omega_{1}\right\rangle$ such that
(28.12) (i) e_{α} is a one-to-one function from α into ω, for each $\alpha<\omega_{1}$;
(ii) for all $\alpha<\beta<\omega_{1}, e_{\alpha}(\xi)=e_{\beta}(\xi)$ for all but finitely many $\xi<\alpha$.

Proof. Exercise 28.1 (or see Kunen [1980], Theorem II.5.9).
The set $\left\{e_{\alpha} \upharpoonright \beta: \alpha, \beta \in \omega_{1}\right\}$ ordered by inclusion is a tree. Since every node at level α is a finite change of e_{α}, all levels are countable; there are no uncountable branches and so the tree is an Aronszajn tree (Exercise 28.2).

For any function $r: \omega \rightarrow \omega$, consider the tree

$$
\begin{equation*}
T_{r}=\left\{r \circ\left(e_{\alpha} \upharpoonright \beta\right): \alpha, \beta \in \omega_{1}\right\} \tag{28.13}
\end{equation*}
$$

again, T_{r} is an ω_{1}-tree whose all levels are countable (but need not be Aronszajn in general). We prove Theorem 28.12 by showing that if $\left\langle e_{\alpha}: \alpha<\omega_{1}\right\rangle$ is, in V, a sequence that satisfies (28.12) and if r is a Cohen real over V, then in $V[G], T_{r}$ is a Suslin tree.

We show that T_{r} has no uncountable antichains; this, and an easy argument using genericity of r, also shows that T_{r} has no uncountable branches. If T_{r} has an uncountable antichain then, because every uncountable subset of ω_{1} in $V[r]$ has an uncountable subset in V (Exercise 28.3), there exist in V, an uncountable set $W \subset \omega_{1}$ and a function $\langle\alpha(\beta): \beta \in W\rangle$ such that

$$
\begin{equation*}
\left\{r \circ\left(e_{\alpha(\beta)} \upharpoonright \beta\right): \beta \in W\right\} \tag{28.14}
\end{equation*}
$$

is an antichain.
For each $\beta \in W$, let $t_{\beta}=e_{\alpha(\beta)} \upharpoonright \beta$, and let p be a Cohen forcing condition; we shall find a stronger condition q and $\beta_{1}, \beta_{2} \in W$ that forces that $\dot{r} \circ t_{\beta_{1}}$ and $\dot{r} \circ t_{\beta_{2}}$ are compatible functions; therefore no condition forces that (28.14) is an antichain in T_{r}.

Let $p=\langle p(0), \ldots, p(n-1)\rangle$. For each $\beta \in W$, let X_{β} be the finite set $\left\{\xi<\beta: t_{\beta}(\xi)<n\right\}$. By the Δ-Lemma (Theorem 9.18) there exist a finite set $S \subset \omega_{1}$ and an uncountable $Z \subset W$ such that when $\beta_{1}, \beta_{2} \in Z$, then $X_{\beta_{1}} \cap X_{\beta_{2}}=S$ and that $t_{\beta_{1}} \upharpoonright S=t_{\beta_{2}} \upharpoonright S$.

Now let $\beta_{1}<\beta_{2}$ be two elements of Z. We claim that there exists a condition $q \supset p$ such that $q \circ\left(t_{\beta_{2}} \upharpoonright \beta_{1}\right)=q \circ t_{\beta_{1}}(q$ obliterates the disagreement $)$. Such a condition q forces $\dot{r} \circ t_{\beta_{1}} \subset \dot{r} \circ t_{\beta_{2}}$.

To construct q, let m be greater than $t_{\beta_{i}}(\xi), i=1,2$, for each $\xi<\beta_{1}$ such that $t_{\beta_{1}}(\xi) \neq t_{\beta_{2}}(\xi)$. Let k be such that $n \leq k<m$. If there exist $\xi, \eta<\beta_{1}$ such that $t_{\beta_{2}}(\eta)=k$ and $t_{\beta_{1}}(\eta)=t_{\beta_{2}}(\xi)$, let $l=t_{\beta_{1}}(\xi)$ and let $q(k)=p(l)$. More generally, let $f=t_{\beta_{1}}^{-1} \circ t_{\beta_{2}}$ and let $f^{i}, i<\omega$, denote the i-th iterate of f. If there exist $\xi, \eta<\beta_{1}$ such that $t_{\beta_{2}}(\eta)=k$ and $\eta=f^{i}(\xi)$ for some i, let $l=t_{\beta_{1}}(\xi)$ and let $q(k)=p(l)$. Otherwise, let $q(k)=0$. Verify that q obliterates the disagreement.

Consistency of Borel's Conjecture

A set X of real numbers has strong measure zero if for every sequence $\left\langle\varepsilon_{n}\right.$: $n<\omega\rangle$ of positive real numbers there is a sequence $\left\langle I_{n}: n<\omega\right\rangle$ of intervals with length $\left(I_{n}\right) \leq \varepsilon_{n}$ such that $X \subset \bigcup_{n=0}^{\infty} I_{n}$.

Borel's Conjecture. All strong measure zero sets are countable.
Borel's Conjecture fails under CH-see Exercise 26.18. The following theorem shows that it is consistent with ZFC:

Theorem 28.14 (Laver). Assuming GCH there is a generic extension $V[G]$ in which $2^{\aleph_{0}}=\aleph_{2}$ and Borel's Conjecture holds.

Laver's proof uses the countable support iteration (of length ω_{2}) of a forcing notion that adds a Laver real. We shall now describe this forcing. (Subsequently, Laver proved that an iteration of Mathias forcing also yields Borel's Conjecture).

Definition 28.15. A tree $p \subset S e q$ is a Laver tree if it has a stem, i.e., a maximal node $s_{p} \in p$ such that $s_{p} \subset t$ or $t \subset s_{p}$ for all $t \in p$, and
(28.15) $\forall t \in p$ if $t \supset s_{p}$ then the set $S^{p}(t)=\{a \in \omega: t \frown a \in p\}$ is infinite.

Laver forcing has as forcing conditions Laver trees, partially ordered by inclusion. If G is a generic set of Laver trees, let

$$
\begin{equation*}
f=\bigcup\left\{s_{p}: p \in G\right\} \tag{28.16}
\end{equation*}
$$

the function $f: \omega \rightarrow \omega$ is a Laver real. Since

$$
G=\left\{p: s_{p} \subset f \text { and } \forall n \geq|s| f(n) \in S^{p}(f\lceil n)\}\right.
$$

we have $V[G]=V[f]$.
Consider a canonical enumeration of $S e q$ in which s appears before t if $s \subset t$ and $s \frown a$ appears before $s \frown(a+1)$. If p is a Laver tree, then the part of p above the stem is isomorphic to $S e q$ and we have an enumeration $s_{0}^{p}=s_{p}$, $s_{1}^{p}, \ldots, s_{n}^{p}, \ldots$ of $\left\{t \in p: t \supset s_{p}\right\}$, for every Laver tree p. Let

$$
\begin{equation*}
q \leq_{n} p \text { if } q \leq p \text { and } s_{i}^{p}=s_{i}^{q} \text { for all } i=0, \ldots, n \tag{28.17}
\end{equation*}
$$

(in particular $q \leq_{0} p$ means that $q \leq p$ and p and q have the same stem). A fusion sequence is a sequence of Laver trees such that

$$
p_{0} \geq_{0} p_{1} \geq_{1} p_{2} \geq_{2} \ldots \geq_{n} \ldots
$$

Lemma 28.16. If $\left\{p_{n}\right\}_{n=0}^{\infty}$ is a fusion sequence then $p=\bigcap_{n=0}^{\infty} p_{n}$ is a Laver tree (the fusion of $\left\{p_{n}\right\}_{n=0}^{\infty}$), and $p \leq_{n} p_{n}$ for all n.

Proof. Let s_{0} bet the stem of p_{0}. Then s_{0} is the stem of p, and the set $S^{p}\left(s_{0}\right)=\bigcap_{n} S^{p_{n}}\left(s_{0}\right)$ is infinite. For every $a \in S^{p}\left(s_{0}\right)$, the set $S^{p}\left(s_{0} a\right)=$ $\bigcap_{n} S^{p_{n}}\left(s_{0} a\right)$ is infinite, and so on.

If p is a Laver tree and $s \in p$, then $p \upharpoonright s$ is the Laver tree $\{t \in p: t \subset s$ or $t \supset s\}$. Let p be a Laver tree and let $n \geq 0$. For each $i \leq n$, let p_{i} be the tree with stem s_{i}^{p} that is the union of all $p \upharpoonright\left(s_{i}^{p} \frown a\right)$ where $a \in S^{p}\left(s_{i}^{p}\right)$ and $s_{i}^{p} \frown a$ is not one of the $s_{j}^{p}, j \leq n$. The trees p_{0}, \ldots, p_{n} (the n-components of p) form a maximal set of incompatible subtrees of p.

Let q_{0}, \ldots, q_{n} be the Laver trees such that $q_{i} \leq_{0} p_{i}$ for all $i=0, \ldots, n$. The amalgamation of $\left\{q_{0}, \ldots, q_{n}\right\}$ into p is the tree

$$
\begin{equation*}
r=q_{0} \cup \ldots \cup q_{n} \tag{28.18}
\end{equation*}
$$

we have $r \leq_{n} p$.
Lemma 28.17. If $p \Vdash \dot{X}: \omega \rightarrow V$ then there exists a $q \leq_{0} p$ and a countable A such that $q \Vdash \dot{X} \subset A$.

Proof. Let $\left\{u_{n}\right\}_{n}$ be a sequence of natural numbers such that each number appears infinitely often. We shall construct a fusion sequence $\left\{p_{n}\right\}_{n}$ with $p_{0}=p$, and finite sets A_{n} so that the fusion forces $\dot{X} \subset \bigcup_{n} A_{n}$. At stage n, let p^{0}, \ldots, p^{n} be the n-components of the Laver tree p_{n}. For each $i=0$, \ldots, n if there exist a condition $q_{i} \leq_{0} p^{i}$ and some a_{n}^{i} such that

$$
\begin{equation*}
q_{i} \Vdash \dot{X}\left(u_{n}\right)=a_{n}^{i} \tag{28.19}
\end{equation*}
$$

we choose such q_{i} and a_{n}^{i} (otherwise let $q_{i}=p^{i}$). Let A_{n} be the collection of the a_{n}^{i}, and let p_{n+1} be the amalgamation of $\left\{q_{0}, \ldots, q_{n}\right\}$ into p_{n}. We have $p_{n+1} \leq_{n} p_{n}$.

Let p_{∞} be the fusion of $\left\{p_{n}\right\}_{n=0}^{\infty}$ and let $A=\bigcup_{n=0}^{\infty} A_{n}$. We have $p_{\infty} \leq_{0} p ;$ to prove that $p_{\infty} \Vdash \dot{X} \subset A$, let $q \leq p_{\infty}$ and let $u \in \omega$. Let $\bar{q} \leq q$ and a be such such that $\bar{q} \Vdash \dot{X}(n)=a$. Let n be large enough so that $u=u_{n}$ and that the stem of \bar{q} is in the set $\left\{s_{0}^{p_{n}}, \ldots, s_{n}^{p_{n}}\right\}$, say $s=s_{i}^{p_{n}}$.

Let p^{i} be the i th n-component of p_{n}. As $\bar{q} \cap p^{i} \leq_{0} p^{i}$ and decides $\dot{X}\left(u_{n}\right)$, we have chosen $a_{n}^{i}=a$ at that stage, and therefore $a \in A$, and $\bar{q} \Vdash \dot{X}(u) \in A$. Hence $p_{\infty} \Vdash \dot{X} \subset A$.

Corollary 28.18. The Laver forcing preserves \aleph_{1}.
The following property of the Laver forcing is reminiscent of Prikry and Mathias forcings:

Lemma 28.19. Let $p \Vdash \varphi_{1} \vee \ldots \vee \varphi_{k}$. Then there exists some $q \leq_{0} p$ such that

$$
\begin{equation*}
\exists i \leq k q \Vdash \varphi_{i} \tag{28.20}
\end{equation*}
$$

Proof. Assume to the contrary that the lemma fails. Let s be the stem of p; there are only finitely many $a \in S^{p}(s)$ such that some $q \leq_{0} p \upharpoonright(s \frown a)$ satisfies (28.20). By removing the part of p above these finitely many nodes we obtain $p_{1} \leq_{0} p$. For every $s \frown a \in p_{1}$ there are only finitely many $b \in S^{p}\left(s^{\frown} a\right)$ such that $\exists q \leq_{0} p_{1} \upharpoonright\left(s^{\frown} a \frown b\right)$ with property (28.20). By removing all such b 's (and the nodes above them) we get $p_{2} \leq_{1} p_{1}$. Continuing in this way we construct a fusion sequence $p \geq_{0} p_{1} \geq_{1} p_{2} \geq_{2} \ldots$ and $r=\bigcap_{n=0}^{\infty} p_{n}$. If $t \in r$, then there is no $q \leq_{0} r \upharpoonright t$ with property (28.20). But then no $q \leq r$ forces $\exists i \leq k \varphi_{i}$, a contradiction.

The main idea of Laver's proof is the following property of the Laver forcing. It shows that forcing with Laver trees kills uncountable strong measure zero sets.

Lemma 28.20. Let G be a generic set for the Laver forcing. Every set of reals in the ground model that has strong measure zero in $V[G]$ is countable in $V[G]$.

We begin by proving two technical lemmas:

Lemma 28.21. Let p be a Laver tree with stem s and let \dot{x} be a name for a real in $[0,1]$. Then there exist a condition $q \leq_{0} p$ and a real u such that for every $\varepsilon>0$,

$$
q \upharpoonright\left(s^{\frown} a\right) \Vdash|\dot{x}-u|<\varepsilon
$$

for all but finitely many $a \in S^{q}(s)$.
Proof. Let $\left\{t_{n}\right\}_{n}$ be an enumeration of $\left\{s \frown a: a \in S^{p}(s)\right\}$. For each n we find, by Lemma 28.19, a condition $q_{n} \leq_{0} p \upharpoonright t_{n}$ and an interval $J_{n}=\left[\frac{m}{n}, \frac{m+1}{n}\right]$ such that $q_{n} \Vdash \dot{x} \in J_{n}$. There is a sequence $\left\langle k_{n}: n<\omega\right\rangle$ so that the $J_{k_{n}}$ form a decreasing sequence converging to a unique real u. Let $q=\bigcup_{n=0}^{\infty} q_{k_{n}}$.

Lemma 28.22. Let p be a condition with stem s and let $\left\langle\dot{x}_{n}: n<\omega\right\rangle$ be a sequence of names for reals. Then there exist a condition $q \leq_{0} p$ and a set of reals $\left\{u_{t}: t \in q, t \supset s\right\}$ such that for every $\varepsilon>0$ and every $t \in q, t \supset s$, for all but finitely many $a \in S^{q}(t)$,

$$
q \upharpoonright\left(t^{\frown} a\right) \Vdash\left|\dot{x}_{k}-u_{t}\right|<\varepsilon
$$

where $k=\operatorname{length}(t)-\operatorname{length}(s)$.
Proof. Using Lemma 28.21 we get $p_{1} \leq_{0} p$ and u_{s}. For every immediate successor t of s in p_{1}, we get $q_{t} \leq_{0} p_{1} \upharpoonright t$ and u_{t}, and let $p_{2}=\bigcup_{t} q_{t}$. By repeating this argument, we build a fusion sequence $p \geq_{0} p_{1} \geq_{1} p_{2} \geq_{2} \ldots$, and let $q=\bigcap_{n=0}^{\infty} p_{n}$.

Proof of Lemma 28.20. Let f be the Laver real, and let

$$
\begin{equation*}
\varepsilon_{n}=1 / f(n) \tag{28.21}
\end{equation*}
$$

We shall show that if $X \in V$ is uncountable, then for some n, the sequence $\left\langle\varepsilon_{k}: k \geq n\right\rangle$ witness that X does not have strong measure zero.

Thus let $X \in V$ be a subset of $[0,1]$ and let p be such that $p \Vdash X$ has strong measure zero. Let s be the stem of p of length n. Let $\left\langle\dot{x}_{k}: k \geq n\right\rangle$ be a sequence of names of reals, and for each $k \geq n$ let \dot{I}_{k} be the interval of length $\dot{\varepsilon}_{k}$ centered at \dot{x}_{k}. Let us assume that $p \Vdash-X \subset \bigcup_{k \geq n} \dot{I}_{k}$. We shall find a stronger condition that forces that X is countable.

Let $q \leq_{0} p$ and $\left\{u_{t}: t \in q, t \supset s\right\}$ be a condition and a countable set of reals obtained in Lemma 28.22. We will show that $q \Vdash X \subset\left\{u_{t}\right\}_{t}$.

Let $v \notin\left\{u_{t}: t \in q, t \supset s\right\}$; we shall find some $r \leq q$ such that $r \Vdash v \notin \dot{I}_{k}$, for all $k \geq n$. We construct r by induction on the levels of q; at stage $k \geq n$ we ensure that $r \Vdash v \notin \dot{I}_{k}$.

We describe the construction for $k=n$; this can be repeated for all $k \geq n$. Let $\varepsilon=\left|v-u_{s}\right| / 2$. For all but finitely many $a \in S^{q}(s), q \upharpoonright\left(s^{\frown} a\right) \Vdash\left|\dot{x}_{n}-u_{s}\right|<$ ε. Since $q \upharpoonright\left(s^{\frown} a\right) \Vdash \dot{\varepsilon}_{n}=1 / \dot{f}(n)=1 / a$, we have $q \upharpoonright\left(s^{\frown} a\right) \Vdash\left|\dot{x}_{n}-v\right|>\dot{\varepsilon}_{n}$, or $v \notin \dot{I}_{n}$, for all but finitely many a. Thus we ensure $r \Vdash v \notin \dot{I}_{n}$ by removing finitely many successors of s.

Laver's model for the consistency of Borel's Conjecture is obtained by iteration with countable support of length ω_{2}. At each stage of the iteration, one adds a Laver real by forcing with Laver trees. If the ground model satisfies GCH, then the iteration preserves cardinals and cofinalities, makes $2^{\aleph_{0}}=\aleph_{2}$, and the resulting model satisfies Borel's Conjecture.

We state the relevant properties of Laver's model without proof:
Firstly, for every countable set X of ordinals in $V[G]$ there is a set $Y \in V$, countable in V, such that $X \subset Y$. This is the analog of Lemma 28.17 (see Lemma 6(iii) of Laver [1976]) and implies that \aleph_{1} is preserved by the iteration. In Chapter 31 we prove a more general result, showing that this property is preserved by countable support iteration of proper forcing.

Secondly, the iteration satisfies the \aleph_{2}-chain condition (Lemma 10(ii) of Laver [1976]). This can be proved as in Exercise 16.20, or Lemma 23.11, by first showing that for every $\alpha<\omega_{2}$, the Laver iteration of length α has a dense subset of cardinality \aleph_{1}. Again, this is a general property of countable support iteration of proper forcing, when at each stage, the β th iterate \dot{Q}_{β} has cardinality \aleph_{1}.

The key property of Laver's iteration is that there are no uncountable strong measure zero sets in $V[G]$. If X is a set of reals of size \aleph_{1} in $V[G]$, then because of the \aleph_{2}-chain condition, X appears at some stage $V\left[G_{\alpha}\right]$, and by forcing a Laver real, one makes X not to have strong measure zero in $V\left[G_{\alpha+1}\right]$. However, one has to show that X fails to have strong measure zero in $V[G]$, not just in $V\left[G_{\alpha+1}\right]$. The main technical lemma (Laver's Lemma 15) proves that, and is analogous to Lemma 28.20, working with iteration of Laver forcing rather than with Laver trees only.

In his paper [1983] Baumgartner gives the consistency proof of Borel's Conjecture using the countable support iteration of Mathias forcing. His Theorem 7.1 shows that the iteration of either Laver or Mathias forcing preserves \aleph_{1}, and if CH holds in the ground model then iteration of length ω_{2} satisfies the \aleph_{2}-chain condition. He also gives a detailed proof of Borel's Conjecture in the iteration of Mathias forcing.

κ^{+}-Aronszajn Trees

Theorem 9.16 states that there exists an Aronszajn tree, i.e., a tree of length ω_{1} with countable levels and no branch of length ω_{1}. In Chapter 9 we also defined what it means for an infinite cardinal κ to have the tree property: Every tree of height κ and levels of size $<\kappa$ has a branch of length κ. When κ is inaccessible then the tree property is equivalent to weak compactness.

Let κ^{+}be a successor cardinal. A tree of height κ^{+}is a κ^{+}-Aronszajn tree if its levels have size at most κ and it has no branch of length κ^{+}. When κ is singular, the tree property of κ^{+}is related to large cardinals; we shall
now address the case when κ is regular. We discuss the case of \aleph_{2} as it easily generalizes to any successor of a regular. The construction in Theorem 9.16 generalizes to \aleph_{2} under the assumption that $2^{\aleph_{0}}=\aleph_{1}$ (see Exercises 28.5 and 28.6). It follows that an \aleph_{2}-Aronszajn tree exists unless there is a weakly compact cardinal in L :

Theorem 28.23 (Silver). If there exists no \aleph_{2}-Aronszajn tree then \aleph_{2} is a weakly compact cardinal in L.

Proof. If \aleph_{2} is a successor cardinal in L, then there exists some $A \subset \omega_{1}$ such that $\aleph_{1}^{L[A]}=\aleph_{1}$ and $\aleph_{2}^{L[A]}=\aleph_{2}$. In $L[A], 2^{\aleph_{0}}=\aleph_{1}$ holds and therefore there exists a special \aleph_{2}-Aronszajn tree T. But then T is a special \aleph_{2}-Aronszajn tree in V. Thus if there are no \aleph_{2}-Aronszajn trees, \aleph_{2} is inaccessible in L.

To show that $\lambda=\aleph_{2}$ is weakly compact in L if λ has the tree property, let $B \in L$ be (in L) a λ-complete algebra of subsets of λ and $|B|=\lambda$. We shall find a λ-complete nonprincipal ultrafilter U on B with $U \in L$. (Then, by the argument in Lemma 10.18, it follows that λ is weakly compact in L.)

Let $\alpha<\left(\lambda^{+}\right)^{L}$ be a limit ordinal such that $B \in L_{\alpha}$ and $L_{\alpha} \vDash|B|=\lambda$. Let $\left\{X_{\xi}: \xi<\lambda\right\}$ be an enumeration, in L, of $P(\lambda) \cap L_{\alpha}$, and let T be the set of all constructible functions $f \in\{0,1\}^{<\lambda}$ such that

$$
\left|\cap\left\{X_{\xi}: f(\xi)=1\right\} \cap \bigcap\left\{\lambda-X_{\xi}: f(\xi)=0\right\}\right|=\lambda
$$

Since λ is inaccessible in L, T is a λ-tree with levels of size $<\lambda$.
Since λ has the tree property, T has a branch of length λ, a function $F: \lambda \rightarrow\{0,1\}$ such that $F \upharpoonright \nu \in T$ for all $\nu<\lambda$. If we let $D=\left\{X_{\xi}: F(\xi)=1\right\}$ then D is (in V) a λ-complete nonprincipal ultrafilter on $P(\lambda) \cap L_{\alpha}$. Let Ult $=\mathrm{Ult}_{D} L_{\alpha}$ be the ultrapower of L_{α} by D (using functions in L_{α}), let L_{β} be its transitive collapse and let $j: L_{\alpha} \rightarrow L_{\beta}$ be the corresponding elementary embedding.

If $e \in L_{\alpha}$ is an enumeration of $B, e: \lambda \rightarrow B$, then $E=j(e) \in L_{\beta}$ and $U=\{e(\xi): \lambda \in E(\xi)\}$ is a constructible λ-complete nonprincipal ultrafilter on B.

The following theorem shows that it is consistent (relative to a weakly compact cardinal) that there exist no \aleph_{2}-Aronszajn trees.

Theorem 28.24 (Mitchell). If κ is a weakly compact cardinal then there is a generic extension in which $\kappa=\aleph_{2}, 2^{\aleph_{0}}=\aleph_{2}$, and there exists no \aleph_{2} Aronszajn tree.

The model is obtained by a two-stage iteration $P * \dot{Q}$. The forcing $P=P_{\kappa}$ adds κ Cohen reals to the ground model; let $G=G_{\kappa}$ be generic on P; for each $\alpha<\kappa$, let P_{α} be the forcing for adding α Cohen reals, and let $G_{\alpha}=G \cap P_{\alpha}$.

In $V[G]$, consider the forcing conditions q for adding κ Cohen subsets of $\omega_{1}: q$ is a $0-1$ function on a countable subset of κ. Let Q be the set of all
such q that satisfy, in addition, the requirement that

$$
q \upharpoonright \alpha \in V\left[G_{\alpha}\right] \quad(\text { all } \alpha<\kappa) .
$$

This amounts to forcing with pairs (p, q) where $p \in P$ and q is a countable function on a subset of κ with values $q(\alpha) \in B\left(P_{\alpha}\right)$ (then if G is generic on P, we have $\bar{q} \in Q$ where $\bar{q}(\alpha)=1$ if $q(\alpha) \in G$ and $\bar{q}(\alpha)=0$ if $q(\alpha) \notin G)$.

We list some properties of $P * \dot{Q}$ which are not difficult to verify. Let G be generic on P and let H be $V[G]$-generic on Q.

First, every countable set of ordinals in $V[G][H]$ is in $V[G]$. Hence \aleph_{1} is preserved.

Second, every cardinal between \aleph_{1} and κ is collapsed: If $\aleph_{1} \leq \delta<\kappa$, let t be the following function on ω_{1} :

$$
t(\alpha)=\{n \in \omega: \exists f \in H f(\delta+\omega \cdot \alpha+n)=1\}
$$

The function maps ω_{1} onto $P(\omega)^{V\left[G_{\delta+\omega_{1}}\right]}$ which has cardinality δ.
Third, $P * \dot{Q}$ satisfies the κ-chain condition. This is proved similarly to the κ-chain condition of the Lévy collapse.

Finally, it is clear that $2^{\aleph_{0}}=\kappa$ in $V[G][H]$. The main technical lemma (Lemma 3.8 of Mitchell [1972/73]) asserts the following: For $\alpha<\kappa$ let $Q_{\alpha}=$ $\{q \in Q: \operatorname{dom}(q) \subset \alpha\}$, and $H_{\alpha}=H \cap Q_{\alpha}$. If $\gamma<\kappa$ is a regular uncountable cardinal and if $t \in V[G][H]$ is an ordinal function on γ such that $t \upharpoonright \alpha \in$ $V\left[G_{\gamma}\right]\left[H_{\gamma}\right]$ for all $\alpha<\gamma$, then $t \in V\left[G_{\gamma}\right]\left[H_{\gamma}\right]$.

Now one shows that κ has the tree property in $V[G][H]$ as follows: Let $B=B(P * \dot{Q})$ and let \dot{T} be a B-name for a binary relation on κ that is in $V[G][H]$ a tree of height κ with levels of size $<\kappa$. There is a closed unbounded set $C \subset \kappa$ such that if $\gamma \in C$ is an inaccessible cardinal then $B_{\gamma}=B\left(P_{\gamma} * \dot{Q}_{\gamma}\right)$ is a complete Boolean subalgebra of $B(P * \dot{Q})$ and that $\dot{T} \cap(\gamma \times \gamma)$ is a B_{γ}-valued name for $\dot{T} \upharpoonright \gamma$, the first γ levels of \dot{T}.

To show that \dot{T} has a branch of length κ, assume that it has none; that this is so in V^{B} is a Π_{1}^{1} sentence true in (κ, B, \dot{T}) and since κ is Π_{1}^{1}-indescribable, the same is true in $V^{B_{\gamma}}: \dot{T} \upharpoonright \gamma$ has no branch of length γ in $V^{B_{\gamma}}$. But any node in the γ th level of T produces an ordinal function on γ whose initial segments are in $V^{B_{\gamma}}$; by the technical lemma alluded to above, the function itself is in $V^{B_{\gamma}}$, and is a branch in $\dot{T} \upharpoonright \gamma$. A contradiction.

A related result is the following theorem that we state without proof:

Theorem 28.25 (Laver-Shelah). If there exists a weakly compact cardinal then there exists a generic extension in which $2^{\aleph_{0}}=\aleph_{1}$ and there exists no \aleph_{2}-Suslin tree.
(In the Laver-Shelah model, $2^{\aleph_{1}}$ is greater than \aleph_{2}.)

Exercises

28.1. Find $\left\langle e_{\alpha}: \alpha<\omega_{1}\right\rangle$ such that each $e_{\alpha}: \alpha \rightarrow \omega$ is one-to-one and if $\alpha<\beta$ then e_{α} and $e_{\beta} \upharpoonright \alpha$ differ at only finitely many places.
[Construct the e_{α} by induction on α, such that for every $\alpha, \omega-\operatorname{ran}\left(e_{\alpha}\right)$ is infinite.]
28.2. Given $\left\langle e_{\alpha}: \alpha<\omega_{1}\right\rangle$ as in Exercise 28.1, show that the set $\left\langle e_{\alpha} \upharpoonright \beta: \alpha, \beta \in \omega_{1}\right\rangle$ is an Aronszajn tree.
28.3. If r is a Cohen real over V, then for every uncountable $X \subset \omega_{1}$ in $V[r]$ there exists an uncountable $Y \subset X$ in V.
[The notion of forcing is countable.]
28.4. A Laver real eventually dominates every $g: \omega \rightarrow \omega$ in V.
28.5. If $2^{\aleph_{0}}=\aleph_{1}$, then there exists an \aleph_{2}-Aronszajn tree.
[Imitate the proof of Theorem 9.16. Let Q be the lexicographically ordered set $\omega_{1}^{<\omega}$; every $\alpha<\omega_{2}$ embeds in any interval of Q. Construct T using bounded increasing sequences in Q of length $<\omega_{2}$. At limit steps of cofinality ω extend all branches that represent bounded sequences in Q; here we use $2^{\aleph_{0}}=\aleph_{1}$.]
28.6. The tree constructed in Exercise 28.5 is special, i.e., the union of \aleph_{1} antichains.
[Compare with Exercises 9.8 and 9.9.]

Historical Notes

The construction of a nonconstructible Δ_{3}^{1} real in Theorem 28.1 is as in Jensen [1970]. Namba's forcing appeared in Namba [1971]; in [1976] Bukovský obtains the same result by a somewhat different forcing construction. The result that adding a Cohen real adds a Suslin tree is due to Shelah [1984]; the present proof is due to Todorčević [1987] (for details see Bagaria [1994]).

The consistency of Borel's Conjecture is due to Laver [1976].
For the construction of a κ^{+}-Aronszajn tree if $2^{<\kappa}=\kappa$, see Specker [1949]. The consistency proof of the tree property for \aleph_{2}, as well as the proof of Silver's Theorem 28.23 appeared in Mitchell [1972/73]. Theorem 28.25 is in Laver-Shelah [1981].

