28. More Applications of Forcing

In this chapter we present a selection of forcing constructions related to topics
discussed earlier in the book.

A Nonconstructible A} Real

By Shoenfield’s Absoluteness Theorem, every I3 or ¥} real is constructible;
on the other hand 0f is a A} real. We now present a model due to Jensen
that produces a nonconstructible A} real by forcing over L.

Theorem 28.1 (Jensen). There is a generic extension Lla] of L such that
a is a A} real.

The construction is a combination of perfect set forcing and arguments
using the $-principle. Let us consider perfect trees p C Seq({0,1}), cf. (15.24).
The stem of a perfect tree p is the maximal s € Seq({0,1}) such that for every
t € p,either t C sor s C t. If p is a perfect tree and if s € p, we denote by pls
the perfect tree {t €p:¢t C sort D s}.

Assume that P is a set of perfect trees, partially ordered by C, such that
if p € P and s € p, then p[s € P, and let G be an L-generic filter on P.
Then there is a unique f € {0,1}* which is a branch in every p € G; and
conversely, G = {p € P : f is a branch in p}. Therefore L[G] = L[f], and we
call f P-generic over L. Note that f € {0,1}* is P-generic over L if and only
if for every constructible predense set X C P, f is a branch in some p € X.

Similarly, a generic filter G on P x P corresponds to a unique pair (a,b)
such that for each (p,q) € G, a is a branch in p and b is a branch in ¢. A pair
(a,b) is (P x P)-generic over L if and only if for every constructible predense
set X C P x P, there exists a pair (p,q) € X such that a is a branch in p
and b is a branch in q.

In Chapter 15 we used the Fusion Lemma for perfect trees. Let T =
{T'(s) : s € Seq({0,1})} be a collection of perfect trees such that for every s,

(28.1) (i) T'(s) is a perfect tree whose stem has length > length(s).
(if) T(s™0) C T'(s) and T(s™1) C T'(s).
(i) T(s70) and T'(s™1) have incompatible stems.
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If T satisfies (28.1), we say that T is fusionable and we let

oo
(28.2) FT)=N U T(s).
n=0se{0,1}"
For each fusionable T', p = F(T') (the fusion of T') is a perfect tree; and for
each s, if ¢ is the stem of p, = T'(s), then p[t is stronger than both p and p;.
We shall not use the set of all perfect trees as the notion of forcing; rather
we shall construct a set P of perfect trees with the property that if p € P and
s € p, then p[s € P. We shall construct P such that if a is P-generic over L,
then a is the only P-generic set in L[a], and such that {n € N : a(n) = 1} is
(in L[a]) a A} subset of N.
We shall construct P as the union of countable sets

PcPC...CP,C... (o < wr)

of perfect trees. The construction uses the {-principle. There is a {-sequence
(Sa : o < wn) that is Ay over L, ; let us fix such a sequence. Also, let us fix
a Aj over L, function 7 that is a one-to-one mapping of L,,, onto w;.

We shall now construct the sequence Py C P, C ... C P, C...:

(28.3) Py =the set of all pgs where py is the full binary tree, py =
Seq({0,1}), and s € po;
P, = | Psif a is a limit ordinal.
f<a
P,i1 = P,UQy+1 where Qo471 is a set of perfect trees defined as follows:

Let P, = {p% : n € w}; and let us consider the <p-least such enumeration.
Let X, and ), be the following countable collections of subsets of P, and
and P, x P, respectively:

(28.4) X, contains:
(1) all Qﬁ7 ﬁ <aq,
ii) all X C P, such that 7“X = S5 for some g < a.
B
Y, contains:
(i) Qp x Qg for all 3 < oy
(ii) all Y C P, x P, such that 7“Y = Sy for some § < .

There exists a family {7}, : n € w} of fusionable collections of elements of P,
such that:

(28.5) (i) T (0) = p for all n;

(i) for every X € X, if X is predense in P,, then for every n € N
and every h € N there is k > h such that for each s € {0,1}%,
there exists an x € X such that T,,(s) < z;

(iii) for every Y € V,, if Y is predense in P, X P,, then for every n,
every m, and every h there is a k > h such that for each s €
{0,1}* and each t € {0, 1}*; if either n # m or s # ¢, then there
exists (z,y) € Y such that (T5,(s), Tin(t)) < (x,y).
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A family {T,, : n € w} with properties (28.5)(i)—(iii) is easily constructed
because X, and ), are countable. We denote {T) : n € w} the <z-least such
family, and let

(28.6) Qat1 = {pls:p=F(TY) for some n, and s € p}.

We let P = J,_,, Pa- The following sequence of lemmas will show that
if a € {0,1}* is P-generic over L, then in L[a] the set {n:a(n) =1} is Al.

Lemma 28.2. For each o, Qu41 is dense in Pyy1, and Quy1 X Qo1 1S
dense in Pyy1 X Pyy1.

Proof. 1t suffices to show that below each p € P, there is some q¢ € Q1. If
p € Py, the p =p¢ for some n, and F(T,,) C T,,(0) = p. 0

Lemma 28.3. For each «, if X € X, is predense in P,, then X is predense
in Pyy1;if Y € Yy is predense in Py, X P, then'Y is predense in Pyiy1X Pyt1.
Consequently, if X € X, is predense in P, (if Y € Yy is predense in Py X P,,),
then X is predense in P (Y is predense in P x P).

Proof. Let X € X, be predense in P,; we have to show that for each p[n €
Qa1 there is a stronger ¢ € Qq+1 such that ¢ < x for some x € X. Let
p = F(T,) and let u € p. Let h = length(u). There is k > h such that n
and k satisfy (28.5)(ii). There is s € {0, 1}* such that u € T,(s); let v be the
stem of T},(s). Then plv < T),(s) and T,,(s) < x for some z € X.

A similar argument, using (28.5)(iii), shows that if Y € )/, is predense in
P, x P,, then Y is predense in P,+1 X Pyy1.

Since the sequences X,, o < wi, and Y,, @ < wi, are increasing, it
follows by induction that X is predense in every Ps, 8 < wi, and hence in P.
Similarly for Y. O

Lemma 28.4. P x P satisfies the countable chain condition (and hence
P also satisfies the countable chain condition).

Proof. Here we use <». Let us assume that ¥ C P x P is a maximal in-
compatible set of conditions in P x P and that Y is uncountable. Since
each P, is countable, it is easy to see that the set of all & < w; such that
T(Y N(Py x Py)) =7(Y)Nw; is closed unbounded (7 is the one-to-one func-
tion of L, onto wi). Then it is not much more difficult to see that the set of
all @ < wy such that YN(P, x P,) is a maximal antichain in P, X P,, is closed
unbounded (compare this argument with the {-construction of a Suslin tree
in L).

By ¢, there exists an « such that Y/ = Y N (P, X P,) is predense in
P, x P, and that 7(Y’) = S,. Therefore Y’ € ), and by Lemma 28.3, Y’ is
predense in P x P. It follows that Y/ =Y. Thus Y is countable. O
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Lemma 28.5.

(i) If a € {0,1}*, then a is P-generic over L if and only if for every
a < wy there is some n € N such that a is a branch in F(TY).

(i) Ifa # b€ {0,1}¥, then (a,b) is (P x P)-generic over L if and only
if for every a < wy there exist n,m € N such that a is a branch
in F(TY) and b is a branch in F(TS).

Proof. (i) Let a be P-generic and let o < wy. Since Q41 is dense in P4
and because Qqo+1 € Xat1, Qa+1 is predense in P. By the genericity of a,
there exists a ¢ € Qq+1 such that a is a branch in ¢q. But ¢ = p[s where
p = F(T2) for some n and s € p, and clearly a is a branch in p.

Conversely, let us assume that the condition is satisfied. Let X C P be
a maximal antichain; we wish to show that a is a branch in some z € X. By
Lemma 28.4, X is countable, and there is an a such that X € X,,. Let n € N
be such that a is a branch in F(T)%).

By (28.5)(ii), there is k € IN such that each T),(s), s € {0, 1}*, is stronger
than some z € X. Since a is a branch in F(T},), it is clear that there is
a unique s € {0,1}* such that a is a branch in T},(s). But if z € X is such
that Ty, (s) C x, then a is also a branch in x.

(ii) The proof that the condition is necessary is analogous to (i). Thus let
us assume that the condition is satisfied and let Y C P x P be a maximal
antichain; we want to find (z,y) € Y such that a is a branch in = and b is
a branch in y. Again, there is a such that Y € ). Let n and m € IN be such
that a is a branch in F(T¥) and that b is in F(T)3).

Let h € N be such that alh # b[h; by (28.5)(iii), there is some k € N such
that for each s,t € {0,1}*, if either n # m or s # t, then (T,,(s), Tin(t)) <
(z,y) for some (z,y) € Y. There is a unique pair s, ¢ such that a is a branch
in  and b is a branch in y where (z,y) is some element of ¥ such that

(Tn(8), T (1)) < (2, y). o
Corollary 28.6. If a and b are P-generic over L and a # b, then (a,b) is
(P x P)-generic over L. O

Corollary 28.7. Ifa is P-generic over L, then L[a] E a is the only P-generic
over L.

Proof. If a # b and if both a and b are P-generic over L, then by the Product
Lemma, b is a P-generic over L[a] and hence b ¢ Lla. O

Lemma 28.8. The set H = {a: a is P-generic over L} is 11y over HC.

Proof. Tt follows from the construction of P that the function o — (T'% :
n € w) is Ay over L, L. Since L, L is a X1 set over HC, the function is Ay
over HC. By Lemma 98. 5,

a€ H « (Va <wf)(3n € w)ais a branch in F(TY)
and hence H is II; over HC. O
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Corollary 28.9. If a is a P-generic over L and A = {n € N : a(n) = 1},
then Lla] F A is a A} subset of N.

Proof. We have in Lla]
ne€A« (JaeN)(a€ H and a(n) =1) < (Va € N)(a € H — a(n) =1).
Since H is II; over HC, it is a I} subset of /. It follows that A is Al. O

Namba Forcing

By Jensen’s Covering Theorem if ) is a regular cardinal in L and V' is a generic
extension of L, then either ¢cf A = |A] or A < Na. In other words, the only
nontrivial change of cofinality is to make |A| = Ry and ¢f A = w. The following
model, due to Namba, does exactly that:

Theorem 28.10 (Namba). Assume CH. There is a generic extension V|[G]
such that NY[G] =% and of V(W) = w.

Proof. Let S be the set of all finite sequences of ordinals less than wq, S =
ws¥. A tree is a set T' C S such that if t € T and s = t[n for some n, then
s € T. A nonempty tree T C S is perfect if every t € T has Ny extensions
s D tin T. (Note that then every t € T has Ry incompatible extensions in T'.)
In analogy with perfect sets in the Baire space, we have a Cantor-Bendixson
analysis of trees T' C S: Let

T' = {t € T : t has N, extensions in 7'}

and let To =T, To41 =T, To = ﬂﬁ<a Tp if o is limit. Let 6 < w3 be the
least 0 such that Tj) = Ty. Then Ty is either empty or perfect.

If T has no perfect T C T, then the above procedure leads to Ty = @, and
we can associate with each ¢t € T' an ordinal number

(28.7) hr(t) = the least a such that ¢t ¢ Tpy;.
If s C t, then hr(s) > hr(t), and for every t € T,
(28.8) {seT:tCsand hp(s) =hr(t)} < Ne.

Now let us describe the notion of forcing.

Let P be the set of all perfect trees T' C S, partially ordered by inclusion.
We shall show that in the generic extension, wy has cofinality w and w; is
preserved.

If G is a generic set of conditions, we define in V[G] a function f : w — w)
as follows:

f(n) =a < VT € G 3s € T such that s(n) = a.

An easy argument using genericity of G shows that f(n) is uniquely defined

for each n and that the function f maps w cofinally into wy .
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We shall prove now that w; is preserved in the extension by showing
that every f : w — {0,1} in V[G] is in the ground model. Thus let 7" be
a condition, and let f be a name such that

T I f is a function from w into {0,1}.

We shall find a stronger condition that decides each f (n); that is, we shall
find a function g : w — {0,1} such that some condition stronger than T
forces f(n) = g(n), for all n.

We proceed as follows. By induction on length of s, we construct, for each
s € S, conditions T, and numbers o, € {0,1} such that:

(28.9) (i) if s1 C s9, then T,, D Ty,

(i) if length(s) = n, then T IF f(n) = a,,

(iii) for every n, the conditions Ts, s € w¥, are mutually incompat-
ible, and moreover, there are mutually incompatible sequences
ts € S, s € wy, such that for each s € wy, ts € T, and for all
t € T, either t C t5 or ts C t.

The “moreover” clause in (iii) is stronger than incompatibility of the condi-
tions and implies that any condition stronger than |J o T, is compatible
with some T}, s € w3.

The construction of conditions satisfying (28.9) is straightforward: We
let tyg = @ and Ty C T be any condition that decides f(0): Ty I- f(0) =
ap. Having defined T5, s, and o, for s € wy we first pick No incompatible
extensions tg—;, i < wa, of t5 in Ty, and then find Ts~; C T and ag—~;, 1 < wa,
such that Ty~; I f(n + 1) = as~; and that each t € Ty~; is compatible
with ts—~;. Note that if s; C sa, then ts, C ts,.

For any function g : w — {0, 1}, we define a tree T'(¢g) C S (not necessarily
a perfect tree) as follows: If 3 = (B, ..., 3,) is a finite sequence of zeros and
ones, we let

(28.10) T(B) = U{Ts:s € wh and (Bo,...,Bn) = {p, ., Qsihy- -, Xs)}

SEw

and
(28.11) 7(9)= () T(gin)

Each T'(3) is a condition (a perfect tree) and by the remark following (28.9),
we have

T(B) I+ f(k) = B (k=0, ..., n).

Thus if we show that there is at least one g : w — {0,1} such that the
tree T'(g) contains a perfect subtree, our proof will be complete.

Lemma 28.11. There exists some g : w — {0,1} such that T(g) contains
a perfect subtree.
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Proof. Let us assume that no T'(g) has a perfect subtree. Then by (28.8)
there exists, for each g : w — {0, 1}, a function hy : T(g) — ws such that
hg(s) > hg(t) whenever s C t, and that for each ¢t € T'(g), there are at most X;
elements s D t in T'(g) such that hy(s) = hy(t).

By induction, we construct a sequence s C s1 C ... C s, C ... such
that for all n, s, € wj. At stage n we consider the node t,, of Ts,. Since
there are only X functions g : w — {0, 1}, there exists an ¢ < ws such that
hy(ts~i) < hy(ts,) for all g for which hgy(ts ~;) is defined. We let s, 41 = 5,70

Given the sequence s,,, n = 0, 1, ..., we consider the function g(n) = as,,
n < w. By (28.10) and (28.11), each ¢,, belongs to T(g), and so hy(ts,) is
defined for all n. However, then the sequence hg4(ts,) > hg(ts,) > ... of
ordinals is descending, a contradiction. O

A Cohen Real Adds a Suslin Tree

We proved earlier that Suslin trees exist in L, and that adding generically
a subset of w; with countable conditions adds a Suslin tree. It turns out that
adding a Cohen real also adds a Suslin tree. This result is due to Shelah; the
following proof is due to Todorcevié.

Theorem 28.12 (Shelah). If r is a Cohen real over V then in V|r] there
exists a Suslin tree.

Proof. We start with an alternative construction of an Aronszajn tree, a mod-
ification of the construction in Theorem 9.16.

Lemma 28.13. There exists an wi-sequence of functions (e, : a < w1) such
that

(28.12) (i) eq is a one-to-one function from « into w, for each o < wy;
(ii) for all @ < B < wi, ea(§) = eg(§) for all but finitely many
¢E<a.

Proof. Exercise 28.1 (or see Kunen [1980], Theorem I1.5.9). 0

The set {e4[S : a,3 € w1} ordered by inclusion is a tree. Since every
node at level « is a finite change of e,, all levels are countable; there are no
uncountable branches and so the tree is an Aronszajn tree (Exercise 28.2).

For any function r : w — w, consider the tree

(28.13) T, ={ro(ealB): a, B € wi};

again, T, is an wi-tree whose all levels are countable (but need not be Aron-
szajn in general). We prove Theorem 28.12 by showing that if (e, : @ < wy)
is, in V, a sequence that satisfies (28.12) and if r is a Cohen real over V, then
in V[G], T; is a Suslin tree.
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We show that T, has no uncountable antichains; this, and an easy argu-
ment using genericity of r, also shows that 7). has no uncountable branches.
If T, has an uncountable antichain then, because every uncountable subset
of wy in V[r] has an uncountable subset in V' (Exercise 28.3), there exist in V/,
an uncountable set W C w; and a function {(«(S3) : 8 € W) such that

(28.14) {ro(ea!B): 8 W}

is an antichain.

For each 8 € W, let tg = ey 5, and let p be a Cohen forcing condition;
we shall find a stronger condition ¢ and 31, 82 € W that forces that 7otg, and
7 otg, are compatible functions; therefore no condition forces that (28.14) is
an antichain in 7.

Let p = (p(0),...,p(n — 1)). For each § € W, let X3 be the finite set
{§£ < B :t3(&) < n}. By the A-Lemma (Theorem 9.18) there exist a finite
set S C w; and an uncountable Z C W such that when 31,82 € Z, then
Xp, N X, =S and that tg, [S = 15,[S5.

Now let 81 < (2 be two elements of Z. We claim that there exists a con-
dition ¢ D p such that go (tg,181) = ¢ota, (¢ obliterates the disagreement).
Such a condition ¢ forces 77 otg, C rotg,.

To construct ¢, let m be greater than tg,(€), i = 1, 2, for each £ < 4
such that tg,(€) # t3,(§). Let k be such that n < k < m. If there exist
&,m < [ such that tg,(n) = k and tg, (n) = tg,(§), let | = ¢5,(£) and let
q(k) = p(l). More generally, let f = tgll otg, and let f?, i < w, denote the
i-th iterate of f. If there exist &, n < 31 such that tg,(n) = k and n = f*(€)
for some 1, let | = tg,(€) and let ¢(k) = p(l). Otherwise, let ¢(k) = 0. Verify
that ¢ obliterates the disagreement. ]

Consistency of Borel’s Conjecture

A set X of real numbers has strong measure zero if for every sequence (g, :
n < w) of positive real numbers there is a sequence (I, : n < w) of intervals
with length(I,) < e, such that X C {J;2, L.

Borel’s Conjecture. All strong measure zero sets are countable.

Borel’s Conjecture fails under CH—see Exercise 26.18. The following the-
orem shows that it is consistent with ZFC:

Theorem 28.14 (Laver). Assuming GCH there is a generic extension V[G]
in which 2% = Ry and Borel’s Conjecture holds.

Laver’s proof uses the countable support iteration (of length ws) of a forc-
ing notion that adds a Laver real. We shall now describe this forcing. (Subse-
quently, Laver proved that an iteration of Mathias forcing also yields Borel’s
Conjecture).
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Definition 28.15. A tree p C Seq is a Laver tree if it has a stem, i.e.,
a maximal node s, € p such that s, Ctort C s, for all t € p, and

(28.15) VtepiftD s, then the set SP(t) = {a € w:t"a € p} is infinite.

Laver forcing has as forcing conditions Laver trees, partially ordered by
inclusion. If G is a generic set of Laver trees, let

(28.16) f=Ulsp:peGk
the function f:w — w is a Laver real. Since
G={p:s, C fand¥n >|s| f(n) € SP(fIn)}

we have V[G] = V[f].

Consider a canonical enumeration of Seq in which s appears before ¢ if
s C t and s a appears before s™(a + 1). If p is a Laver tree, then the part
of p above the stem is isomorphic to Seq and we have an enumeration sf = s,
sty .. sb ... of {t Ep:t D sy}, for every Laver tree p. Let

(28.17) g<ppifg<pand s’ =slforalli=0,...,n

(in particular ¢ <o p means that ¢ < p and p and ¢ have the same stem).
A fusion sequence is a sequence of Laver trees such that

PO 0P Z1DP2 22+ Zp e

Lemma 28.16. If {p,}72, is a fusion sequence then p = (", pn is a Laver
tree (the fusion of {pn}22,), and p <, p, for all n.

Proof. Let sg bet the stem of pg. Then sg is the stem of p, and the set
SP(s0) = [),, SP"(s0) is infinite. For every a € SP(sg), the set SP(sq a) =
N, SP"(sq a) is infinite, and so on. O

If p is a Laver tree and s € p, then pls is the Laver tree {t € p: ¢t C s or
t D s}. Let p be a Laver tree and let n > 0. For each ¢ < n, let p; be the tree
with stem s? that is the union of all p|(s?~a) where a € SP(s?) and s "a is

not one of the sf, Jj < n. The trees po, ..., pn (the n-components of p) form
a maximal set of incompatible subtrees of p.

Let qo, ..., g, be the Laver trees such that ¢; <¢ p; forallt =0, ..., n.
The amalgamation of {qo,...,qn} into p is the tree
(28.18) r=qgoU...Uqp;

we have r <, p.

Lemma 28.17. If p I- X 1w — V then there exists a ¢ <o p and a count-
able A such that ¢l X C A.
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Proof. Let {u,}n, be a sequence of natural numbers such that each number
appears infinitely often. We shall construct a fusion sequence {p,}, with
po = p, and finite sets A, so that the fusion forces X C U,, An. At stage n,
let p°, ..., p" be the n-components of the Laver tree p,. For each i = 0,
..., n if there exist a condition ¢; <o p’ and some a!, such that

(28.19) gi Ib X (un) = a},

we choose such ¢; and a!, (otherwise let ¢; = p’). Let A,, be the collection of
the a’,, and let p,.1 be the amalgamation of {qo,...,q,} into p,. We have
Pn+1 <n Dn-

Let poo be the fusion of {p, }72, and let A = [J;"; A,. We have poo <o p;
to prove that po IF X C A, let ¢ < po and let u € w. Let § < ¢ and a be
such such that g I+ X(n) = a. Let n be large enough so that v = u,, and that
the stem of g is in the set {sh",... sk}, say s = si™.

Let p* be the ith n-component of p,. As N p* <o p* and decides X(un),
we have chosen a, = a at that stage, and therefore a € A, and q I+ X(u) € A
Hence poo IF X C A. a

Corollary 28.18. The Laver forcing preserves Ni. ]

The following property of the Laver forcing is reminiscent of Prikry and
Mathias forcings:

Lemma 28.19. Let p Ik 1 V...V pg. Then there exists some q <g p such
that

(28.20) F3i <kqlF ;.

Proof. Assume to the contrary that the lemma fails. Let s be the stem of p;
there are only finitely many a € SP(s) such that some ¢ <o p[(s™a) satis-
fies (28.20). By removing the part of p above these finitely many nodes we
obtain p; <o p. For every s"a € p; there are only finitely many b € SP(s"a)
such that 3¢ <o p1[(s~a"b) with property (28.20). By removing all such b’s
(and the nodes above them) we get po <; p;. Continuing in this way we

construct a fusion sequence p >g p1 >1 p2 > ... and r = ﬂffzo pp. It €,
then there is no ¢ <o r[t with property (28.20). But then no ¢ < r forces
¢t < k ¢;, a contradiction. O

The main idea of Laver’s proof is the following property of the Laver forc-
ing. It shows that forcing with Laver trees kills uncountable strong measure
zero sets.

Lemma 28.20. Let G be a generic set for the Laver forcing. Fvery set of
reals in the ground model that has strong measure zero in V[G] is countable
in V[G].

We begin by proving two technical lemmas:
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Lemma 28.21. Let p be a Laver tree with stem s and let & be a name for
a real in [0,1]. Then there exist a condition ¢ <o p and a real u such that for
every € > 0,

ql(sTa) k|t —u|l<e

for all but finitely many a € S(s).

Proof. Let {t,}, be an enumeration of {s™a : a € SP(s)}. For each n we
find, by Lemma 28.19, a condition ¢, <o p[t, and an interval J,, = [, mil]

such that ¢, IF & € J,. There is a sequence (k,, : n < w) so that the J, form
a decreasing sequence converging to a unique real u. Let ¢ = J,~ qk,. O

Lemma 28.22. Let p be a condition with stem s and let (i, : n < w) be
a sequence of names for reals. Then there exist a condition q <g p and a set
of reals {us : t € q, t D s} such that for every e > 0 and everyt € ¢, t D s,
for all but finitely many a € S(t),

ql(t"a) k&, —ue] < e
where k = length(t) — length(s).

Proof. Using Lemma 28.21 we get p1 <o p and u,. For every immediate
successor t of s in pi, we get ¢ <o p1[t and u, and let po = (J, ¢:. By
repeating this argument, we build a fusion sequence p >g p1 >1 p2 >2 ...,
and let ¢ = (2 Pn- O

Proof of Lemma 28.20. Let f be the Laver real, and let

(28.21) en = 1/f(n).

We shall show that if X € V is uncountable, then for some n, the sequence
(eg : k > n) witness that X does not have strong measure zero.

Thus let X € V be a subset of [0,1] and let p be such that p IF X has
strong measure zero. Let s be the stem of p of length n. Let (& : k > n)
be a sequence of names of reals, and for each k > n let I, be the interval of
length €, centered at Zj. Let us assume that p IF X C Uk>n fk. ‘We shall find
a stronger condition that forces that X is countable.

Let ¢ <o p and {u: : t € ¢, t D s} be a condition and a countable set of
reals obtained in Lemma 28.22. We will show that ¢ IF X C {u}+.

Let v ¢ {us : t € ¢, t D s}; we shall find some r < ¢ such that r I- v ¢ I,
for all k£ > n. We construct r by induction on the levels of ¢; at stage k£ > n
we ensure that r IF v ¢ Ij,.

We describe the construction for k£ = n; this can be repeated for all k£ > n.
Let € = |v—us4|/2. For all but finitely many a € S(s), ¢[(s™a) IF |, —us| <
e. Since q[(s™a) IF €, = 1/ f(n) = 1/a, we have q|(s™a) IF |Z, — v| > &,, or
v ¢ I, for all but finitely many a. Thus we ensure r I v ¢ I,, by removing
finitely many successors of s. ]
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Laver’s model for the consistency of Borel’s Conjecture is obtained by
iteration with countable support of length ws. At each stage of the itera-
tion, one adds a Laver real by forcing with Laver trees. If the ground model
satisfies GCH, then the iteration preserves cardinals and cofinalities, makes
280 = Ny, and the resulting model satisfies Borel’s Conjecture.

We state the relevant properties of Laver’s model without proof:

Firstly, for every countable set X of ordinals in V[G] thereisaset Y € V|
countable in V, such that X C Y. This is the analog of Lemma 28.17 (see
Lemma 6(iii) of Laver [1976]) and implies that X, is preserved by the iteration.
In Chapter 31 we prove a more general result, showing that this property is
preserved by countable support iteration of proper forcing.

Secondly, the iteration satisfies the Ro-chain condition (Lemma 10(ii) of
Laver [1976]). This can be proved as in Exercise 16.20, or Lemma 23.11,
by first showing that for every o < ws, the Laver iteration of length a has
a dense subset of cardinality N;. Again, this is a general property of countable
support iteration of proper forcing, when at each stage, the Sth iterate Qﬁ
has cardinality R;.

The key property of Laver’s iteration is that there are no uncountable
strong measure zero sets in V[G]. If X is a set of reals of size X; in V[G],
then because of the Wy-chain condition, X appears at some stage V[G,],
and by forcing a Laver real, one makes X not to have strong measure zero
in V[Ga+1]. However, one has to show that X fails to have strong mea-
sure zero in V[G], not just in V[Ga41]. The main technical lemma (Laver’s
Lemma 15) proves that, and is analogous to Lemma 28.20, working with
iteration of Laver forcing rather than with Laver trees only.

In his paper [1983] Baumgartner gives the consistency proof of Borel’s
Conjecture using the countable support iteration of Mathias forcing. His
Theorem 7.1 shows that the iteration of either Laver or Mathias forcing pre-
serves N1, and if CH holds in the ground model then iteration of length ws
satisfies the Na-chain condition. He also gives a detailed proof of Borel’s Con-
jecture in the iteration of Mathias forcing.

KkT-Aronszajn Trees

Theorem 9.16 states that there exists an Aronszajn tree, i.e., a tree of
length w; with countable levels and no branch of length w;. In Chapter 9 we
also defined what it means for an infinite cardinal  to have the tree property:
Every tree of height xk and levels of size < x has a branch of length k. When
K is inaccessible then the tree property is equivalent to weak compactness.
Let st be a successor cardinal. A tree of height st is a xkt-Aronszajn
tree if its levels have size at most & and it has no branch of length x™. When
k is singular, the tree property of x* is related to large cardinals; we shall
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now address the case when & is regular. We discuss the case of Ry as it easily
generalizes to any successor of a regular. The construction in Theorem 9.16
generalizes to Ny under the assumption that 2% = XN; (see Exercises 28.5
and 28.6). It follows that an No-Aronszajn tree exists unless there is a weakly
compact cardinal in L:

Theorem 28.23 (Silver). If there exists no Nao-Aronszajn tree then Vo is
a weakly compact cardinal in L.

Proof. If Ny is a successor cardinal in L, then there exists some A C wy such
that READ = R and REMAI = Ry, In L[A], 2% = R; holds and therefore there
exists a special Na-Aronszajn tree 7. But then T is a special Ny-Aronszajn
tree in V. Thus if there are no Ny-Aronszajn trees, Xy is inaccessible in L.

To show that A = Ny is weakly compact in L if A has the tree property,
let B € L be (in L) a A\-complete algebra of subsets of A and |B| = A\. We
shall find a A-complete nonprincipal ultrafilter U on B with U € L. (Then,
by the argument in Lemma 10.18, it follows that A is weakly compact in L.)

Let a < (A1)” be a limit ordinal such that B € L, and L, F |B| = \.
Let {X¢ : £ < A} be an enumeration, in L, of P(A) N L,, and let T be the set
of all constructible functions f € {0,1}<* such that

(N{Xe: f(&) = 13NN = Xe: £(§) =0} = A

Since A is inaccessible in L, T' is a A-tree with levels of size < .

Since A has the tree property, T" has a branch of length A, a function
F:X—{0,1}suchthat Flv e Tforallv < A.If welet D = {X¢: F(¢) =1}
then D is (in V) a A-complete nonprincipal ultrafilter on P(A\) N L,. Let
Ult = Ultp L, be the ultrapower of L, by D (using functions in L, ), let Lg
be its transitive collapse and let j : L, — Lg be the corresponding elementary
embedding.

If e € L, is an enumeration of B, e : A — B, then E = j(e) € Lz and
U ={e(§): X e E()} is a constructible A-complete nonprincipal ultrafilter
on B. O

The following theorem shows that it is consistent (relative to a weakly
compact cardinal) that there exist no Na-Aronszajn trees.

Theorem 28.24 (Mitchell). If k is a weakly compact cardinal then there
s a generic extension in which Kk = No, R0 — Ny, and there exists no No-
Aronszajn tree.

The model is obtained by a two-stage iteration P % Q. The forcing P = P,
adds k Cohen reals to the ground model; let G = G be generic on P; for each
a < K, let P, be the forcing for adding o Cohen reals, and let G, = GN P,.

In V[G], consider the forcing conditions ¢ for adding x Cohen subsets
of wi: g is a 01 function on a countable subset of k. Let @) be the set of all
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such g that satisfy, in addition, the requirement that
qla € V[G4] (all @ < k).

This amounts to forcing with pairs (p,q) where p € P and ¢ is a countable
function on a subset of k with values g(a) € B(P,) (then if G is generic on P,
we have § € Q where (o) =11if ¢(o) € G and g(a) =0 if g(a) ¢ G).

We list some properties of P x () which are not difficult to verify. Let G
be generic on P and let H be V[G]-generic on Q.

First, every countable set of ordinals in V[G][H] is in V[G]. Hence ¥y is
preserved.

Second, every cardinal between N; and k is collapsed: If Xy < § < k, let
t be the following function on wy:

tla)={new:3f e Hf0+w-a+n)=1}

The function maps w; onto P(w)V[G“wl] which has cardinality 9.

Third, P % Q satisfies the s-chain condition. This is proved similarly to
the k-chain condition of the Lévy collapse.

Finally, it is clear that 2% =  in V[G][H]. The main technical lemma
(Lemma 3.8 of Mitchell [1972/73]) asserts the following: For a < x let Qo =
{g € Q : dom(q) C a}, and H, = HNQ,. If v < k is a regular uncountable
cardinal and if ¢ € V[G][H] is an ordinal function on 7 such that tfa €
VI[G4][H,] for all a < v, then t € V[G,][H,].

Now one shows that x has the tree property in V[G|[H] as follows: Let
B = B(P Q) and let T be a B-name for a binary relation on « that is
in V[G][H] a tree of height x with levels of size < k. There is a closed
unbounded set C' C k such that if v € C' is an inaccessible cardinal then
B, = B(P, % Q.,) is a complete Boolean subalgebra of B(P * Q) and that
TN (y x 7) is a B,-valued name for Ty, the first y levels of 7.

To show that 7" has a branch of length x, assume that it has none; that this
is so in V2 is a II1 sentence true in (k, B, T) and since  is IT3-indescribable,
the same is true in V5v: Ty has no branch of length ~ in V5. But any
node in the ~vth level of T produces an ordinal function on vy whose initial
segments are in V5 by the technical lemma alluded to above, the function
itself is in V57, and is a branch in T[fy. A contradiction. ]

A related result is the following theorem that we state without proof:
Theorem 28.25 (Laver-Shelah). If there exists a weakly compact cardinal
then there exists a generic extension in which 280 = N, and there exists no

No-Suslin tree. O

(In the Laver-Shelah model, 2%! is greater than Ns.)
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Exercises

28.1. Find (es : @ < wi) such that each eq : @ — w is one-to-one and if o < 3
then e, and ega differ at only finitely many places.

[Construct the eo by induction on «, such that for every a, w — ran(es) is
infinite.]

28.2. Given (e : @ < w1) as in Exercise 28.1, show that the set (ea[8: @, € w1)
is an Aronszajn tree.

28.3. If r is a Cohen real over V, then for every uncountable X C w; in V[r] there
exists an uncountable Y C X in V.
[The notion of forcing is countable.]

28.4. A Laver real eventually dominates every g : w — w in V.

28.5. If 2% = ;| then there exists an Np-Aronszajn tree.

[Imitate the proof of Theorem 9.16. Let @ be the lexicographically ordered
set wi¥; every a < ws embeds in any interval of Q. Construct T using bounded
increasing sequences in @ of length < ws. At limit steps of cofinality w extend all
branches that represent bounded sequences in Q; here we use 280 = Ny

28.6. The tree constructed in Exercise 28.5 is special, i.e., the union of N; an-
tichains.
[Compare with Exercises 9.8 and 9.9.]

Historical Notes

The construction of a nonconstructible Al real in Theorem 28.1 is as in Jensen
[1970]. Namba’s forcing appeared in Namba [1971]; in [1976] Bukovsky obtains the
same result by a somewhat different forcing construction. The result that adding
a Cohen real adds a Suslin tree is due to Shelah [1984]; the present proof is due to
Todorcevié¢ [1987] (for details see Bagaria [1994]).

The consistency of Borel’s Conjecture is due to Laver [1976].

For the construction of a kT-Aronszajn tree if 2<* = k, see Specker [1949]. The
consistency proof of the tree property for Na, as well as the proof of Silver’s Theo-
rem 28.23 appeared in Mitchell [1972/73]. Theorem 28.25 is in Laver-Shelah [1981].



