28. More Applications of Forcing

In this chapter we present a selection of forcing constructions related to topics discussed earlier in the book.

A Nonconstructible Δ_3^1 Real

By Shoenfield's Absoluteness Theorem, every Π_2^1 or Σ_2^1 real is constructible; on the other hand 0^{\sharp} is a Δ_3^1 real. We now present a model due to Jensen that produces a nonconstructible Δ_3^1 real by forcing over L.

Theorem 28.1 (Jensen). There is a generic extension L[a] of L such that a is a Δ_3^1 real.

The construction is a combination of perfect set forcing and arguments using the \diamond -principle. Let us consider *perfect trees* $p \subset Seq(\{0, 1\})$, cf. (15.24). The *stem* of a perfect tree p is the maximal $s \in Seq(\{0, 1\})$ such that for every $t \in p$, either $t \subset s$ or $s \subset t$. If p is a perfect tree and if $s \in p$, we denote by $p \upharpoonright s$ the perfect tree $\{t \in p : t \subset s \text{ or } t \supset s\}$.

Assume that P is a set of perfect trees, partially ordered by \subset , such that if $p \in P$ and $s \in p$, then $p \upharpoonright s \in P$, and let G be an L-generic filter on P. Then there is a unique $f \in \{0,1\}^{\omega}$ which is a branch in every $p \in G$; and conversely, $G = \{p \in P : f \text{ is a branch in } p\}$. Therefore L[G] = L[f], and we call f P-generic over L. Note that $f \in \{0,1\}^{\omega}$ is P-generic over L if and only if for every constructible predense set $X \subset P$, f is a branch in some $p \in X$.

Similarly, a generic filter G on $P \times P$ corresponds to a unique pair (a, b)such that for each $(p, q) \in G$, a is a branch in p and b is a branch in q. A pair (a, b) is $(P \times P)$ -generic over L if and only if for every constructible predense set $X \subset P \times P$, there exists a pair $(p, q) \in X$ such that a is a branch in pand b is a branch in q.

In Chapter 15 we used the Fusion Lemma for perfect trees. Let $T = \{T(s) : s \in Seq(\{0,1\})\}$ be a collection of perfect trees such that for every s,

(28.1) (i) T(s) is a perfect tree whose stem has length \geq length(s). (ii) $T(s^{0}) \subset T(s)$ and $T(s^{1}) \subset T(s)$. (iii) $T(s^{0})$ and $T(s^{1})$ have incompatible stems. If T satisfies (28.1), we say that T is *fusionable* and we let

(28.2)
$$\mathcal{F}(T) = \bigcap_{n=0}^{\infty} \bigcup_{s \in \{0,1\}^n} T(s)$$

For each fusionable T, $p = \mathcal{F}(T)$ (the *fusion* of T) is a perfect tree; and for each s, if t is the stem of $p_s = T(s)$, then $p \upharpoonright t$ is stronger than both p and p_s .

We shall not use the set of all perfect trees as the notion of forcing; rather we shall construct a set P of perfect trees with the property that if $p \in P$ and $s \in p$, then $p \upharpoonright s \in P$. We shall construct P such that if a is P-generic over L, then a is the only P-generic set in L[a], and such that $\{n \in \mathbb{N} : a(n) = 1\}$ is (in L[a]) a Δ_3^1 subset of \mathbb{N} .

We shall construct P as the union of countable sets

$$P_0 \subset P_1 \subset \ldots \subset P_\alpha \subset \ldots \qquad (\alpha < \omega_1)$$

of perfect trees. The construction uses the \diamond -principle. There is a \diamond -sequence $\langle S_{\alpha} : \alpha < \omega_1 \rangle$ that is Δ_1 over L_{ω_1} ; let us fix such a sequence. Also, let us fix a Δ_1 over L_{ω_1} function τ that is a one-to-one mapping of L_{ω_1} onto ω_1 .

We shall now construct the sequence $P_0 \subset P_1 \subset \ldots \subset P_\alpha \subset \ldots$:

(28.3) $P_0 = \text{the set of all } p_0 | s \text{ where } p_0 \text{ is the full binary tree, } p_0 = Seq(\{0,1\}), \text{ and } s \in p_0;$

$$P_{\alpha} = \bigcup_{\beta < \alpha} P_{\beta}$$
 if α is a limit ordinal.

 $P_{\alpha+1} = P_{\alpha} \cup Q_{\alpha+1}$ where $Q_{\alpha+1}$ is a set of perfect trees defined as follows:

Let $P_{\alpha} = \{p_n^{\alpha} : n \in \omega\}$; and let us consider the $<_L$ -least such enumeration. Let \mathcal{X}_{α} and \mathcal{Y}_{α} be the following countable collections of subsets of P_{α} and and $P_{\alpha} \times P_{\alpha}$ respectively:

(28.4) \mathcal{X}_{α} contains: (i) all $Q_{\beta}, \beta \leq \alpha$, (ii) all $X \subset P_{\alpha}$ such that $\tau^{*}X = S_{\beta}$ for some $\beta \leq \alpha$. \mathcal{Y}_{α} contains: (i) $Q_{\beta} \times Q_{\beta}$ for all $\beta \leq \alpha$; (ii) all $Y \subset P_{\alpha} \times P_{\alpha}$ such that $\tau^{*}Y = S_{\beta}$ for some $\beta \leq \alpha$.

There exists a family $\{T_n : n \in \omega\}$ of fusionable collections of elements of P_{α} such that:

(28.5) (i) $T_n(\emptyset) = p_n^{\alpha}$ for all n;

- (ii) for every $X \in \mathcal{X}_{\alpha}$, if X is predense in P_{α} , then for every $n \in \mathbb{N}$ and every $h \in \mathbb{N}$ there is $k \ge h$ such that for each $s \in \{0, 1\}^k$, there exists an $x \in X$ such that $T_n(s) \le x$;
- (iii) for every $Y \in \mathcal{Y}_{\alpha}$, if Y is predense in $P_{\alpha} \times P_{\alpha}$, then for every n, every m, and every h there is a $k \ge h$ such that for each $s \in \{0,1\}^k$ and each $t \in \{0,1\}^k$; if either $n \ne m$ or $s \ne t$, then there exists $(x, y) \in Y$ such that $(T_n(s), T_m(t)) \le (x, y)$.

A family $\{T_n : n \in \omega\}$ with properties (28.5)(i)–(iii) is easily constructed because \mathcal{X}_{α} and \mathcal{Y}_{α} are countable. We denote $\{T_n^{\alpha} : n \in \omega\}$ the $<_L$ -least such family, and let

(28.6)
$$Q_{\alpha+1} = \{p \mid s : p = \mathcal{F}(T_n^{\alpha}) \text{ for some } n, \text{ and } s \in p\}.$$

We let $P = \bigcup_{\alpha < \omega_1} P_{\alpha}$. The following sequence of lemmas will show that if $a \in \{0, 1\}^{\omega}$ is *P*-generic over *L*, then in *L*[*a*] the set $\{n : a(n) = 1\}$ is Δ_3^1 .

Lemma 28.2. For each α , $Q_{\alpha+1}$ is dense in $P_{\alpha+1}$, and $Q_{\alpha+1} \times Q_{\alpha+1}$ is dense in $P_{\alpha+1} \times P_{\alpha+1}$.

Proof. It suffices to show that below each $p \in P_{\alpha}$ there is some $q \in Q_{\alpha+1}$. If $p \in P_{\alpha}$, the $p = p_n^{\alpha}$ for some n, and $\mathcal{F}(T_n) \subset T_n(\emptyset) = p$. \Box

Lemma 28.3. For each α , if $X \in \mathcal{X}_{\alpha}$ is predense in P_{α} , then X is predense in $P_{\alpha+1}$; if $Y \in \mathcal{Y}_{\alpha}$ is predense in $P_{\alpha} \times P_{\alpha}$, then Y is predense in $P_{\alpha+1} \times P_{\alpha+1}$. Consequently, if $X \in \mathcal{X}_{\alpha}$ is predense in P_{α} (if $Y \in \mathcal{Y}_{\alpha}$ is predense in $P_{\alpha} \times P_{\alpha}$), then X is predense in P (Y is predense in $P \times P$).

Proof. Let $X \in \mathcal{X}_{\alpha}$ be predense in P_{α} ; we have to show that for each $p \upharpoonright n \in Q_{\alpha+1}$ there is a stronger $q \in Q_{\alpha+1}$ such that $q \leq x$ for some $x \in X$. Let $p = \mathcal{F}(T_n)$ and let $u \in p$. Let h = length(u). There is $k \geq h$ such that n and k satisfy (28.5)(ii). There is $s \in \{0,1\}^k$ such that $u \in T_n(s)$; let v be the stem of $T_n(s)$. Then $p \upharpoonright v \leq T_n(s)$ and $T_n(s) \leq x$ for some $x \in X$.

A similar argument, using (28.5)(iii), shows that if $Y \in \mathcal{Y}_{\alpha}$ is predense in $P_{\alpha} \times P_{\alpha}$, then Y is predense in $P_{\alpha+1} \times P_{\alpha+1}$.

Since the sequences \mathcal{X}_{α} , $\alpha < \omega_1$, and \mathcal{Y}_{α} , $\alpha < \omega_1$, are increasing, it follows by induction that X is predense in every P_{β} , $\beta < \omega_1$, and hence in P. Similarly for Y.

Lemma 28.4. $P \times P$ satisfies the countable chain condition (and hence P also satisfies the countable chain condition).

Proof. Here we use \diamondsuit . Let us assume that $Y \subset P \times P$ is a maximal incompatible set of conditions in $P \times P$ and that Y is uncountable. Since each P_{α} is countable, it is easy to see that the set of all $\alpha < \omega_1$ such that $\tau(Y \cap (P_{\alpha} \times P_{\alpha})) = \tau(Y) \cap \omega_1$ is closed unbounded (τ is the one-to-one function of L_{ω_1} onto ω_1). Then it is not much more difficult to see that the set of all $\alpha < \omega_1$ such that $Y \cap (P_{\alpha} \times P_{\alpha})$ is a maximal antichain in $P_{\alpha} \times P_{\alpha}$, is closed unbounded (compare this argument with the \diamondsuit -construction of a Suslin tree in L).

By \diamondsuit , there exists an α such that $Y' = Y \cap (P_{\alpha} \times P_{\alpha})$ is predense in $P_{\alpha} \times P_{\alpha}$ and that $\tau(Y') = S_{\alpha}$. Therefore $Y' \in \mathcal{Y}_{\alpha}$ and by Lemma 28.3, Y' is predense in $P \times P$. It follows that Y' = Y. Thus Y is countable. \Box

Lemma 28.5.

- (i) If $a \in \{0,1\}^{\omega}$, then a is *P*-generic over *L* if and only if for every $\alpha < \omega_1$ there is some $n \in \mathbf{N}$ such that a is a branch in $\mathcal{F}(T_n^{\alpha})$.
- (ii) If a ≠ b ∈ {0,1}^ω, then (a, b) is (P × P)-generic over L if and only if for every α < ω₁ there exist n, m ∈ N such that a is a branch in F(T_n^α) and b is a branch in F(T_m^α).

Proof. (i) Let a be P-generic and let $\alpha < \omega_1$. Since $Q_{\alpha+1}$ is dense in $P_{\alpha+1}$ and because $Q_{\alpha+1} \in \mathcal{X}_{\alpha+1}$, $Q_{\alpha+1}$ is predense in P. By the genericity of a, there exists a $q \in Q_{\alpha+1}$ such that a is a branch in q. But $q = p \upharpoonright s$ where $p = \mathcal{F}(T_n^{\alpha})$ for some n and $s \in p$, and clearly a is a branch in p.

Conversely, let us assume that the condition is satisfied. Let $X \subset P$ be a maximal antichain; we wish to show that a is a branch in some $x \in X$. By Lemma 28.4, X is countable, and there is an α such that $X \in \mathcal{X}_{\alpha}$. Let $n \in \mathbb{N}$ be such that a is a branch in $\mathcal{F}(T_n^{\alpha})$.

By (28.5)(ii), there is $k \in \mathbf{N}$ such that each $T_n(s), s \in \{0, 1\}^k$, is stronger than some $x \in X$. Since *a* is a branch in $\mathcal{F}(T_n)$, it is clear that there is a unique $s \in \{0, 1\}^k$ such that *a* is a branch in $T_n(s)$. But if $x \in X$ is such that $T_n(s) \subset x$, then *a* is also a branch in *x*.

(ii) The proof that the condition is necessary is analogous to (i). Thus let us assume that the condition is satisfied and let $Y \subset P \times P$ be a maximal antichain; we want to find $(x, y) \in Y$ such that a is a branch in x and b is a branch in y. Again, there is α such that $Y \in \mathcal{Y}_{\alpha}$. Let n and $m \in \mathbb{N}$ be such that a is a branch in $\mathcal{F}(T_n^{\alpha})$ and that b is in $\mathcal{F}(T_m^{\alpha})$.

Let $h \in \mathbf{N}$ be such that $a \upharpoonright h \neq b \upharpoonright h$; by (28.5)(iii), there is some $k \in \mathbf{N}$ such that for each $s, t \in \{0, 1\}^k$, if either $n \neq m$ or $s \neq t$, then $(T_n(s), T_m(t)) \leq (x, y)$ for some $(x, y) \in Y$. There is a unique pair s, t such that a is a branch in x and b is a branch in y where (x, y) is some element of Y such that $(T_n(s), T_m(t)) \leq (x, y)$.

Corollary 28.6. If a and b are P-generic over L and $a \neq b$, then (a,b) is $(P \times P)$ -generic over L.

Corollary 28.7. If a is P-generic over L, then $L[a] \vDash a$ is the only P-generic over L.

Proof. If $a \neq b$ and if both a and b are P-generic over L, then by the Product Lemma, b is a P-generic over L[a] and hence $b \notin L[a]$.

Lemma 28.8. The set $H = \{a : a \text{ is } P \text{-generic over } L\}$ is Π_1 over HC.

Proof. It follows from the construction of P that the function $\alpha \mapsto \langle T_n^{\alpha} : n \in \omega \rangle$ is Δ_1 over $L_{\omega_1^L}$. Since $L_{\omega_1^L}$ is a Σ_1 set over HC, the function is Δ_1 over HC. By Lemma 28.5,

$$a \in H \leftrightarrow (\forall \alpha < \omega_1^L) (\exists n \in \omega) a \text{ is a branch in } \mathcal{F}(T_n^\alpha)$$

and hence H is Π_1 over HC.

Corollary 28.9. If a is a P-generic over L and $A = \{n \in \mathbb{N} : a(n) = 1\}$, then $L[a] \models A$ is a Δ_3^1 subset of \mathbb{N} .

Proof. We have in L[a]

 $n \in A \leftrightarrow (\exists a \in \mathcal{N})(a \in H \text{ and } a(n) = 1) \leftrightarrow (\forall a \in \mathcal{N})(a \in H \to a(n) = 1).$

Since H is Π_1 over HC, it is a Π_2^1 subset of \mathcal{N} . It follows that A is Δ_3^1 . \Box

Namba Forcing

By Jensen's Covering Theorem if λ is a regular cardinal in L and V is a generic extension of L, then either cf $\lambda = |\lambda|$ or $\lambda < \aleph_2$. In other words, the only nontrivial change of cofinality is to make $|\lambda| = \aleph_1$ and cf $\lambda = \omega$. The following model, due to Namba, does exactly that:

Theorem 28.10 (Namba). Assume CH. There is a generic extension V[G] such that $\aleph_1^{V[G]} = \aleph_1$ and $\operatorname{cf}^{V[G]}(\omega_2^V) = \omega$.

Proof. Let S be the set of all finite sequences of ordinals less than ω_2 , $S = \omega_2^{<\omega}$. A tree is a set $T \subset S$ such that if $t \in T$ and $s = t \mid n$ for some n, then $s \in T$. A nonempty tree $T \subset S$ is perfect if every $t \in T$ has \aleph_2 extensions $s \supset t$ in T. (Note that then every $t \in T$ has \aleph_2 incompatible extensions in T.) In analogy with perfect sets in the Baire space, we have a Cantor-Bendixson analysis of trees $T \subset S$: Let

$$T' = \{t \in T : t \text{ has } \aleph_2 \text{ extensions in } T\}$$

and let $T_0 = T$, $T_{\alpha+1} = T'_{\alpha}$, $T_{\alpha} = \bigcap_{\beta < \alpha} T_{\beta}$ if α is limit. Let $\theta < \omega_3$ be the least θ such that $T'_{\theta} = T_{\theta}$. Then T_{θ} is either empty or perfect.

If T has no perfect $\overline{T} \subset T$, then the above procedure leads to $T_{\theta} = \emptyset$, and we can associate with each $t \in T$ an ordinal number

(28.7)
$$h_T(t) = \text{the least } \alpha \text{ such that } t \notin T_{\alpha+1}.$$

If $s \subset t$, then $h_T(s) \ge h_T(t)$, and for every $t \in T$,

(28.8)
$$|\{s \in T : t \subset s \text{ and } h_T(s) = h_T(t)\}| < \aleph_2.$$

Now let us describe the notion of forcing.

Let P be the set of all perfect trees $T \subset S$, partially ordered by inclusion. We shall show that in the generic extension, ω_2 has cofinality ω and ω_1 is preserved.

If G is a generic set of conditions, we define in V[G] a function $f: \omega \to \omega_2^V$ as follows:

 $f(n) = \alpha \leftrightarrow \forall T \in G \ \exists s \in T \text{ such that } s(n) = \alpha.$

An easy argument using genericity of G shows that f(n) is uniquely defined for each n and that the function f maps ω cofinally into ω_2^V . We shall prove now that ω_1 is preserved in the extension by showing that every $f : \omega \to \{0, 1\}$ in V[G] is in the ground model. Thus let T be a condition, and let f be a name such that

 $T \Vdash \dot{f}$ is a function from ω into $\{0, 1\}$.

We shall find a stronger condition that decides each $\dot{f}(n)$; that is, we shall find a function $g: \omega \to \{0, 1\}$ such that some condition stronger than Tforces $\dot{f}(n) = g(n)$, for all n.

We proceed as follows. By induction on length of s, we construct, for each $s \in S$, conditions T_s and numbers $\alpha_s \in \{0, 1\}$ such that:

(28.9) (i) if
$$s_1 \subset s_2$$
, then $T_{s_1} \supset T_{s_2}$,
(ii) if length $(s) = n$, then $T_s \Vdash \dot{f}(n) = \alpha_s$,
(iii) for every n , the conditions T_s , $s \in \omega_2^n$, s

(iii) for every n, the conditions T_s , $s \in \omega_2^n$, are mutually incompatible, and moreover, there are mutually incompatible sequences $t_s \in S$, $s \in \omega_2^n$, such that for each $s \in \omega_2^n$, $t_s \in T_s$ and for all $t \in T_s$, either $t \subset t_s$ or $t_s \subset t$.

The "moreover" clause in (iii) is stronger than incompatibility of the conditions and implies that any condition stronger than $\bigcup_{s \in \omega_2^n} T_s$ is compatible with some T_s , $s \in \omega_2^n$.

The construction of conditions satisfying (28.9) is straightforward: We let $t_{\emptyset} = \emptyset$ and $T_{\emptyset} \subset T$ be any condition that decides $\dot{f}(0)$: $T_{\emptyset} \Vdash \dot{f}(0) = \alpha_{\emptyset}$. Having defined T_s , t_s , and α_s for $s \in \omega_2^n$ we first pick \aleph_2 incompatible extensions $t_{s^\frown i}$, $i < \omega_2$, of t_s in T_s , and then find $T_{s^\frown i} \subset T_s$ and $\alpha_{s^\frown i}$, $i < \omega_2$, such that $T_{s^\frown i} \Vdash \dot{f}(n+1) = \alpha_{s^\frown i}$ and that each $t \in T_{s^\frown i}$ is compatible with $t_{s^\frown i}$. Note that if $s_1 \subset s_2$, then $t_{s_1} \subset t_{s_2}$.

For any function $g: \omega \to \{0, 1\}$, we define a tree $T(g) \subset S$ (not necessarily a perfect tree) as follows: If $\overline{\beta} = \langle \beta_0, \ldots, \beta_n \rangle$ is a finite sequence of zeros and ones, we let

(28.10)
$$T(\bar{\beta}) = \bigcup \{T_s : s \in \omega_2^n \text{ and } \langle \beta_0, \dots, \beta_n \rangle = \langle \alpha_{\emptyset}, \dots, \alpha_{s \restriction k}, \dots, \alpha_s \rangle \}$$

and

(28.11)
$$T(g) = \bigcap_{n=1}^{\infty} T(g \restriction n).$$

Each $T(\bar{\beta})$ is a condition (a perfect tree) and by the remark following (28.9), we have

$$T(\bar{\beta}) \Vdash \dot{f}(k) = \beta_k \qquad (k = 0, \ \dots, \ n)$$

Thus if we show that there is at least one $g : \omega \to \{0, 1\}$ such that the tree T(g) contains a perfect subtree, our proof will be complete.

Lemma 28.11. There exists some $g : \omega \to \{0,1\}$ such that T(g) contains a perfect subtree.

Proof. Let us assume that no T(g) has a perfect subtree. Then by (28.8) there exists, for each $g: \omega \to \{0, 1\}$, a function $h_g: T(g) \to \omega_3$ such that $h_g(s) \ge h_g(t)$ whenever $s \subset t$, and that for each $t \in T(g)$, there are at most \aleph_1 elements $s \supset t$ in T(g) such that $h_g(s) = h_g(t)$.

By induction, we construct a sequence $s_0 \,\subset \, s_1 \,\subset \, \ldots \,\subset \, s_n \,\subset \, \ldots$ such that for all $n, \, s_n \,\in \, \omega_2^n$. At stage n we consider the node t_{s_n} of T_{s_n} . Since there are only \aleph_1 functions $g : \omega \to \{0, 1\}$, there exists an $i < \omega_2$ such that $h_g(t_{s_n \,\widehat{i}}) < h_g(t_{s_n})$ for all g for which $h_g(t_{s_n \,\widehat{i}})$ is defined. We let $s_{n+1} = s_n \,\widehat{i}$.

Given the sequence s_n , $n = 0, 1, \ldots$, we consider the function $g(n) = \alpha_{s_n}$, $n < \omega$. By (28.10) and (28.11), each t_{s_n} belongs to T(g), and so $h_g(t_{s_n})$ is defined for all n. However, then the sequence $h_g(t_{s_0}) > h_g(t_{s_1}) > \ldots$ of ordinals is descending, a contradiction.

A Cohen Real Adds a Suslin Tree

We proved earlier that Suslin trees exist in L, and that adding generically a subset of ω_1 with countable conditions adds a Suslin tree. It turns out that adding a Cohen real also adds a Suslin tree. This result is due to Shelah; the following proof is due to Todorčević.

Theorem 28.12 (Shelah). If r is a Cohen real over V then in V[r] there exists a Suslin tree.

Proof. We start with an alternative construction of an Aronszajn tree, a modification of the construction in Theorem 9.16.

Lemma 28.13. There exists an ω_1 -sequence of functions $\langle e_\alpha : \alpha < \omega_1 \rangle$ such that

(28.12) (i) e_α is a one-to-one function from α into ω, for each α < ω₁;
(ii) for all α < β < ω₁, e_α(ξ) = e_β(ξ) for all but finitely many ξ < α.

Proof. Exercise 28.1 (or see Kunen [1980], Theorem II.5.9).

The set $\{e_{\alpha} | \beta : \alpha, \beta \in \omega_1\}$ ordered by inclusion is a tree. Since every node at level α is a finite change of e_{α} , all levels are countable; there are no uncountable branches and so the tree is an Aronszajn tree (Exercise 28.2).

For any function $r: \omega \to \omega$, consider the tree

(28.13)
$$T_r = \{ r \circ (e_\alpha \restriction \beta) : \alpha, \beta \in \omega_1 \};$$

again, T_r is an ω_1 -tree whose all levels are countable (but need not be Aronszajn in general). We prove Theorem 28.12 by showing that if $\langle e_{\alpha} : \alpha < \omega_1 \rangle$ is, in V, a sequence that satisfies (28.12) and if r is a Cohen real over V, then in V[G], T_r is a Suslin tree. We show that T_r has no uncountable antichains; this, and an easy argument using genericity of r, also shows that T_r has no uncountable branches. If T_r has an uncountable antichain then, because every uncountable subset of ω_1 in V[r] has an uncountable subset in V (Exercise 28.3), there exist in V, an uncountable set $W \subset \omega_1$ and a function $\langle \alpha(\beta) : \beta \in W \rangle$ such that

(28.14)
$$\{r \circ (e_{\alpha(\beta)} \restriction \beta) : \beta \in W\}$$

is an antichain.

For each $\beta \in W$, let $t_{\beta} = e_{\alpha(\beta)} \upharpoonright \beta$, and let p be a Cohen forcing condition; we shall find a stronger condition q and $\beta_1, \beta_2 \in W$ that forces that $\dot{r} \circ t_{\beta_1}$ and $\dot{r} \circ t_{\beta_2}$ are compatible functions; therefore no condition forces that (28.14) is an antichain in T_r .

Let $p = \langle p(0), \ldots, p(n-1) \rangle$. For each $\beta \in W$, let X_{β} be the finite set $\{\xi < \beta : t_{\beta}(\xi) < n\}$. By the Δ -Lemma (Theorem 9.18) there exist a finite set $S \subset \omega_1$ and an uncountable $Z \subset W$ such that when $\beta_1, \beta_2 \in Z$, then $X_{\beta_1} \cap X_{\beta_2} = S$ and that $t_{\beta_1} \upharpoonright S = t_{\beta_2} \upharpoonright S$.

Now let $\beta_1 < \beta_2$ be two elements of Z. We claim that there exists a condition $q \supset p$ such that $q \circ (t_{\beta_2} \upharpoonright \beta_1) = q \circ t_{\beta_1}$ (q obliterates the disagreement). Such a condition q forces $\dot{r} \circ t_{\beta_1} \subset \dot{r} \circ t_{\beta_2}$.

To construct q, let m be greater than $t_{\beta_i}(\xi)$, i = 1, 2, for each $\xi < \beta_1$ such that $t_{\beta_1}(\xi) \neq t_{\beta_2}(\xi)$. Let k be such that $n \leq k < m$. If there exist $\xi, \eta < \beta_1$ such that $t_{\beta_2}(\eta) = k$ and $t_{\beta_1}(\eta) = t_{\beta_2}(\xi)$, let $l = t_{\beta_1}(\xi)$ and let q(k) = p(l). More generally, let $f = t_{\beta_1}^{-1} \circ t_{\beta_2}$ and let f^i , $i < \omega$, denote the i-th iterate of f. If there exist $\xi, \eta < \beta_1$ such that $t_{\beta_2}(\eta) = k$ and $\eta = f^i(\xi)$ for some i, let $l = t_{\beta_1}(\xi)$ and let q(k) = p(l). Otherwise, let q(k) = 0. Verify that q obliterates the disagreement. \Box

Consistency of Borel's Conjecture

A set X of real numbers has strong measure zero if for every sequence $\langle \varepsilon_n : n < \omega \rangle$ of positive real numbers there is a sequence $\langle I_n : n < \omega \rangle$ of intervals with length $(I_n) \leq \varepsilon_n$ such that $X \subset \bigcup_{n=0}^{\infty} I_n$.

Borel's Conjecture. All strong measure zero sets are countable.

Borel's Conjecture fails under CH—see Exercise 26.18. The following theorem shows that it is consistent with ZFC:

Theorem 28.14 (Laver). Assuming GCH there is a generic extension V[G] in which $2^{\aleph_0} = \aleph_2$ and Borel's Conjecture holds.

Laver's proof uses the countable support iteration (of length ω_2) of a forcing notion that adds a *Laver real*. We shall now describe this forcing. (Subsequently, Laver proved that an iteration of Mathias forcing also yields Borel's Conjecture). **Definition 28.15.** A tree $p \subset Seq$ is a *Laver tree* if it has a *stem*, i.e., a maximal node $s_p \in p$ such that $s_p \subset t$ or $t \subset s_p$ for all $t \in p$, and

 $(28.15) \quad \forall t \in p \text{ if } t \supset s_p \text{ then the set } S^p(t) = \{a \in \omega : t^\frown a \in p\} \text{ is infinite.}$

Laver forcing has as forcing conditions Laver trees, partially ordered by inclusion. If G is a generic set of Laver trees, let

$$(28.16) f = \bigcup \{ s_p : p \in G \};$$

the function $f: \omega \to \omega$ is a Laver real. Since

$$G = \{ p : s_p \subset f \text{ and } \forall n \ge |s| f(n) \in S^p(f \upharpoonright n) \}$$

we have V[G] = V[f].

Consider a canonical enumeration of Seq in which s appears before t if $s \subset t$ and $s \cap a$ appears before $s \cap (a+1)$. If p is a Laver tree, then the part of p above the stem is isomorphic to Seq and we have an enumeration $s_0^p = s_p$, $s_1^p, \ldots, s_n^p, \ldots$ of $\{t \in p : t \supset s_p\}$, for every Laver tree p. Let

(28.17)
$$q \leq_n p \text{ if } q \leq p \text{ and } s_i^p = s_i^q \text{ for all } i = 0, \dots, n$$

(in particular $q \leq_0 p$ means that $q \leq p$ and p and q have the same stem). A *fusion sequence* is a sequence of Laver trees such that

$$p_0 \ge_0 p_1 \ge_1 p_2 \ge_2 \ldots \ge_n \ldots$$

Lemma 28.16. If $\{p_n\}_{n=0}^{\infty}$ is a fusion sequence then $p = \bigcap_{n=0}^{\infty} p_n$ is a Laver tree (the fusion of $\{p_n\}_{n=0}^{\infty}$), and $p \leq_n p_n$ for all n.

Proof. Let s_0 bet the stem of p_0 . Then s_0 is the stem of p, and the set $S^p(s_0) = \bigcap_n S^{p_n}(s_0)$ is infinite. For every $a \in S^p(s_0)$, the set $S^p(s_0^\frown a) = \bigcap_n S^{p_n}(s_0^\frown a)$ is infinite, and so on.

If p is a Laver tree and $s \in p$, then $p \upharpoonright s$ is the Laver tree $\{t \in p : t \subset s \text{ or } t \supset s\}$. Let p be a Laver tree and let $n \ge 0$. For each $i \le n$, let p_i be the tree with stem s_i^p that is the union of all $p \upharpoonright (s_i^p \frown a)$ where $a \in S^p(s_i^p)$ and $s_i^p \frown a$ is not one of the s_j^p , $j \le n$. The trees p_0, \ldots, p_n (the *n*-components of p) form a maximal set of incompatible subtrees of p.

Let q_0, \ldots, q_n be the Laver trees such that $q_i \leq_0 p_i$ for all $i = 0, \ldots, n$. The *amalgamation* of $\{q_0, \ldots, q_n\}$ into p is the tree

$$(28.18) r = q_0 \cup \ldots \cup q_n;$$

we have $r \leq_n p$.

Lemma 28.17. If $p \Vdash \dot{X} : \omega \to V$ then there exists a $q \leq_0 p$ and a countable A such that $q \Vdash \dot{X} \subset A$.

Proof. Let $\{u_n\}_n$ be a sequence of natural numbers such that each number appears infinitely often. We shall construct a fusion sequence $\{p_n\}_n$ with $p_0 = p$, and finite sets A_n so that the fusion forces $\dot{X} \subset \bigcup_n A_n$. At stage n, let p^0, \ldots, p^n be the *n*-components of the Laver tree p_n . For each $i = 0, \ldots, n$ if there exist a condition $q_i \leq_0 p^i$ and some a_n^i such that

$$(28.19) q_i \Vdash \dot{X}(u_n) = a_n^i$$

we choose such q_i and a_n^i (otherwise let $q_i = p^i$). Let A_n be the collection of the a_n^i , and let p_{n+1} be the amalgamation of $\{q_0, \ldots, q_n\}$ into p_n . We have $p_{n+1} \leq_n p_n$.

Let p_{∞} be the fusion of $\{p_n\}_{n=0}^{\infty}$ and let $A = \bigcup_{n=0}^{\infty} A_n$. We have $p_{\infty} \leq_0 p$; to prove that $p_{\infty} \Vdash \dot{X} \subset A$, let $q \leq p_{\infty}$ and let $u \in \omega$. Let $\bar{q} \leq q$ and a be such such that $\bar{q} \Vdash \dot{X}(n) = a$. Let n be large enough so that $u = u_n$ and that the stem of \bar{q} is in the set $\{s_0^{p_n}, \ldots, s_n^{p_n}\}$, say $s = s_i^{p_n}$.

Let p^i be the *i*th *n*-component of p_n . As $\bar{q} \cap p^i \leq_0 p^i$ and decides $\dot{X}(u_n)$, we have chosen $a_n^i = a$ at that stage, and therefore $a \in A$, and $\bar{q} \Vdash \dot{X}(u) \in A$. Hence $p_{\infty} \Vdash \dot{X} \subset A$.

Corollary 28.18. The Laver forcing preserves \aleph_1 .

The following property of the Laver forcing is reminiscent of Prikry and Mathias forcings:

Lemma 28.19. Let $p \Vdash \varphi_1 \lor \ldots \lor \varphi_k$. Then there exists some $q \leq_0 p$ such that

(28.20)
$$\exists i \le k \ q \Vdash \varphi_i.$$

Proof. Assume to the contrary that the lemma fails. Let s be the stem of p; there are only finitely many $a \in S^p(s)$ such that some $q \leq_0 p \upharpoonright (s \cap a)$ satisfies (28.20). By removing the part of p above these finitely many nodes we obtain $p_1 \leq_0 p$. For every $s \cap a \in p_1$ there are only finitely many $b \in S^p(s \cap a)$ such that $\exists q \leq_0 p_1 \upharpoonright (s \cap a \cap b)$ with property (28.20). By removing all such b's (and the nodes above them) we get $p_2 \leq_1 p_1$. Continuing in this way we construct a fusion sequence $p \geq_0 p_1 \geq_1 p_2 \geq_2 \ldots$ and $r = \bigcap_{n=0}^{\infty} p_n$. If $t \in r$, then there is no $q \leq_0 r \upharpoonright t$ with property (28.20). But then no $q \leq r$ forces $\exists i \leq k \varphi_i$, a contradiction.

The main idea of Laver's proof is the following property of the Laver forcing. It shows that forcing with Laver trees kills uncountable strong measure zero sets.

Lemma 28.20. Let G be a generic set for the Laver forcing. Every set of reals in the ground model that has strong measure zero in V[G] is countable in V[G].

We begin by proving two technical lemmas:

Lemma 28.21. Let p be a Laver tree with stem s and let \dot{x} be a name for a real in [0, 1]. Then there exist a condition $q \leq_0 p$ and a real u such that for every $\varepsilon > 0$,

$$q \restriction (s^{\frown} a) \Vdash |\dot{x} - u| < \varepsilon$$

for all but finitely many $a \in S^q(s)$.

Proof. Let $\{t_n\}_n$ be an enumeration of $\{s \frown a : a \in S^p(s)\}$. For each n we find, by Lemma 28.19, a condition $q_n \leq_0 p \upharpoonright t_n$ and an interval $J_n = [\frac{m}{n}, \frac{m+1}{n}]$ such that $q_n \Vdash \dot{x} \in J_n$. There is a sequence $\langle k_n : n < \omega \rangle$ so that the J_{k_n} form a decreasing sequence converging to a unique real u. Let $q = \bigcup_{n=0}^{\infty} q_{k_n}$. \Box

Lemma 28.22. Let p be a condition with stem s and let $\langle \dot{x}_n : n < \omega \rangle$ be a sequence of names for reals. Then there exist a condition $q \leq_0 p$ and a set of reals $\{u_t : t \in q, t \supset s\}$ such that for every $\varepsilon > 0$ and every $t \in q, t \supset s$, for all but finitely many $a \in S^q(t)$,

$$q |(t^{\frown}a) \Vdash |\dot{x}_k - u_t| < \varepsilon$$

where k = length(t) - length(s).

Proof. Using Lemma 28.21 we get $p_1 \leq_0 p$ and u_s . For every immediate successor t of s in p_1 , we get $q_t \leq_0 p_1 | t$ and u_t , and let $p_2 = \bigcup_t q_t$. By repeating this argument, we build a fusion sequence $p \geq_0 p_1 \geq_1 p_2 \geq_2 \ldots$, and let $q = \bigcap_{n=0}^{\infty} p_n$.

Proof of Lemma 28.20. Let f be the Laver real, and let

(28.21)
$$\varepsilon_n = 1/f(n).$$

We shall show that if $X \in V$ is uncountable, then for some n, the sequence $\langle \varepsilon_k : k \geq n \rangle$ witness that X does not have strong measure zero.

Thus let $X \in V$ be a subset of [0,1] and let p be such that $p \Vdash X$ has strong measure zero. Let s be the stem of p of length n. Let $\langle \dot{x}_k : k \ge n \rangle$ be a sequence of names of reals, and for each $k \ge n$ let \dot{I}_k be the interval of length $\dot{\varepsilon}_k$ centered at \dot{x}_k . Let us assume that $p \Vdash X \subset \bigcup_{k \ge n} \dot{I}_k$. We shall find a stronger condition that forces that X is countable.

Let $q \leq_0 p$ and $\{u_t : t \in q, t \supset s\}$ be a condition and a countable set of reals obtained in Lemma 28.22. We will show that $q \Vdash X \subset \{u_t\}_t$.

Let $v \notin \{u_t : t \in q, t \supset s\}$; we shall find some $r \leq q$ such that $r \Vdash v \notin I_k$, for all $k \geq n$. We construct r by induction on the levels of q; at stage $k \geq n$ we ensure that $r \Vdash v \notin I_k$.

We describe the construction for k = n; this can be repeated for all $k \ge n$. Let $\varepsilon = |v - u_s|/2$. For all but finitely many $a \in S^q(s)$, $q \upharpoonright (s \frown a) \Vdash |\dot{x}_n - u_s| < \varepsilon$. Since $q \upharpoonright (s \frown a) \Vdash \dot{\varepsilon}_n = 1/\dot{f}(n) = 1/a$, we have $q \upharpoonright (s \frown a) \Vdash |\dot{x}_n - v| > \dot{\varepsilon}_n$, or $v \notin \dot{I}_n$, for all but finitely many a. Thus we ensure $r \Vdash v \notin \dot{I}_n$ by removing finitely many successors of s. Laver's model for the consistency of Borel's Conjecture is obtained by iteration with countable support of length ω_2 . At each stage of the iteration, one adds a Laver real by forcing with Laver trees. If the ground model satisfies GCH, then the iteration preserves cardinals and cofinalities, makes $2^{\aleph_0} = \aleph_2$, and the resulting model satisfies Borel's Conjecture.

We state the relevant properties of Laver's model without proof:

Firstly, for every countable set X of ordinals in V[G] there is a set $Y \in V$, countable in V, such that $X \subset Y$. This is the analog of Lemma 28.17 (see Lemma 6(iii) of Laver [1976]) and implies that \aleph_1 is preserved by the iteration. In Chapter 31 we prove a more general result, showing that this property is preserved by countable support iteration of *proper* forcing.

Secondly, the iteration satisfies the \aleph_2 -chain condition (Lemma 10(ii) of Laver [1976]). This can be proved as in Exercise 16.20, or Lemma 23.11, by first showing that for every $\alpha < \omega_2$, the Laver iteration of length α has a dense subset of cardinality \aleph_1 . Again, this is a general property of countable support iteration of proper forcing, when at each stage, the β th iterate \dot{Q}_{β} has cardinality \aleph_1 .

The key property of Laver's iteration is that there are no uncountable strong measure zero sets in V[G]. If X is a set of reals of size \aleph_1 in V[G], then because of the \aleph_2 -chain condition, X appears at some stage $V[G_\alpha]$, and by forcing a Laver real, one makes X not to have strong measure zero in $V[G_{\alpha+1}]$. However, one has to show that X fails to have strong measure zero in V[G], not just in $V[G_{\alpha+1}]$. The main technical lemma (Laver's Lemma 15) proves that, and is analogous to Lemma 28.20, working with iteration of Laver forcing rather than with Laver trees only.

In his paper [1983] Baumgartner gives the consistency proof of Borel's Conjecture using the countable support iteration of Mathias forcing. His Theorem 7.1 shows that the iteration of either Laver or Mathias forcing preserves \aleph_1 , and if CH holds in the ground model then iteration of length ω_2 satisfies the \aleph_2 -chain condition. He also gives a detailed proof of Borel's Conjecture in the iteration of Mathias forcing.

κ^+ -Aronszajn Trees

Theorem 9.16 states that there exists an Aronszajn tree, i.e., a tree of length ω_1 with countable levels and no branch of length ω_1 . In Chapter 9 we also defined what it means for an infinite cardinal κ to have the *tree property*: Every tree of height κ and levels of size $< \kappa$ has a branch of length κ . When κ is inaccessible then the tree property is equivalent to weak compactness.

Let κ^+ be a successor cardinal. A tree of height κ^+ is a κ^+ -Aronszajn tree if its levels have size at most κ and it has no branch of length κ^+ . When κ is singular, the tree property of κ^+ is related to large cardinals; we shall

now address the case when κ is regular. We discuss the case of \aleph_2 as it easily generalizes to any successor of a regular. The construction in Theorem 9.16 generalizes to \aleph_2 under the assumption that $2^{\aleph_0} = \aleph_1$ (see Exercises 28.5 and 28.6). It follows that an \aleph_2 -Aronszajn tree exists unless there is a weakly compact cardinal in L:

Theorem 28.23 (Silver). If there exists no \aleph_2 -Aronszajn tree then \aleph_2 is a weakly compact cardinal in L.

Proof. If \aleph_2 is a successor cardinal in L, then there exists some $A \subset \omega_1$ such that $\aleph_1^{L[A]} = \aleph_1$ and $\aleph_2^{L[A]} = \aleph_2$. In L[A], $2^{\aleph_0} = \aleph_1$ holds and therefore there exists a special \aleph_2 -Aronszajn tree T. But then T is a special \aleph_2 -Aronszajn tree in V. Thus if there are no \aleph_2 -Aronszajn trees, \aleph_2 is inaccessible in L.

To show that $\lambda = \aleph_2$ is weakly compact in L if λ has the tree property, let $B \in L$ be (in L) a λ -complete algebra of subsets of λ and $|B| = \lambda$. We shall find a λ -complete nonprincipal ultrafilter U on B with $U \in L$. (Then, by the argument in Lemma 10.18, it follows that λ is weakly compact in L.)

Let $\alpha < (\lambda^+)^L$ be a limit ordinal such that $B \in L_\alpha$ and $L_\alpha \models |B| = \lambda$. Let $\{X_{\xi} : \xi < \lambda\}$ be an enumeration, in L, of $P(\lambda) \cap L_\alpha$, and let T be the set of all constructible functions $f \in \{0, 1\}^{<\lambda}$ such that

$$\left| \bigcap \{ X_{\xi} : f(\xi) = 1 \} \cap \bigcap \{ \lambda - X_{\xi} : f(\xi) = 0 \} \right| = \lambda.$$

Since λ is inaccessible in L, T is a λ -tree with levels of size $< \lambda$.

Since λ has the tree property, T has a branch of length λ , a function $F: \lambda \to \{0, 1\}$ such that $F \upharpoonright \nu \in T$ for all $\nu < \lambda$. If we let $D = \{X_{\xi} : F(\xi) = 1\}$ then D is (in V) a λ -complete nonprincipal ultrafilter on $P(\lambda) \cap L_{\alpha}$. Let $\text{Ult} = \text{Ult}_D L_{\alpha}$ be the ultrapower of L_{α} by D (using functions in L_{α}), let L_{β} be its transitive collapse and let $j: L_{\alpha} \to L_{\beta}$ be the corresponding elementary embedding.

If $e \in L_{\alpha}$ is an enumeration of $B, e : \lambda \to B$, then $E = j(e) \in L_{\beta}$ and $U = \{e(\xi) : \lambda \in E(\xi)\}$ is a constructible λ -complete nonprincipal ultrafilter on B.

The following theorem shows that it is consistent (relative to a weakly compact cardinal) that there exist no \aleph_2 -Aronszajn trees.

Theorem 28.24 (Mitchell). If κ is a weakly compact cardinal then there is a generic extension in which $\kappa = \aleph_2$, $2^{\aleph_0} = \aleph_2$, and there exists no \aleph_2 -Aronszajn tree.

The model is obtained by a two-stage iteration $P * \dot{Q}$. The forcing $P = P_{\kappa}$ adds κ Cohen reals to the ground model; let $G = G_{\kappa}$ be generic on P; for each $\alpha < \kappa$, let P_{α} be the forcing for adding α Cohen reals, and let $G_{\alpha} = G \cap P_{\alpha}$.

In V[G], consider the forcing conditions q for adding κ Cohen subsets of ω_1 : q is a 0–1 function on a countable subset of κ . Let Q be the set of all such q that satisfy, in addition, the requirement that

$$q \restriction \alpha \in V[G_{\alpha}] \qquad (all \ \alpha < \kappa).$$

This amounts to forcing with pairs (p, q) where $p \in P$ and q is a countable function on a subset of κ with values $q(\alpha) \in B(P_{\alpha})$ (then if G is generic on P, we have $\bar{q} \in Q$ where $\bar{q}(\alpha) = 1$ if $q(\alpha) \in G$ and $\bar{q}(\alpha) = 0$ if $q(\alpha) \notin G$).

We list some properties of $P * \dot{Q}$ which are not difficult to verify. Let G be generic on P and let H be V[G]-generic on Q.

First, every countable set of ordinals in V[G][H] is in V[G]. Hence \aleph_1 is preserved.

Second, every cardinal between \aleph_1 and κ is collapsed: If $\aleph_1 \leq \delta < \kappa$, let t be the following function on ω_1 :

$$t(\alpha) = \{ n \in \omega : \exists f \in H \ f(\delta + \omega \cdot \alpha + n) = 1 \}.$$

The function maps ω_1 onto $P(\omega)^{V[G_{\delta+\omega_1}]}$ which has cardinality δ .

Third, $P * \dot{Q}$ satisfies the κ -chain condition. This is proved similarly to the κ -chain condition of the Lévy collapse.

Finally, it is clear that $2^{\aleph_0} = \kappa$ in V[G][H]. The main technical lemma (Lemma 3.8 of Mitchell [1972/73]) asserts the following: For $\alpha < \kappa$ let $Q_\alpha = \{q \in Q : \operatorname{dom}(q) \subset \alpha\}$, and $H_\alpha = H \cap Q_\alpha$. If $\gamma < \kappa$ is a regular uncountable cardinal and if $t \in V[G][H]$ is an ordinal function on γ such that $t \upharpoonright \alpha \in V[G_\gamma][H_\gamma]$ for all $\alpha < \gamma$, then $t \in V[G_\gamma][H_\gamma]$.

Now one shows that κ has the tree property in V[G][H] as follows: Let $B = B(P * \dot{Q})$ and let \dot{T} be a *B*-name for a binary relation on κ that is in V[G][H] a tree of height κ with levels of size $< \kappa$. There is a closed unbounded set $C \subset \kappa$ such that if $\gamma \in C$ is an inaccessible cardinal then $B_{\gamma} = B(P_{\gamma} * \dot{Q}_{\gamma})$ is a complete Boolean subalgebra of $B(P * \dot{Q})$ and that $\dot{T} \cap (\gamma \times \gamma)$ is a B_{γ} -valued name for $\dot{T}|\gamma$, the first γ levels of \dot{T} .

To show that \dot{T} has a branch of length κ , assume that it has none; that this is so in V^B is a Π^1_1 sentence true in (κ, B, T) and since κ is Π^1_1 -indescribable, the same is true in $V^{B_{\gamma}}$: $\dot{T} \upharpoonright \gamma$ has no branch of length γ in $V^{B_{\gamma}}$. But any node in the γ th level of T produces an ordinal function on γ whose initial segments are in $V^{B_{\gamma}}$; by the technical lemma alluded to above, the function itself is in $V^{B_{\gamma}}$, and is a branch in $\dot{T} \upharpoonright \gamma$. A contradiction.

A related result is the following theorem that we state without proof:

Theorem 28.25 (Laver-Shelah). If there exists a weakly compact cardinal then there exists a generic extension in which $2^{\aleph_0} = \aleph_1$ and there exists no \aleph_2 -Suslin tree.

(In the Laver-Shelah model, 2^{\aleph_1} is greater than \aleph_2 .)

Exercises

28.1. Find $\langle e_{\alpha} : \alpha < \omega_1 \rangle$ such that each $e_{\alpha} : \alpha \to \omega$ is one-to-one and if $\alpha < \beta$ then e_{α} and $e_{\beta} \upharpoonright \alpha$ differ at only finitely many places.

[Construct the e_{α} by induction on α , such that for every α , $\omega - \operatorname{ran}(e_{\alpha})$ is infinite.]

28.2. Given $\langle e_{\alpha} : \alpha < \omega_1 \rangle$ as in Exercise 28.1, show that the set $\langle e_{\alpha} | \beta : \alpha, \beta \in \omega_1 \rangle$ is an Aronszajn tree.

28.3. If r is a Cohen real over V, then for every uncountable $X \subset \omega_1$ in V[r] there exists an uncountable $Y \subset X$ in V.

[The notion of forcing is countable.]

28.4. A Laver real eventually dominates every $g: \omega \to \omega$ in V.

28.5. If $2^{\aleph_0} = \aleph_1$, then there exists an \aleph_2 -Aronszajn tree.

[Imitate the proof of Theorem 9.16. Let Q be the lexicographically ordered set $\omega_1^{<\omega}$; every $\alpha < \omega_2$ embeds in any interval of Q. Construct T using bounded increasing sequences in Q of length $< \omega_2$. At limit steps of cofinality ω extend all branches that represent bounded sequences in Q; here we use $2^{\aleph_0} = \aleph_1$.]

28.6. The tree constructed in Exercise 28.5 is special, i.e., the union of \aleph_1 antichains.

[Compare with Exercises 9.8 and 9.9.]

Historical Notes

The construction of a nonconstructible Δ_3^1 real in Theorem 28.1 is as in Jensen [1970]. Namba's forcing appeared in Namba [1971]; in [1976] Bukovský obtains the same result by a somewhat different forcing construction. The result that adding a Cohen real adds a Suslin tree is due to Shelah [1984]; the present proof is due to Todorčević [1987] (for details see Bagaria [1994]).

The consistency of Borel's Conjecture is due to Laver [1976].

For the construction of a κ^+ -Aronszajn tree if $2^{<\kappa} = \kappa$, see Specker [1949]. The consistency proof of the tree property for \aleph_2 , as well as the proof of Silver's Theorem 28.23 appeared in Mitchell [1972/73]. Theorem 28.25 is in Laver-Shelah [1981].