
29. More Combinatorial Set Theory

Ramsey Theory

Ramsey’s Theorem 9.1 has been generalized in many ways, giving rise to an
area of combinatorial mathematics known as Ramsey theory. In this section
we present three results involving combinatorics of infinite sets. For a com-
plete account of Ramsey theory we refer the reader to the book [1980] of
Graham, Rothschild and Spencer.

Theorem 29.1 (Hindman). If N is partitioned into finitely many pieces
then one of the pieces A contains an infinite set H such that a1+ . . .+an ∈ A
whenever a1, . . . , an are distinct members of H.

For the proof, we introduce the concept of an idempotent ultrafilter. If U
and V are ultrafilters on N , let

(29.1) U + V = {X ⊂ N : {m ∈ N : X − m ∈ V } ∈ U}

where X−m = {n : m+n ∈ X}. See Exercises 29.1 and 29.2 for an alternative
characterization. In the proof we use the following lemma due to S. Glazer:

Lemma 29.2. There exists a nonprincipal ultrafilter U on N such that U +
U = U .

An ultrafilter U such that U + U = U is idempotent. While Glazer’s
Lemma can be proved directly, it can be deduced from a more general result
on topological semigroups. Let βN be the space of all ultrafilters on N , the
Stone-Čech compactification on N . The operation U +V on βN is a contin-
uous function of U for any fixed V , thus making (βN , +) a left-topological
semigroup. It can be shown that every compact left-topological semigroup
has an idempotent element (Exercises 29.3 and 29.4).

Proof of Theorem 29.1. Given a partition of N into finitely many pieces, let
U be an idempotent ultrafilter, and let A be a piece of the partition such
that A ∈ U . We construct a sequence A = A0 ⊃ A1 ⊃ A2 ⊃ . . . with
Ak ∈ U and a0 < a1 < a2 < . . . as follows: Let a0 ∈ A0. Given Ak ∈ U and
ak−1, we find ak > ak−1 such that ak ∈ Ak and that Ak − ak ∈ U (since
{n : Ak − n ∈ U} ∈ U). Let Ak+1 = Ak ∩ (Ak − ak).
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Now let H = {ak : k < ω}. To verify that all finite sums from H are in A,
one shows, by induction on n, that if k1 > . . . > kn then ak1 +. . .+akn ∈ Akn .

��

A similar technique can be used to give a proof of the following classical
theorem in Ramsey Theory. An arithmetic progression (of length k) is a finite
set of the form

(29.2) {n, n + d, n + 2d, . . . , n + (k − 1)d}

where d is a positive integer.

Theorem 29.3 (van der Waerden). If N is partitioned into finitely many
pieces then one of the pieces contains arbitrarily long arithmetic progressions.

For the proof of Theorem 29.3, we fix an integer k ≥ 1 and consider the
space (βN)k. Let I be the set of all arithmetic progressions of length k, and
let Ī be its closure in (βN)k. Arguments similar to those in Exercise 29.3
can be used to show that if R ⊂ βN is any minimal right ideal and U ∈ R,
then 〈U, . . . , U〉 ∈ Ī. For details, we refer reader to Todorčević’s book [1997].

Now to prove the theorem, let U be a nonprincipal ultrafilter on N that
belongs to some minimal right ideal on βN . Let A be the piece of the given
partition such that A ∈ U , and let A∗ = {V ∈ βN : A ∈ V }. If k ≥ 1 is
any integer, let I and Ī be as above. Since 〈U, . . . , U〉 ∈ Ī, it follows that
(A∗ × . . .× A∗) ∩ Ī is nonempty, and hence I ∩ (A × . . .× A) �= ∅. Therefore
A contains an arithmetic progression of length k.

The third result, which we state without a proof, is the Hales-Jewett
Theorem. Let Σ be a finite set, called alphabet, and let W be the set of
all words on Σ, the set of all finite sequences in Σ. Let v be a variable, an
object not in Σ. The set V of all variable words over Σ is the set of all words
on Σ ∪ {v} in which v occurs. An instance of a variable word x ∈ V is the
result of substituting some a ∈ Σ for v in x.

Theorem 29.4 (Hales-Jewett). If W is partitioned into finitely many
pieces then there is a variable word x ∈ V whose all instances lie in the
same piece of the partition.

We refer the reader to Todorčević’s book for a proof using topological
semigroups.

Gaps in ωω

Consider the partial order on ωω by eventual domination: f < g if and only
if f(n) < g(n) for all but finitely many n.
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Definition 29.5. Let κ and λ be regular cardinals. A (κ, λ)-gap in ωω is
a pair of transfinite sequences 〈fα : α < κ〉 and 〈gβ : β < λ〉 in ωω such that

(i) fα1 < fα2 if α1 < α2,
(ii) gβ1 > gβ2 if β1 < β2,
(iii) fα < gβ for all α < κ and β < λ,
(iv) there is no h between {fα}α and {gβ}β, i.e., no h such that

fα < h < gβ for all α and β.

(29.3)

We shall prove a classical theorem of Hausdorff stating that (ω1, ω1)-gaps
exist.

First we prove that (ω, ω)-gaps do not exist:

Lemma 29.6. If f0 < f1 < . . . < fn < . . . < gm < . . . < g1 < g0, then there
exists an h between {fn}n and {gm}m.

Proof. For each k there exists an nk such that for all n ≥ nk, mk(n) =
max{f0(n), . . . , fk(n)} ≤ min{g0(n), . . . , gk(n)} = Mk(n). Choose such nk’s
so that n0 < n1 < . . . < nk < . . ., and let h be a function such that mk(n) ≤
h(n) ≤ Mk(n) when nk ≤ n < nk+1. ��

Another easily seen fact is that a (κ, λ)-gap exists if and only if a (λ, κ)-gap
exists (Exercise 29.5). That some gaps exists follows from Zorn’s Lemma. In
fact, there exists an (ω, b)-gap, see Exercise 29.6 (and there are no (ω, λ)-gaps
for λ < b, see Exercise 29.7).

Apart from Hausdorff’s Theorem 29.7, the existence of specific (κ, λ)-gaps
is unprovable: For instance, (c, c)-gaps may or may not exist, depending on
the model. A detailed account of known consistency results on gaps can be
found in Scheepers [1993].

Theorem 29.7 (Hausdorff). There exists an (ω1, ω1)-gap in ωω.

Proof. We construct an increasing 〈fα : α < ω1〉 and a decreasing 〈gβ : β <
ω1〉 such that

(i) for all α and β, limn→∞ gβ(n) − fα(n) = ∞,
(ii) for every α < ω1 and every n ∈ ω, there are only finitely many

β < α such that ∀k ≥ n fα(k) < gβ(k).

(29.4)

Let us show first that (29.4) guarantees that {fα}α, {gβ}β is a gap. As-
sume that h ∈ ωω is between {fα}α, {gβ}β . Then there exist an uncountable
Z ⊂ ω1 and some n ∈ ω such that for all k ≥ n and h(k) < gα(k) for
all k ≥ n. Thus fα(k) < gβ(k) for all α, β ∈ Z and all k ≥ n. Now if α is
the ωth element of Z, the set {β < α : ∀k ≥ n fα(k) < gβ(k)} is infinite,
contradicting (29.4)(ii).

We construct fα and gα by induction on α. Let f0(n) = 0 and g0(n) = n
for all n. Let γ < ω1. If fα and gβ satisfy (29.4) for all α, β ≤ γ, then it is
easy to find fγ+1 and gγ+1 such that (29.4) remains true.
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Thus let γ be a limit ordinal and assume that {fα}α<γ {gβ}β<γ sat-
isfy (29.4). Let us use the following terminology: If f < gβ for all β < γ and
if C ⊂ γ, we say that f is near C if for every n the set {β ∈ C : ∀n ≥ k
f(k) < gβ(k)} is finite. Note that if f < f ′ and f is near C then f ′ is near C.

We wish to find f and g such that fα < f < g < gβ for all α, β < γ
(and limn(g(n) − f(n)) = ∞) and that f is near γ. Let h be some function
such that fα < h < gβ for all α, β < γ; such an h exists by Lemma 29.6. As
each fα is near α, it follows that h is near α for all α < γ. It now suffices to
find some f > h such that f < gβ for all β < γ and such that f is near α.
Then g is easily found. For each n let Cn = {β < γ : ∀k ≥ n h(k) < gβ(k)}.
Clearly, C0 ⊂ C1 ⊂ . . . ⊂ Cn ⊂ . . .. As long as all Cn are finite, h is near γ
and we are done. Thus assume that the Cα are eventually infinite.

We construct inductively a sequence h = h0 < h1 < . . . < hn < . . . of
functions below {gβ}β<γ such that for each n, hn+1 is near Cn. Then if f is
any function between {hn}n<ω and {gβ}β<γ and f(n) ≥ h(n) for all n, then
for each n, f is near the set {β < γ : ∀k ≥ n f(k) < gβ(k)} ⊂ Cn and hence
f is near γ.

Let n ≥ 0. If Cn is finite, any hn+1 is near Cn; thus assume that Cn is
infinite. Since for each α < γ, the set Cn ∩ α is finite (because h is near α),
the order-type of Cn is ω, and Cn is cofinal in γ. Let β0 < β1 < . . . < βi < . . .
be the enumeration of Cn. It suffices to find hn+1 > hn such that hn+1 < gβi

for all i, and that for every m,

(29.5) {i < ω : ∀k ≥ m hn+1(k) < gβi(k)} is finite.

Let m0 < m1 < . . . < mi < . . . be such that for every i,

hn(k) < gβi(k) < gβi−1(k) < . . . < gβ0(k) for all k ≥ mi.

Then the function hn+1 defined by

hn+1(k) =
{

hn(k) if k < m0,

gβi(k) if mi ≤ k < mi+1

satisfies (29.5) and hence is near Cn. ��

The Open Coloring Axiom

We shall now discuss the axiom OCA (Open Coloring Axiom) that has a num-
ber of applications in combinatorial set theory. Let X be a set of reals (or
X ⊂ N , or X ⊂ P (ω), etc.) and let K ⊂ [X ]2. We say that K is open if
the set {(x, y) : {x, y} ∈ K} is an open set in the space X × X . The Open
Coloring Axiom (OCA) states:

(29.6) Let X be a subset of R. For any partition [X ]2 = K0 ∪ K1 with
K0 open, either there is an uncountable Y ⊂ X such that [Y ]2 ⊂ K0,
or there exist sets Hn, n ∈ ω, such that X =

⋃∞
n=0 Hn and [Hn]2 ⊂

K1 for all n.
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The axiom OCA is consistent with ZFC; we discuss this in Chapter 31. It
should be noted that its dual version is false; Exercise 29.9. OCA has a num-
ber of consequences; see Todorčević [1989]. (One example is Exercise 29.10.)
The most notable is the following result:

Theorem 29.8 (Todorčević). If OCA holds then b = ℵ2.

First we show that under OCA, b > ω1.

Lemma 29.9. Assume OCA. Then every subset of ωω of size ℵ1 is bounded.

Proof. In order to show that every subset X ⊂ ωω of size ℵ1 is bounded, it is
clearly enough to show this for every increasing X = {fα}α<ω1 (i.e., fα < fβ

if α < β), and assume that each fα is an increasing function from ω to ω. Let
X = {fα}α be such and let [X ]2 = K0 ∪K1 where K0 consists of all {fα, fβ}
with α < β such that fα(k) > fβ(k) for some k.

First assume that X =
⋃∞

n=0 Hn and [Hn]2 ⊂ K1 for all n. Then for
some n, Hn is uncountable, and if α < β are such that fα, fβ ∈ Hn then
fα(k) ≤ fβ(k) for all k, and fα(k) < fβ(k) for some k. Then if we let Sα =
{(m, k) : m ≤ fα(k)}, we have an ω1-chain of subsets of ω×ω, a contradiction.

Thus, assuming OCA, there is an uncountable Y ⊂ X such that [Y 2] ⊂
K0. We claim that Y is bounded (and it follows that X is bounded). To
prove the claim, assume that Y is not bounded and let {gα : α < ω1} be the
increasing enumeration of Y . For each t ∈ ω<ω that is an initial segment of
some g ∈ Y , choose αt such that t ⊂ gαt . Then let γ > supt αt, and let k0 be
such that for uncountably many β, gγ(k) < gβ(k) for all k ≥ k0. Thus there
is an uncountable Z ⊂ ω1 − γ such that gγ(k) < gβ(k) for all β ∈ Z and all
k ≥ k0 and that gβ1�k0 = gβ2�k0 whenever β1, β2 ∈ Z.

Now let m ≥ k0 be the least m such that the set {gβ(m) : β ∈ Z} is
infinite (m exists because {gβ}β∈Z is not bounded). There exist some t ∈ ωm

and some W ⊂ Z such that gβ�m = t for all all β ∈ W and {gβ(m) : β ∈ W}
is infinite.

Let α = αt; since α < γ, there exists a k1 ≥ m such that gα(k) < gγ(k) for
all k ≥ k1. Let β ∈ W be such that gβ(m) ≥ gα(k1). Since gβ�m = t = gα�m,
and since gα and gβ are increasing, we have gα(k) ≤ gβ(k) for all k ≤ k1. But
for k ≥ k1 we have gα(k) ≤ gγ(k) < gβ(k); hence gα(k) ≤ gβ(k) for all k.
This contradicts the assumption that {gα, gβ} ∈ K0. Hence Y is bounded,
and so X is bounded. ��

Toward the proof of b ≤ ℵ2 we prove the following result on gaps:

Lemma 29.10. Assume OCA. There is no (κ, λ)-gap in ωω such that κ
and λ are regular uncountable, and κ > ω1.

Proof. Let κ ≥ λ be regular uncountable with κ > ω1, and assume that
{fα}α<κ, {gβ}β<λ is a gap. In order to define an open partition, we first
modify the gap. For each α < κ there exists an mα such that for λ many β’s,
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fα(k) < gβ(k) for all k ≥ mα; for κ many α’s, this mα is the same. Therefore
there is a gap for which mα = 0 for all α < κ, and we assume that the given
gap is such. For each α < κ, let Sα = {β < λ : ∀k fα(k) < gβ(k)}; |Sα| = λ.

Let X = {(fα, gβ) : α < κ and β ∈ Sα}, a subspace of N ×N . Consider
the partition [X ]2 = K0∪K1 where {(fα, gβ), (fγ , gδ)} ∈ K0 when for some k,
either fα(k) > gδ(k) or fγ(k) > gβ(k). Because of the additional assumption
on the gap, K0 is open.

First assume that X =
⋃∞

n=0 Hn with [Hn]2 ⊂ K1 for each n. Since κ
and λ are uncountable, there exist A ⊂ κ of size κ and for each α < κ some
Tα ⊂ Sα of size λ such that all (fα, gβ) with α ∈ A and β ∈ Tα are in the
same Hn. Since [Hn]2 ⊂ K1, we have ∀k fα(k) < gδ(k) whenever α, γ ∈ A
and δ ∈ Tγ . Thus fix γ ∈ A and let B = Tγ . A is cofinal in κ, B is cofinal
in λ, and if α ∈ A and β ∈ B then ∀k fα(k) < gβ(k). But then the function h
defined by g(k) = minβ∈B gβ(k) is between {fα}α and {gβ}β, a contradiction.

Next assume that there exists an uncountable Y ⊂ X such that [Y ]2 ⊂ K0.
If (fα, gβ) and (fγ , gδ) are distinct elements of Y , then because β ∈ Sα, δ ∈ Sγ

and {(fα, gβ), (fγ , gδ)} ∈ K0, we have α �= γ and δ �= β; thus Y is one-to-one.
Therefore there exist increasing ω1-sequences 〈αν : ν < ω1〉 and 〈βν : ν < ω1〉
such that {(fαν , gβν ) : ν < ω1} ⊂ Y .

Now since κ > ω1, let h = fδ where δ > supν αν . The function h is between
{fαν}ν and {gβν}ν . Now we can find an uncountable Z ⊂ ω1 and some m
such that for all ν, η ∈ Z, fαν (k) < h(k) < gβη(k) for all k ≥ m, and fαν �m =
fαη�m, gβν �m = gβη�m. Since βν ∈ Sαν for each ν, it follows that fαν (k) <
gβη(k) for all k, contrary to the assumption that {(fαν , gβν ), (fαη , gβη)} ∈ K0.

��

Proof of Theorem 29.8. Assuming b > ω2, we shall construct an (ω2, λ)-gap
with λ regular uncountable. Then OCA and Lemma 29.10 complete the proof.

Let 〈fα : α < ω2〉 be an increasing sequence of increasing functions. Since
b > ω2, there exists some g0 such that g0 > fα for all α. Let 〈gβ : β < ϑ〉 be
a maximal decreasing sequence of functions such that gβ > fα for all α. At
successor stages we can let gβ+1(k) = gβ(k) − 1 and so ϑ is a limit ordinal.
We complete the proof by showing that cf ϑ > ω.

Thus assume that ϑ = limn βn. Given α < ω2 let mα(0) < mα(1) <
. . . < mα(n) < . . . be such that for all i = 0, . . . , n, fα(k) < gαi(k) for
all k ≥ mα(n). Since b > ω2, there exists a function h such that h > mα

for all α. Now if we let g(n) = mini≤n gαi(h(n)), then g > fα for all α and
g < gαn for all n, contrary to the maximality of ϑ. ��

Almost Disjoint Subsets of ω1

Let κ be a regular uncountable cardinal, and let X and Y be unbounded
subsets of κ. The sets X and Y are almost disjoint if |X ∩ Y | < κ (cf. Defi-
nition 9.20). Similarly, two functions f and g on κ are almost disjoint if for
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some γ < κ, f(α) �= g(α) for all α > γ (cf. Definition 9.22). Unlike in the
case κ = ω, it is a nontrivial question how large a set of almost disjoint sets
of functions can be; clearly, the maximal size of an almost disjoint family
of subsets of κ is equal to the maximal size of an almost disjoint family of
functions from κ to κ.

For simplicity, we consider the case κ = ω1. This can be generalized to
any regular uncountable κ.

First, there exists an almost disjoint family of size ℵ2 (Lemma 9.23), and
if 2ℵ0 = ℵ1 then there exists one of size 2ℵ1 . We shall prove the following:

Theorem 29.11. If 2ℵ0 < 2ℵ1 and 2ℵ0 < ℵω1 then there exists an almost
disjoint family of 2ℵ1 uncountable subsets of ω1.

Compare this with Theorem 22.16: If I is the ideal of bounded subsets
of ω1, then Theorem 29.11 states that sat(I) = (2ℵ1)+; by Theorem 22.16,
sat(I) ≥ 2ℵ1 . As sat(I) is regular (by Theorem 7.15), the following lemma
implies the theorem:

Lemma 29.12. Assume 2ℵ0 < ℵω1 . If κ is a regular cardinal such that 2ℵ0 <
κ ≤ 2ℵ1 , then there exists a family of κ almost disjoint functions from ω1

into ω1.

Proof. Let F be a family of almost disjoint functions on ω1; we call F
a branching family if whenever f, g ∈ F and α is such that f(α) = g(α),
then f(ξ) = g(ξ) for all ξ ≤ α.

For each X ⊂ ω1, let fX = 〈X ∩ α : α < ω1〉. The family F = {fX :
X ∈ P (ω1)} is a branching family of functions on ω1, |F| = 2ℵ1 ; and for each
α < ω1, the functions in F take values in P (α). Thus there exists a branching
family of 2ℵ1 functions from ω1 into 2ℵ0 .

Let κ be a regular cardinal such that 2ℵ0 < κ ≤ 2ℵ1 . We shall show that
for every ℵγ such that ℵ1 < ℵγ ≤ 2ℵ0 , if there is a branching family of κ
functions from ω1 into ωγ , then there is a branching family of κ functions
from ω1 into some ωδ < ωγ . Then the lemma clearly follows.

First let ℵγ = ℵδ+1 where ℵ1 ≤ ℵδ, and let F be a branching family of κ
functions from ω1 into ωδ+1. Each f ∈ F is bounded below ωδ+1 (because
ωδ+1 > ω1), and because κ is regular and κ > ωδ+1, there exists α < ωδ+1

such that ran(f) ⊂ α for κ functions in F . Thus there exists a branching fam-
ily of κ functions from ω1 into α; and since |α| ≤ ℵδ, there is also a branching
family of κ functions from ω1 into ωδ.

If ℵγ is a limit cardinal, then cf(ωγ) = ω because ℵγ < ℵω1 . Let F be
a branching family of κ functions from ω1 into ωγ . For each f ∈ F there exists
an ordinal ηf < ωγ such that f(α) < ηf for uncountably many α’s. Since κ is
a regular cardinal and κ > ℵγ , there exists ℵδ such that ℵ1 ≤ ℵδ < ℵγ , and
a family G ⊂ F of size κ such that for every f ∈ G, f(α) < ωδ for uncountably
many α’s.
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For each α < ω1, let Sα = {f(α) : f ∈ G}. Since G is a branching family
and G ⊂

∏
α<ω1

Sα, it suffices to show that |Sα| ≤ ℵδ for all α < ω1. Thus let
α < ω1. We define a function t : Sα → ω1 × ωδ as follows: For each x ∈ Sα,
we first pick some f ∈ G such that x = f(α). Then there exists some ξ > α
such f(ξ) < ωδ, and we let

t(x) = (ξ, f(ξ)).

We shall now complete the proof by showing that the function t is one-
to-one, and hence |Sα| ≤ ℵδ. Let x, y ∈ Sα be such t(x) = t(y). Let ξ > α
and f, g ∈ G be such that x = f(α), y = g(α), and t(x) = t(y) = (ξ, f(ξ)) =
(ξ, g(ξ)). Since G is a branching family and f(ξ) = g(ξ), we have f(α) = g(α)
and hence x = y. ��

The assumption 2ℵ0 < 2ℵ1 in Theorem 29.11 is necessary; see Exer-
cise 29.11.

Functions from ω1 into ω

Consider the set ωω1 of all functions from ω1 into ω, partially ordered by
eventual domination:

(29.7) f < g if and only if ∃γ ∀α ≥ γ f(α) < g(α).

Let cof(ωω1) be the smallest size of a cofinal family F ⊂ ωω1 , i.e., for every g
there exists some f ∈ F such that g < f . It is an open problem whether
cof(ωω1) < 2ℵ1 is possible.

Theorem 29.13.

(i) If cof(ωω1) < 2ℵ1 then 2ℵ0 ≥ ℵ3.
(ii) If 2ℵ0 < 2ℵ1 and 2ℵ0 < ℵω1 then cof(ωω1) = 2ℵ1 .

The theorem is a consequence of this lemma:

Lemma 29.14. If there exist 2ℵ1 almost disjoint functions from ω1 into ω2

then cof(ωω1) = 2ℵ1 .

Then Theorem 29.13 follows: If 2ℵ0 ≤ ℵ2 then use Exercise 29.12(ii);
for (ii), use Theorem 29.11.

Toward the proof of Lemma 29.14, let I be an ideal on a set S. We say
that two functions f , g on S are I-disjoint if {x ∈ S : f(x) = g(x)} ∈ I. If I
and J are ideals on S and T , then I × J is the ideal on S × T

(29.8) X ∈ I × J if and only if {x ∈ S : {y ∈ T : (x, y) ∈ X} /∈ J} ∈ I.

Lemma 29.15. There exists a σ-ideal I on ω1 such that there exist ℵ2 I-
disjoint functions from ω1 into ω.
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Proof. We find such an I on ω1 × ω1: Let I = I0 × I0 where I0 is the σ-
ideal of all countable subsets of ω1 (each X ∈ I is included in the union of
ω vertical lines and the set under the graph of a function from ω1 into ω1).
Let {gα : α < ω2} be a family of ℵ2 almost disjoint functions from ω1 into ω1

(cf. Lemma 9.23), and {fβ : β < ω1} a family of ℵ1 almost disjoint functions
from ω1 into ω (Exercise 29.12(i)). For α < ω2, let hα(ξ, η) = fgα(ξ)(η), for all
(ξ, η) ∈ ω1 × ω1. It is easy to verify that hα, α < ω2, are I-disjoint functions
from ω1 into ω. ��

Lemma 29.16. If there exist 2ℵ1 almost disjoint functions from ω1 into ω2

then there exists a σ-ideal J on ω1 such that there are 2ℵ1 J-disjoint functions
from ω1 into ω.

Proof. We find such a J on ω1 × ω1: Let J = I0 × I where I0 is the ideal of
countable sets and I is the ideal given by Lemma 29.15. Let {gα : α < 2ℵ1}
be a family of almost disjoint functions from ω1 into ω2, and {fβ : β < ω2}
a family of I-disjoint functions from ω1 into ω. For α < ω2, let hα(ξ, η) =
fgα(ξ)(η), for all (ξ, η) ∈ ω1 × ω1. The functions hα, α < 2ℵ1 , are J-disjoint.

��

Proof of Lemma 29.14. By Lemma 29.16 there exist a σ-ideal J on ω1 and
a family H = {hα : α < 2ℵ1} of J-disjoint functions from ω1 into ω. Let F
be a cofinal family in ωω1 such that |F| < 2ℵ1 . There exists an f ∈ F that
eventually dominates infinitely many hα; then let A ⊂ 2ℵ1 be a countable
infinite set such that hα < f for all α ∈ A. The set {ξ < ω1 : hα(ξ) = hβ(ξ)
for some distinct α, β ∈ A} is the union of countably many sets in J , hence
belongs to J , and hence its complement is uncountable. Thus for uncountably
many ξ < ω1, the set {hα(ξ) : α ∈ A} is an infinite subset of ω. This
contradicts the fact that there exists a γ < ω1 such that for all ξ ≥ γ,
hα(ξ) < f(ξ) for all α ∈ A. ��

Exercises

29.1. If U is an ultrafilter on N and ϕ a formula, let (Un) ϕ be an abbreviation
for {n : ϕ(n)} ∈ U . Then (U + V )k ϕ(k) if and only if (Un)(V m)ϕ(m + n).

29.2. If {xk}∞k=0 is a sequence of real numbers then limU+V xk = limU ym where
ym = limV xm+n.

29.3. Let S be a minimal closed subsemigroup of a compact left-topological semi-
group and let u ∈ S. Then u + u = u.

[S + u is a continuous image of S, hence closed and S + u = S. Then {v ∈ S :
v + u = u} ⊂ S is closed and hence equals S; u + u = u follows.]

29.4. βN −N contains an idempotent element.
[By Zorn’s Lemma and by compactness, βN − N has a nonempty minimal

closed subsemigroup.]
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29.5. If a (κ, λ)-gap exists then a (λ, κ)-gap exists.
[Given {fα}α and {gβ}β, consider {g0 − gβ}β and {g0 − fα}α.]

29.6. There exists an (ω, b)-gap.
[Take constant functions as the ω-part of the gap. Then the b-part of the gap

can be constructed in the family M of monotone unbounded functions. For f ∈M
let ϕ(f) = g in M be defined by g(n) = min{k : f(k) ≥ n} and let M ′ = ϕ“M .
ϕ : (M, >) → (M ′, <) is an order isomorphism and (M ′, <) is cofinal in ωω while
(M, >) is cofinal in the family of all functions f ∈ ωω which are above the constant
functions ordered by >.]

29.7. There are no (ω,λ)-gaps for λ < b.
[The constant functions in the preceding exercise can be replaced by any <-

increasing ω-sequence of functions which shows that b is the minimal cardinal κ
such that there exists an (ω, κ)-gap.]

29.8. N is the union of an increasing ω1-sequence of Gδ sets.
[Let {fα}α, {gβ}β be an (ω1, ω1)-gap and let Aα be the complement of {h ∈ N :

fα < h < gα}.]

29.9. Let X be the set of all increasing transfinite sequences of rationals (a sub-
space of P (Q)), and let K0 be the set of all {s, t} such that s ⊂ t or t ⊂ s. The
set K0 is closed and has no uncountable homogeneous subset. Show that there are
no Hn with [Hn]2 ⊂ X −K0 such that X =

S∞
n=0 Hn.

[Let Hn be such that [Hn]2 ⊂ X−K0. Construct q0 > q1 > . . . and t0 ⊂ t1 ⊂ . . .
such that sup tn < qn, and if possible, tn ∈ Hn. Then t =

S

n tn is not a member of
any Hn.]

29.10. Assuming OCA, every uncountable subset of P (ω) contains an uncountable
chain or antichain.

[{A, B} ∈ K0 if and only if A and B are incomparable.]

29.11. It is consistent that the ideal of countable subsets of ω1 is ω3-saturated
while 2ℵ1 is large.

[Adjoin κ Cohen reals to a model of GCH. Assume that {Ai : i < ω3} are
almost disjoint. For each pair i, j there is a γi,j such that Ai ∩ Aj ⊂ γi,j is forced
by all conditions. By the Erdős-Rado Theorem (in the ground model), there exists
a subfamily of {Ai}i of size ℵ2 for which γi,j is the same γ. This gives (in V [G])
a family of ℵ2 disjoint subsets of γ, a contradiction.]

29.12. (i) There exist ℵ1 almost disjoint functions from ω1 into ω.
(ii) There exist 2ℵ1 almost disjoint functions from ω1 into 2ℵ0 .
[(i) For ξ ≤ α < ω1, let fξ(α) = ξ; this gives ℵ1 almost disjoint functions

in
Q

α<ω1
α.

(ii) For X ⊂ ω1, let fX(α) = X ∩ α; this gives 2ℵ1 almost disjoint functions
in

Q

α<ω1
P (α).]

29.13. If there is a family F of ℵ2 almost disjoint functions f : ω1 → ω then
Chang’s Conjecture fails.

[Consider a model A with the universe F ∪ω1 and the designated predicate ω1.
If (G ∪B, B) ≺ A with |G| = ℵ1 and |B| = ℵ0, then B ⊂ α for some α < ω1. Show
that f(α) �= g(α) for all f, g ∈ G, a contradiction.]
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29.14. Assume that there exists a cofinal F ⊂ ωω1 such that the set of all initial
segments of all f ∈ F has size ℵ1. Then 2ℵ0 = ℵ1.

[Let 〈tα : α < ω1〉 be an enumeration of all the initial segments, and dom tα ≤ α.
By induction on α < ω1, we construct closed subsets Kn,α of [0, 1] (n ∈ ω) such
that K0,α ⊂ K1,α ⊂ . . . ⊂ Kn,α ⊂ . . ., and the union is [0, 1]. At stage α, consider
the set K =

T

ξ∈dom tα
Ktα(ξ),ξ. If K is countable, let Kn,α = [0, 1] for all n; if K is

uncountable, choose a limit point x of K and let Kn,α = {x} ∪ {y : |x− y| ≥ 1/n}.
Now if f ∈ F then Kf =

T

α Kf(α),α is countable, and there exists some αf < ω1

such that Kf =
T

α<αf
Kf(α),α. It follows that

[0, 1] =
T

α<ω1

∞
S

n=0

Kn,α =
S

f :ω1→ω

T

α<ω1

Kf(α),α

=
S

f∈F

T

α<ω1

Kf(α),α =
S

f∈F

T

α<αf

Kf(α),α =
S

γ<ω1

T

α∈dom tγ

Ktγ(α),α,

which is a union of ℵ1 countable sets.]

Historical Notes

Hindman’s Theorem appeared in [1974]. The present proof is due to Glazer and
can be found e.g. in the book [1980] by Graham et al. The book also contains van
der Waerden’s Theorem and its generalizations. The topological proof presented
here is as in Todorčević’s book [1997]. For the Hales-Jewett Theorem, see Hales
and Jewett [1963].

Hausdorff’s Theorem appeared in Hausdorff [1909]. We follow the construction
presented in Scheepers [1993], which gives a comprehensive account of the subject of
gaps. The Open Coloring Axiom was isolated by Todorčević in [1989]; related par-
tition axioms were previously introduced by Abraham, Rubin and Shelah in [1985].
Theorem 29.8 is due to Todorčević [1989].

Theorem 29.11 as well as Exercise 29.11 are results of Baumgartner [1976]; for
almost disjoint functions see Jech and Prikry [1979]. Part (i) of Theorem 29.13 is
due to Galvin. For part (ii) and Lemma 29.14, see Jech and Prikry [1984].

Exercise 29.3 is attributed to R. Ellis; see Todorčević [1997].
Exercises 29.6 and 29.7: Rothberger [1941].
Exercise 29.8: Hausdorff [1936a].
Exercise 29.9: Todorčević.
Exercise 29.10: Abraham, Rubin and Shelah [1985]; Baumgartner [1980].
Exercise 29.13: Silver.
Exercise 29.14: Gödel.


