
30. Complete Boolean Algebras

Measure Algebras

A complete Boolean algebra B is a measure algebra if it carries a (strictly
positive probabilistic) measure, i.e., a real-valued function m on B that satis-
fies (22.1) (or cf. Definition 30.2 below). In Chapters 26 and 22 we looked at
two examples of measure algebras: The algebra Bm of (26.1), and the more
general product measure algebra defined in (22.3). We present below a the-
orem that states that this measure algebra is essentially the only measure
algebra that exists.

Throughout this section, we consider measure algebras, and for simplic-
ity assume that all the measure algebras under consideration are atomless.
Note that every measure algebra satisfies the countable chain condition, and
consequently, all questions of completeness can be reduced to σ-completeness.

If G is a subset of a measure algebra B, we say that G σ-generates B if
B is the smallest σ-subalgebra containing G. The weight of B is the least size
of G ⊂ B that σ-generates B. B is homogeneous if each B�u (with u �= 0)
has the same weight. Note that every measure algebra is the direct sum of ω
many homogeneous measure algebras.

The result that we shall prove in this section is the following:

Theorem 30.1 (Maharam). Every infinite homogeneous measure algebra
is the unique measure algebra of its weight.

If A and B are infinite homogeneous measure algebras of the same weight
and if µ and ν are strictly positive probabilistic measures on A and B, then
there exists an isomorphism f between A and B such that ν(f(a)) = µ(a) for
all a ∈ A.

We begin by introducing some terminology and presenting two lemmas
that are standard techniques of measure theory.

Definition 30.2. Let B be a complete Boolean algebra. A measure on B is
a real-valued function µ on B that satisfies

(i) µ(0) = 0,
(ii) µ(a) ≥ 0 for all a ∈ A,
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(iii) for all pairwise disjoint an, n = 0, 1, . . . ,

µ(
∞∑

n=0
an) =

∞∑
n=0

(an).

A measure µ is strictly positive if

(iv) µ(a) > 0 for all a �= 0,

and probabilistic, if also

(v) µ(1) = 1.

Finally, a function µ that satisfies (i) and (iii) is called a signed measure.

Lemma 30.3. If ν is a signed measure on B that satisfies c.c.c. then there
exists an a ∈ B such that ν(x) ≥ 0 for all x ≤ a and ν(x) ≤ 0 for all x ≤ −a.

Proof. First we claim that when ν(a) > 0 then there exists some b ≤ a such
that

(30.1) ν(b) > 0, and ν(x) ≥ 0 for all x ≤ b.

If (30.1) fails then for every b ≤ a, b �= 0, there exists an x ≤ a, x �= 0, with
ν(x) ≤ 0. Thus let W be a maximal antichain below a such that ν(x) ≤ 0 for
every x ∈ W . Then

∑
W = a and we have ν(a) ≤ 0, a contradiction.

Now let Z be a maximal antichain such that (30.1) holds for every b ∈ Z.
If ν(a) ≤ 0 for all a ∈ B then the lemma holds trivially. Otherwise, Z is
nonempty, and let a =

∑
Z. This a satisfies the lemma. ��

Lemma 30.4. Let µ and ν be measures on B and let a ∈ B be such that
ν(a) > 0. Then there exist a b ≤ a, b �= 0, and a number ε > 0 such that
ν(x) ≥ ε · µ(x) for all x ≤ b.

Proof. Let ε > 0 be such that ν(a) > ε ·µ(a) and consider the signed measure
ν−εµ on B�a. By Lemma 30.3 there exists a b ≤ a such that (ν−εµ)(x) ≥ 0
for all x ≤ b, and (ν − εµ)(x) ≤ 0 for all x ≤ a − b. Since (ν − εµ)(b) ≥
(ν − εµ)(a) > 0, we have b �= 0. ��

The next lemma is due to Fremlin:

Lemma 30.5 (Fremlin [1989]). Let A be a measure algebra and let µ be
a strictly positive measure on A. Let B be a complete subalgebra of A and let
ν be a measure on B such that ν(b) ≤ µ(b) for all b ∈ B. Assume that

(30.2) A�a �= {a · b : b ∈ B} for every a ∈ A+.

Then there exists some a ∈ A such that

(30.3) ν(b) = µ(a · b) for all b ∈ B.
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Proof. For each a ∈ A, let νa denote the measure on B defined by (30.3):
νa(b) = µ(a · b). We first prove the following consequence of (30.2): For every
a ∈ A+ and every ε > 0 there exists a c ∈ (A�a)+ such that νc(b) ≤ ε · νa(b)
for all b ∈ B.

It is enough to prove this claim for ε = 1
2 , as the general case follows by

a repeated application of the special case.
Thus let a ∈ A+. By (30.2) there exists some d < a such that d �= a · b for

every b ∈ B. Consider the signed measure 1
2νa − νd on B. By Lemma 30.3

there exists some b ∈ B such that νd(x) ≤ 1
2νa(x) for all x ∈ B�b and

νd(x) ≥ 1
2νa(x) for all x ∈ B�(−b).

If b · d > 0, we let c = b · d, and we have νc(x) ≤ 1
2νa(x) for all x ∈ B.

If b · d = 0 then d ≤ a− b, and we let c = (a− b) · (a− d). Since d �= a− b
(by (30.2)), we have c �= 0. For all x ∈ B, νc(x) ≤ νa(x) − νd(x) ≤ 1

2νa(x).
This proves the claim for ε = 1

2 and the general case follows. To prove the
lemma, let a ∈ A be a maximal (in the partial order ≤ on A) element such
that νa(b) ≤ ν(b) for all b ∈ B. We finish the proof by showing that νa = ν.

By contradiction, assume that there exists some b1 ∈ B such that νa(b1) <
ν(b1). By Lemma 30.4 there exist some b2 ≤ b1, b2 �= 0, and ε > 0 such that
(ν − νa)(x) ≥ εµ(x) for all x ∈ B�b2. Note that b2 � a, since otherwise we
would have νa(b2) = µ(b2) ≥ ν(b2).

Now we apply the earlier claim to b2 − a, and get some c ≤ b2 − a, c �= 0,
such that νc(x) ≤ ενb2−a(x) ≤ ν(x) − νa(x) for all x ∈ B. Since c · a = 0, we
have νa+c = νa + νc ≤ ν, contradicting the maximality of a. ��

Lemma 30.5 allows one to extend partial measure-preserving isomor-
phisms between homogeneous measure algebras. If µ and ν are probabilistic
measures on measure algebras A and B, then an isomorphism f of A onto B
is measure-preserving if ν(f(a)) = µ(a) for all a ∈ A.

Lemma 30.6. Let A1 and A2 be homogeneous measure algebras, both of the
same weight κ, and let µ1 and µ2 be probabilistic measures on A1 and A2.
Let B1 and B2 be complete subalgebras of A1 and A2, let f be a measure-
preserving isomorphism of B1 onto B2, and assume that B1 is σ-generated
by fewer than κ generators. Then for every a1 ∈ A1 there exist an a2 ∈ A2

and a measure-preserving isomorphism g ⊃ f of 〈B1 ∪ {a1}〉, the subalgebra
generated by B1 ∪ {a1}, onto 〈B2 ∪ {a2}〉.

Proof. First we note that since every A1�a has weight κ, the subalgebra B1

satisfies (30.2); similarly for A2 and B2. Let a1 ∈ A1; if we let ν(f(b)) =
µ1(a1 · b) for every b ∈ B1, then ν is a measure on B2 with ν ≤ µ2. By
Lemma 30.5 there exists some a2 ∈ A2 such that ν(f(b)) = µ2(a2 · f(b)) for
every b ∈ B1.

The algebra 〈B1∪{a1}〉 consists of all elements of the form b ·a1+c ·(−a1)
where b, c ∈ B1. Thus we let

(30.4) g(b · a1 + (c − a1)) = f(b) · a2 + (f(c) − a2).
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We have to verify that g is well-defined. If b ∈ B1 and b ≤ a1 then µ1(b) =
µ1(a1 ·b), and we have µ2(f(b)) = µ1(b) = µ1(a1 ·b) = ν(f(b)) = µ2(a2 ·f(b)),
and so f(b) ≤ a2. It follows that b · a1 = b′ · a1 implies f(b) · a2 = f(b′) · a2.
Similarly, one proves that if c ∈ B1 and c ≤ −a1 then f(c) ≤ −a2, and
therefore c − a1 = c′ − a1 implies f(c) − a2 = f(c′) − a2. Thus g is well-
defined.

Since µ2(f(b) · a2 + (f(c) − a2)) = µ1(b · a1 + (c − a1)), g is measure-
preserving, and a one-to-one homomorphism of 〈B1∪{a1}〉 onto 〈B2∪{a2}〉.

��
Proof of Theorem 30.1. The construction proceeds by induction. Let A and B
be homogeneous measure algebras of weight κ and let µ and ν be probabilis-
tic measures on A and B. Let {aα : α < κ} and {bα : α < κ} be gener-
ators of A and B. Inductively, we construct A0 ⊂ A1 ⊂ . . . ⊂ Aα ⊂ . . .
and B0 ⊂ B1 ⊂ . . . ⊂ Bα ⊂ . . . and measure-preserving isomorphisms
f0 ⊂ f1 ⊂ . . . ⊂ fα ⊂ . . . such that for every α, Aα is a complete subal-
gebra of A of weight < κ and aα ∈ Aα, similarly for Bα, and fα(Aα) = Bα.

At successor stages we apply Lemma 30.6 to either 〈Aα ∪ {aα+1}〉 or
〈Bα ∪ {bα+1}〉. At a limit stage α, we consider the algebras Ãα =

⋃
β<α Aβ

and B̃α =
⋃

β<α Bβ . These are subalgebras of A and B, not necessarily
complete. However, the completion Aα of Ãα can be described as follows:
The elements of Aα are limits of convergent countable sequences in Aα (see
Exercise 30.1). The measure-preserving isomorphism f̃ =

⋃
β<α fβ between

Ãα and B̃α extends to a unique measure-preserving isomorphism between Aα

and the completion Bα of B̃α (use Exercise 30.2). ��

Cohen Algebras

Let κ be an infinite cardinal. We consider the notion of forcing Pκ that adds
κ Cohen reals: conditions in Pκ are finite 0–1 functions with domain ⊂ κ. Let

(30.5) Cκ = B(Pκ)

denote the complete Boolean algebra corresponding to Pκ. Throughout this
section, B denotes the completion of a Boolean algebra B.

Definition 30.7. A Boolean algebra B is a Cohen algebra if B = Cκ for
some infinite cardinal κ.

In Theorem 30.10 below we give a combinatorial characterization of Cohen
algebras.

Definition 30.8. A subalgebra A of a Boolean algebra B is a regular subal-
gebra,

A ≤reg B,

if for any X ⊂ A, if
∑A

X exists then
∑A

X =
∑B

X .
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The following is easily established:

Lemma 30.9. The following are equivalent :

(i) A ≤reg B.
(ii) Every maximal antichain in A is maximal in B.
(iii) For every b ∈ B+ there exists an a ∈ A+ such that for every x ∈ A+,

if x ≤ a then x · b �= 0. ��

See Exercises 30.3–30.9 for further properties of ≤reg.
If A is a subalgebra of B and b ∈ B, then the projection of b to A, prA(b),

is the smallest element a ∈ A, if it exists, such that b ≤ a. (Similarly, prA(b)
is the greatest a ∈ A such that a ≤ b.)

The density of a Boolean algebra B is the least size of a dense subset
of B. B has uniform density if for every a ∈ B+, B�a has the same density.

If X is a subset of a Boolean algebra B, we denote

(30.6) 〈X〉 = the subalgebra generated by X,

and if A is a subalgebra of B and b1, . . . , bn ∈ B,

(30.7) A(b1, . . . , bn) = 〈A ∪ {b1, . . . , bn}〉.

Theorem 30.10. Let B be an infinite Boolean algebra of uniform density.
B is a Cohen algebra if and only if the set {A ∈ [B]ω : A ≤reg B} contains
a closed unbounded set C with the property

(30.8) if A1, A2 ∈ C then 〈A1 ∪ A2〉 ∈ C.

If B is countable, the condition is trivially satisfied as C = {B} is a closed
unbounded subset of [B]ω .

First we prove the forward direction of the theorem: If B is a dense subal-
gebra of Cκ, then B has the property stated in Theorem 30.10. (In particular,
Cκ itself has the property.) Let B be a dense subalgebra of Cκ. For every
S ⊂ κ, consider the forcing PS consisting of finite 0–1 functions with do-
main ⊂ S, and let CS = B(PS). Note that CS ≤reg Cκ.

Now let C be the set of all countable subalgebras A of B with the property
that there exists a countable S ⊂ κ such that

(30.9) A is dense in B ∩ CS and B ∩ CS is dense in CS .

The following lemma will establish the forward direction.

Lemma 30.11. The set C is closed unbounded in [B]ω, satisfies (30.8), and
every A ∈ C is a regular subalgebra of B.
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Proof. Let A ∈ C and let S be a countable subset of κ such that (30.9) holds.
Since B ∩CS is dense in CS and CS ≤reg Cκ, we have B ∩CS ≤reg Cκ, and
since B is dense in Cκ, we have B ∩ CS ≤reg B. As A is dense in B ∩ CS ,
it follows that A ≤reg B. To see that C is unbounded, note that there are
arbitrarily large countable sets S such that B ∩ CS is dense in CS (because
Cκ has the countable chain condition). Thus for any a ∈ B we can find
a countable S and a countable algebra A ⊂ B such that a ∈ A, that A is
dense in B ∩ CS and B ∩ CS is dense in CS .

To show that C is closed, let {An}∞n=0 be an increasing chain in C and
let A =

⋃∞
n=0 An; let {Sn}∞n=0 be witnesses for An ∈ C. The sets Sn form

a chain, and if we let S =
⋃∞

n=0 Sn, it follows that A is dense in B ∩CS and
B ∩ CS is dense in CS .

Now we verify (30.8); we shall show that if A1 is dense in CS1 and A2 is
dense in CS2 then A = 〈A1 ∪ A2〉 is dense in CS where S = S1 ∪ S2. Let
b ∈ C+

S ; we shall find a1 ∈ A1 and a2 ∈ A2 such that 0 �= a1 · a2 ≤ b.
Let p ∈ PS be such that p ≤ b, and let p1 = p�S1, p2 = p�S2. First we

find some a1 ∈ A+
1 such that a1 ≤ p1 and then some q1 ∈ PS1 such that

q1 ≤ a1. Let q2 = p2�(S2 − S1) ∪ (q1�S2); we have q2 ∈ PS2 . Now we find
some a2 ∈ A+

2 such that a2 ≤ q2. It remains to show that a1 · a2 �= 0: There
exists some r2 ∈ PS2 with r2 ≤ a2, and then r2∪(q1�(S1 − S2)) ∈ PS is below
both a1 and a2. ��

For the opposite direction, let B be an infinite Boolean algebra of uniform
density κ and let C be a closed unbounded set of countable regular subalge-
bras of B that satisfies (30.8). First we note that B satisfies the countable
chain condition: See Exercise 30.10. Let

(30.10) S = {〈
⋃

X〉 : X ⊂ C}.

We claim that every A ∈ S is a regular subalgebra of B. Let A = 〈
⋃

X〉 and
let W be a maximal antichain in A; we verify that W is maximal in B. As
W is countable, we have W ⊂ 〈

⋃
Y 〉 for some countable Y ⊂ X . Since C is

closed unbounded and satisfies (30.8) it follows that A0 = 〈
⋃

Y 〉 ∈ C and
hence A0 ≤reg B. Since W is a maximal antichain in A0 and A0 ≤reg B, W is
maximal in B.

A set G ⊂ B is independent if

±x1 · ±x2 · . . . · ±xn �= 0

for all distinct x1, . . . , xn ∈ G. If G is independent then 〈G〉 = FrG is the
unique free algebra over G; note that the completion of FrG is CG. Our goal
is to find an independent G ⊂ B such that 〈G〉 is dense in B.

Let A be a subalgebra of a Boolean algebra D. An element u ∈ D is
independent over A if a · u �= 0 �= a − u for all a ∈ A+.

Lemma 30.12. Let D be a complete Boolean algebra of uniform density and
let A be a complete subalgebra of D of smaller density. For every v ∈ D there
exists some u ∈ D independent over A such that v ∈ A(u).
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Proof. Exercises 30.11 and 30.12. ��

Let {dα : α < κ} be a dense subset of B. If A1 and A2 are subalgebras
of B we say that A1 and A2 are co-dense if for every a1 ∈ A+

1 there exists
some a2 ∈ A+

2 with a2 ≤ a1, and for every a2 ∈ A+
2 there exists some a1 ∈ A+

1

with a1 ≤ a2.
We construct, by induction on α < κ, two continuous chains G0 ⊂ G1 ⊂

. . . ⊂ Gα ⊂ . . . and B0 ⊂ B1 ⊂ . . . ⊂ Bα ⊂ . . . such that

(i) Bα ∈ S,
(ii) Aα = 〈Gα〉 and Bα are co-dense,
(iii) dα ∈ Bα+1,
(iv) Gα+1 − Gα is countable,
(v) Gα is an independent subset of B.

(30.11)

This will prove that B is a Cohen algebra, because by (iii),
⋃

α Bα is dense
in B, hence

⋃
α Aα is dense in B, and by (v),

⋃
α Aα is the free algebra FrG

(where G =
⋃

α Gα).
At limit stages, we let Bα =

⋃
β<α Bβ and Gα =

⋃
β<α Gβ . To construct

Gα+1 and Bα+1, we proceed as follows: Since Aα is dense in Bα, Aα = Bα is
a complete subalgebra of B. Moreover, if u1, . . . , un ∈ B then Aα(u1, . . . , un)
is a complete subalgebra of B.

Since |Aα| < κ, we find, by Lemma 30.12, for every b ∈ B some u ∈ B
independent over Aα such that b ∈ Aα(u). More generally, if b, u1, . . . , un ∈
B, then there exists some u independent over Aα(u1, . . . , un) such that b ∈
Aα(u1, . . . , un, u).

Given u ∈ B, there exists a countable set {bn}∞n=0 ⊂ B such that∑∞
n=0 bn = u. Then there exists some X ∈ C such that {bn}n ⊂ X and so

〈Bα∪X〉 is dense in Aα(u). Therefore there exist a countable set {un}∞n=0 ⊂ B
and some Bα+1 ∈ S such that dα ∈ Bα+1, that Gα+1 = Gα ∪ {un}∞n=0 is
independent and that Aα+1 = 〈Gα+1〉 and Bα+1 are co-dense. ��

The following property is a natural weakening of the characterization of
Cohen algebras in Theorem 30.10:

Definition 30.13. An infinite Boolean algebra B of uniform density is semi-
Cohen if [B]ω has a closed unbounded set of countable regular subalgebras.

An immediate consequence of the definition is that if B is semi-Cohen
and |B| ≤ ℵ1 then B is a Cohen algebra. This is because [B]ω has a closed
unbounded subset that is a chain, and therefore satisfies (30.8).

The important feature of semi-Cohen algebras is that the property is
hereditary:

Theorem 30.14. If B is a semi-Cohen algebra and if A is a regular subal-
gebra of B of uniform density then A is semi-Cohen.
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Proof. [B]ω has a closed unbounded subset of regular subalgebras of B. Since
A ≤reg B, there exists for every b ∈ B+ some a ∈ A+ such that there is no
x ∈ A+ with x ≤ a− b. Let F : B+ → A+ be a function that to each b ∈ B+

assigns such an a ∈ A+. Let C ⊂ [B]ω be a closed unbounded set of regular
subalgebras closed under F .

If X ∈ C then A∩X ≤reg X because X is closed under F . Every maximal
antichain in A ∩ X is maximal in X , hence in B (because X ≤reg B), hence
in A. Therefore A ∩ X ≤reg A.

There is a closed unbounded set D ⊂ [A]ω such that D ⊂ {X∩A : X ∈ C};
D witnesses that A is semi-Cohen. ��

Corollary 30.15. If B is semi-Cohen and has density ℵ1 then B is a Cohen
algebra.

Proof. B has a dense subalgebra A of size ℵ1. By Theorem 30.14, A is also
semi-Cohen, and hence Cohen. But A = B, and hence B is Cohen. ��

Corollary 30.16. Every complete subalgebra of Cκ of uniform density ℵ1

is isomorphic to Cω1 . ��

The property of being semi-Cohen is also preserved by completion. This
can be proved using the following lemma:

Lemma 30.17. A Boolean algebra B of uniform density is semi-Cohen if
and only if B is Cohen in V P , where P is the collapse of |B| onto ℵ1 with
countable conditions.

Proof. As |B| = ℵ1 in V P , it suffices to show that B is semi-Cohen if and
only if it is semi-Cohen in V P .

As P does not add new countable sets, [B]ω remains the same in V P .
By property (iii) of Lemma 30.9, the relation ≤reg is absolute. Let S be the
set of all regular subalgebras of B. If S contains a closed unbounded set C
then C is closed unbounded in V P . Conversely, if S does not contain a closed
unbounded set, then it does not contain one in V P . ��

Corollary 30.18. B is semi-Cohen if and only if its completion is semi-
Cohen.

Proof. Let B be semi-Cohen and let A = B. Let P be the ω-closed collapse
of |A| to ℵ1. In V P , A has a dense subalgebra B that is a Cohen algebra,
hence A itself is Cohen. Therefore A is semi-Cohen.

The converse follows from Theorem 30.14. ��

Not every semi-Cohen algebra is a Cohen algebra, and Corollary 30.16
does not extend to density ℵ2. Koppelberg and Shelah gave an example of
a complete subalgebra of Cω2 of (uniform density ℵ2) that is not isomorphic
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to Cω2 . Another example, due to Zapletal, is the forcing that adds ℵ2 even-
tually different reals: Let

P = {z : z is a finite function with dom(z) ⊂ ω2 and ran(z) ⊂ ω<ω},

and let z ≤ w if z is a coordinate-wise extension of w and for α �= β in dom(w),
if n ∈ dom(z(α) − w(α)) and n ∈ dom(z(β)), then z(α)(n) �= z(β)(n).

If B = B(P ) then B can be embedded in Cω2 but is not isomorphic
to Cω2 . We omit the proof.

Suslin Algebras

Definition 30.19. A Suslin algebra is a complete atomless Boolean algebra
that is ω-distributive and satisfies the countable chain condition.

If T is a normal Suslin tree, and PT is the forcing with T upside down, then
B(PT ) is a Suslin algebra. Conversely, if B is a Suslin algebra of density ℵ1

then B = B(PT ) for some Suslin tree T ; in general, if B is a Suslin algebra
then B has a complete subalgebra BT such that BT = B(PT ) for some Suslin
tree T .

Theorem 30.20. If B is a Suslin algebra then |B| ≤ 2ℵ1 .

Proof. Let κ = 2ℵ1 . Assume that there is a Suslin algebra B such that
|B| > κ. We shall reach a contradiction.

Without loss of generality we assume that |B�u| > κ for all u ∈ B+. We
shall construct a κ-sequence

(30.12) B0 ⊂ B1 ⊂ . . . ⊂ Bα ⊂ . . . (α < κ)

of complete subalgebras of B, each of size ≤ κ. If D ⊂ B and |D| ≤ κ, then
there are κℵ1 = κ D-valued names for relations on ω1; thus for every such D
let ṘD

γ , γ < κ, be a fixed enumeration of all such names. Let α �→ (βα, γα)
be the canonical mapping of κ onto κ × κ; we recall βα ≤ α for all α.

The sequence (30.12) is constructed as follows: We let B0 = {0, 1}; if
α is a limit ordinal, then Bα is the complete subalgebra of B generated by⋃

ν<α Bν . If |Bν | ≤ κ for each ν < α, then |Bα| < κ. At successor steps, we
construct Bα+1 as follows: Let D = Bβα and let Ṙ = ṘD

γα
. If

(30.13) ‖(ω1, Ṙ) is a Suslin tree‖Bα = 1,

if Ċ ∈ V Bα is the Suslin algebra (in V Bα) corresponding to the Suslin tree
and if Bα ∗ Ċ is (isomorphic to) a complete subalgebra of B, then we let
Bα+1 = Bα ∗ Ċ. Otherwise, we let Bα+1 = Bα. In either case, if |Bα| ≤ κ,
then |Bα+1| ≤ κ.
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Now let Bκ be the complete subalgebra of B generated by
⋃

α<κ Bα.
Clearly, |Bκ| ≤ κ. Let Ȧ ∈ V Bκ be the complete Boolean algebra B : Bκ

(in V Bκ). Since both B and Bκ satisfy the c.c.c., we have

‖Ȧ satisfies the c.c.c.‖Bκ = 1.

Similarly, since both B and Bκ are ω-distributive, we have

‖Ȧ is ω-distributive‖Bκ = 1.

We have assumed that |B�u| > κ for all u �= 0, and we also have |Bκ| ≤ κ.
Thus

‖ |Ȧ| > κ‖Bκ = 1

and consequently

‖Ȧ is not atomic‖Bκ = 1.

Now we work inside V Bκ ; There exists a Ṫ ⊂ Ȧ such that (Ṫ ,≥Ȧ) is
a normal Suslin tree; let ḂT ⊂ Ȧ be the Suslin algebra, subalgebra of Ȧ,
generated by Ṫ . Let Ṙ be a binary relation on ω1 isomorphic to Ṫ .

The name Ṙ is Bκ-valued; and since Bκ satisfies the countable chain
condition, Ṙ involves at most ℵ1 elements of Bκ. Since cf κ > ℵ1, there exists
a β < κ such that Ṙ ∈ V Bβ ; furthermore, let γ < κ be such that Ṙ is the
γth Bβ-valued binary relation on ω1, Ṙ = ṘBβ

γ .
Let α < κ be such that β = βα and γ = γα. Since

‖(ω1, Ṙ) is a Suslin tree‖Bκ = 1,

it follows that

‖(ω1, Ṙ) is a Suslin tree‖Bα = 1.

If Ċ denotes the corresponding Suslin algebra in V Bα , we have

Bα ∗ Ċ ⊂ Bκ ∗ ḂT ⊂ Bκ ∗ Ȧ = B

and it follows that Bα+1 = Bα ∗ Ċ. However, forcing with a Suslin tree
destroys its Suslinity, and we have

‖(ω1, Ṙ) is not a Suslin tree‖Bα+1 = 1,

a contradiction. ��

Suslin algebras of size 2ℵ1 can be constructed by forcing (cf. Jech [1973b]),
or in L (an unpublished result of Laver).
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Simple Algebras

Definition 30.21. A complete Boolean algebra B is simple if it is atomless
and if it has no proper atomless complete subalgebra.

The problem of existence of simple algebras originated in forcing and
was first discussed by McAloon in [1971]. It is clear that a simple algebra is
minimal, i.e., when forcing with it, there is no intermediate model between
the ground model and the generic extension. Minimality, when formulated in
Boolean-algebraic terms, is the following property:

(30.14) If A is a complete atomless subalgebra of B then there exists a par-
tition W such that A�w = B�w for all w ∈ W .

(An example of a minimal algebra is B(P ) where P is the Sacks forcing.)
Simple algebras, in addition to being minimal, are rigid, i.e., have no

nontrivial automorphisms (Exercise 30.13). It turns out that the conjunction
of these two properties also implies that the algebra is simple (Exercise 30.14).
Thus we have:

Theorem 30.22. An atomless complete Boolean algebra is simple if and
only if it is rigid and minimal. ��

An example of a rigid and minimal algebra is BP where P is Jensen’s
forcing from Theorem 28.1 that produces a minimal ∆1

3 real. BP is minimal
because the generic real has minimal degree of constructibility, and rigid
because it is definable. It follows that if V = L then a simple complete
Boolean algebra exists.

In L, one can also construct Suslin algebras that are simple (see Exercises
30.15 and 30.16 for the construction of a rigid Suslin algebra).

Simple complete Boolean algebras have been constructed in ZFC; we refer
the reader to Jech-Shelah’s papers [1996] and [2001]. The former constructs
a countably generated simple algebra and uses a modification of the Sacks
forcing to produce a minimal definable real. The latter construction is some-
what less complicated and yields forcing that produces a minimal definable
uncountable set.

Infinite Games on Boolean Algebras

Infinite games have many applications in set theory, particularly in descrip-
tive set theory, and we shall investigate these methods in some detail in the
chapter on Axiom of Determinacy. In the present section we look into some
properties of complete Boolean algebras, and of forcing, that are formulated
in terms of infinite games.



596 Part III. Selected Topics

Let B be a Boolean algebra, and let G be the following infinite game
between two players I and II: I chooses a nonzero element a0 ∈ B and then
II chooses some b0 ∈ B+ such that b0 ≤ a0. Then I plays (chooses) a1 ≤ b0

and II plays b1 ≤ a1 (both �= 0). The game continues, with I’s moves an ∈ B+,
n < ω, and II’s moves bn ∈ B+, n < ω, such that

(30.15) a0 ≥ b0 ≥ a1 ≥ b1 ≥ . . . ≥ an ≥ bn ≥ . . . .

Player I wins the game if
∏∞

n=0 an = 0; player II wins otherwise: if the
chain (30.15) has a nonzero lower bound. A strategy for player I is a function
σ : B<ω → B; it is a winning strategy if I wins every play (30.15) in which
I follows σ, i.e., for each n, an = σ(〈b0, . . . , bn−1〉). A (winning) strategy for II
is defined similarly. If player I has a winning strategy then II does not, and
vice versa, and in general, neither player need have a winning strategy.

Lemma 30.23. Player I has a winning strategy in G if and only if B is not
ω-distributive.

Proof. Let σ be a winning strategy for I. Let a0 = σ(〈〉); we shall find parti-
tions Wn of a0 without a common refinement. Let W0 = {a0}. Having con-
structed W0, . . . , Wn, consider all finite sequences a0 ≥ b0 ≥ . . . ≥ an ≥ bn

where the an’s are chosen by σ and ak ∈ Wk for all k ≤ n. Let Wn be a max-
imal antichain whose members are elements an+1 = σ(〈b0, . . . , bn〉) where
a0 ≥ b0 ≥ . . . ≥ an ≥ bn is as described. The Wn’s are partitions of a0 and
do not have a common refinement.

Conversely, if B is not ω-distributive, there exist some a0 and open dense
sets Dn below a0 such that

⋂∞
n=0 Dn = ∅. We define σ(〈〉) = a0, and if a0 ≥

b0 ≥ . . . ≥ an ≥ bn is such that the an’s are chosen by σ, let σ(〈b0, . . . , bn〉) be
some element of Dn below bn. The function σ is a winning strategy for I. ��

Let P be a separative notion of forcing, and consider the infinite game G
in which players I and II take turns to play a descending chain a0 ≥ b0 ≥
. . . ≥ an ≥ bn ≥ . . . in P . I wins if and only if the chain does not have a lower
bound. It is easy to see that either player has a winning strategy in this game
if and only if the same player has a winning strategy in G played on B(P )
(Exercise 30.17).

Definition 30.24. A separative notion of forcing P (a Boolean algebra B)
is strategically ω-closed if player II has a winning strategy in the game G.

Being strategically ω-closed is a hereditary property. If B is strategically
ω-closed and if A is a regular subalgebra of B then also A is strategically
ω-closed (Exercise 30.18).

It is obvious that if P is ω-closed then player II has a winning strategy
in G. Hence if B has a dense ω-closed subset, then B is strategically ω-closed.
The converse is true for small algebras:
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Theorem 30.25 (Foreman). If B has density ℵ1 and is strategically ω-
closed, then it has a dense ω-closed subset.

Proof. Let {dα : α < ω1} be a dense set in B. By induction on α, we find
partitions Wα of 1 such that Wβ refines Wα if α < β, and every Wα has some
w ≤ dα; at limit stages, we use ω-distributivity of B. Let T =

⋃
α<ω1

Wα;
T is dense in B and is a tree. Let σ be a winning strategy for II in the game G
on T . We shall find a dense subset P of T that is ω-closed.

If t ∈ T , we call p = 〈a0, b0, . . . , an, bn〉 a partial play above t if the bk’s
are played by σ and bn > t. We claim:

(30.16) (∀t ∈ T ) (∃t∗ < t) if p is a partial play above t∗ and if u > t∗ then
there is a partial play q ⊃ p above t∗ with last move b such that
u > b > t∗.

To prove the claim, we construct t0 > t1 > . . . > tn > . . . such that t0 = t
and that for every n and every partial play p above tn, if u > tn then there
exist some q ⊃ p with last move b and some m such that u > b > tm. This is
possible because there are only countably many such p’s and u’s. Therefore
there exists a play 〈a0, b0, . . . , an, bn, . . .〉 that is played according to σ and
that is cofinal in 〈tn〉∞n=0. As σ is a winning strategy, 〈tn〉∞n=0 has a lower
bound, let t∗ be a maximal lower bound (it exists because T is a tree). This
proves (30.16). Now let

P = {s ∈ T : for some descending chain {tn}∞n=0, s is a maximal lower bound
of {t∗n}∞n=0}.

The set P is ω-closed: Given s0 > s1 > . . . in P , find {tn}∞n=0 such that
t∗0 > s0 > t∗1 > . . .. The chain {t∗n}∞n=0 has a lower bound (because there
exists a cofinal play by σ) and its maximal lower bound is in P .

The set P is dense in T : Given t ∈ T , let {tn}∞n=0 be the chain t, t∗,
t∗∗, . . . . There exists a cofinal σ-play, and so {tn}∞n=0 has a lower bound. The
maximal lower bound is in P . ��

As a corollary, we get the following characterization of strategically ω-
closed forcings:

Corollary 30.26. B is strategically ω-closed if and only if B is a regular
subalgebra of some algebra that has an ω-closed dense subset.

Proof. Sufficiency follows from Exercise 30.18. Thus assume that B is strate-
gically ω-closed and let σ be a winning strategy for II. Let P be the collapse
with countable conditions of |B| to ℵ1. In V P , σ is still a winning strategy, and
by Theorem 30.25, B has an ω-closed dense subset Ė. Let A = B(P × B+);
B is a regular subalgebra of A. Let D = {(p, b) : p � b ∈ Ė}; D is dense
in A. D is ω-closed: Let {(pn, bn)}n be descending and let p =

⋃
n pn. Then

p forces that {bn}n is descending, and there is a b ∈ B+ such that p � (b ∈ Ė
and b ≤ bn for all n). Hence (p, b) is a lower bound of {(pn, bn)}n. ��
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Foreman’s Theorem does not extend to ℵ2: It is consistent that there is
a strategically ω-closed complete Boolean algebra of density ℵ2 that does not
have an ω-closed dense subset (Jech and Shelah [1996]).

There are many other infinite games that can be used to define properties
of forcing and Boolean algebras, see Jech [1984]. We’ll show in Chapter 31
that proper forcing admits such characterization. See also Exercise 30.19.

Exercises

Let B be a σ-complete Boolean algebra. If {an}n<ω is a sequence in B, let
lim supn an =

Q∞
n=0

P

k≥n an and lim infn an =
P∞

n=0

Q

k≥n an. If lim supn an =

lim infn an = a, we say that {an}n<ω converges, and let limn an = a.

30.1. If A is a subalgebra a measure algebra B then the complete subalgebra of B
σ-generated by A consists of all limits of convergent seequences in A.

30.2. If µ is a measure on a measure algebra B and if a = limn an, then µ(a) =
limn µ(an).

30.3. If A is a finite subalgebra of B then A ≤reg B.

30.4. If A ≤reg B and B ≤reg C then A ≤reg C.

30.5. If A is a subalgebra of B, B is a subalgebra of C, and A ≤reg C then
A ≤reg B.

30.6. If A is a dense subalgebra of B then A ≤reg B.

30.7. A ≤reg B if and and only if A ≤reg B.

30.8. If A and B are complete then A ≤reg B if and only if A is a complete
subalgebra of B.

30.9. If prA(b) exists for all b ∈ B, then A ≤reg B.

30.10. If {A ∈ [B]ω : A ≤reg B} is stationary, then B has the countable chain
condition.

[Let W be a maximal antichain and consider the model M = (B,≤, W ). There
exists an elementary submodel A of M such that A ≤reg B. W ∩A is maximal in A,
therefore in B, and hence W = W ∩A.]

30.11 (Vladimirov’s Lemma). Let D be a complete Boolean algebra of uni-
form density and A a complete subalgebra of smaller density. Then there exists an
element u ∈ D independent over A.

[Let X = {x ∈ D+ : there is no a ∈ A+ with no a ∈ A+ with a ≤ x}; X is
dense. Let Y = {prA(x) : x ∈ X}; Y is dense. Let W ⊂ Y be a maximal antichain,
and let Z ⊂ X be such that W = {prA(z) : z ∈ Z}. Let u =

P

Z. If a ∈ A+, let
z ∈ Z be such that a · prA(z) �= 0; we also have a · (prA(z) − z) �= 0. Hence u is
independent over A.]
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30.12. Under same assumptions, for every v ∈ D − A there exists some u ∈ D
independent over A such that v ∈ A(u).

[Let z = prA(v)+−prA(v). If z = 0, let u = v. Otherwise, apply Exercise 30.11
to D�z, to get some w ≤ z independent over A�z. Then let u = w + (v − z). We
have v ∈ A(u) since v = prA(v) + u · prA(v); also, u is independent over A.]

30.13. Every simple complete Boolean algebra is rigid.
[Let π be a nontrivial automorphism. There exist disjoint a and b such that

π(a) = b. Each x has a decomposition x = a · x + b · x + y; let A be the complete
subalgebra {x : b · x = π(a · x)}. A is atomless and a /∈ A.]

30.14. Every rigid minimal complete Boolean algebra is simple.
[Let B be minimal and A a complete atomless subalgebra such that A �= B.

There exists a z /∈ A such that A�z = B�z. Let u1 = z − prA(z), v1 = prA(z)− z.
Let 0 �= v ≤ v1 be such that A�v = B�v, and let u = u1 · prA(v). For all a ∈ A
let π(a · u) = a · v; show that π is an automorphism between B�u and B�v. Then
π extends to a nontrivial automorphism of B.]

30.15. Let T be a normal Suslin tree and let BT be the corresponding Suslin
algebra. If π is an automorphism of BT then there is a closed unbounded set C ⊂ ω1

such that π�T C is an automorphism of T C , where T C = {t ∈ T : o(t) ∈ C}.
30.16. If V = L then there exists a Suslin tree T such that BT is rigid.

[Use ♦ and Exercise 30.15 to destroy all potential automorphisms of BT .]

30.17. Player I (player II) has a winning strategy in G played on P if and only if
the same player has one in G on B(P ).

30.18. If a complete Boolean algebra B is strategically ω-closed and if A is a com-
plete subalgebra of B then A is strategically ω-closed.

[Let σ be a winning strategy on B; then the following σA is a winning strategy
on A: When I plays a0, let b0 = σ(a0) and let σA(a0) = prA(b0). When I plays
a1 ≤ σA(a0), let b1 = σ(〈a0, a1 · b0〉) and σA(〈a0, a1〉) = prA(b1). And so on.]

30.19. Let B be a Boolean algebra of uniform density. Consider the infinite game
on B in which two players select elements a0, b0, . . . , an, bn, . . . and II wins if and
only if the set {an, bn}∞n=0 generates a regular subalgebra of B. Show that II has
a winning strategy if and only if B is semi-Cohen.

[If σ is a winning strategy then the set C of all countable subalgebras closed
under σ is a closed unbounded set of regular subalgebras; the converse is similar.]

Historical Notes

Maharam’s Theorem 30.1 appeared in [1942]; the present proof is based on Fremlin’s
article [1989]. Theorem 30.10 appeared in Balcar, Jech and Zapletal [1997] improv-
ing a similar earlier result of Koppelberg [1993]. The [1997] investigates semi-Cohen
algebra, the concept introduced by Fuchino and Jech. Corollary 30.16: Koppelberg.
Theorem 30.20 is due to Solovay.

Rigid minimal algebras were studied by McAloon in [1971]. Constructions of
a simple complete Boolean algebra in ZFC appeared in Jech and Shelah [1996]
and [2001].

The game G on a Boolean algebra was introduced in Jech [1978]; this and similar
games were studied in Jech [1984]. Foreman’s Theorem 30.25 appeared in [1983].

Exercises 30.11 and 30.12: Vladimirov [1969].
Exercises 30.13 and 30.14: McAloon [1971].


