
31. Proper Forcing

Definition and Examples

Proper forcing was introduced by S. Shelah who isolated properness as the
property of forcing that is common to many standard examples of forcing
notions and that is preserved under countable support iteration.

Definition 31.1. A notion of forcing (P, <) is proper if for every uncount-
able cardinal λ, every stationary subset of [λ]ω remains stationary in the
generic extension.

Properness is a generalization of both the countable chain condition and
of being ω-closed. The following two lemmas are the analogs of Lemma 22.25
and Lemma 23.7 (for κ = ℵ1):

Lemma 31.2. If P satisfies the countable chain condition then for every
uncountable λ, every closed unbounded set C ⊂ [λ]ω in V [G] has a subset
D ∈ V that is closed unbounded in V . Hence every stationary set S ⊂ [λ]ω

remains stationary in V [G].

Proof. Let p � Ċ is closed unbounded; let Ḟ be a name for a function
from λ<ω into λ such that p � CḞ ⊂ Ċ (where CḞ is the set of all clo-
sure points of Ḟ—see Theorem 8.28). Let f : λ<ω → [λ]ω be the function

f(e) = {α ∈ λ : ‖Ḟ (e) = α‖ �= 0}.

f(e) is countable because P satisfies the countable chain condition. Let
D = Cf .

Since p � Ḟ (e) ∈ f(e), if x is closed under f then p � Ḟ (e) ∈ x, and so
p � D ⊂ Ċ. ��

Lemma 31.3. If P is ω-closed then every stationary set S ⊂ [λ]ω remains
stationary in V [G].

Proof. Let p � Ḟ : λ<ω → λ. We shall find a condition q ≤ p and some x ∈ S
such that q � Ḟ (x<ω) ⊂ x.

Consider the model (Hκ,∈, (P, <), p, Ḟ , �) where κ ≥ λ is sufficiently
large. Let C be the closed unbounded set in [Hλ]ω of all countable elementary
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submodels of the model. By Theorem 8.27 there exists some N ∈ C such that
N ∩ λ ∈ S. Let x = N ∩ λ.

Enumerate x<ω = 〈en : n < ω〉 and construct a sequence of conditions
p = p0 ≥ p1 ≥ . . . ≥ pn ≥ . . . such that for each n there exists an αn ∈ N ∩ λ
such that pn � Ḟ (en) = αn (by elementarity). Let q be a lower bound
for {pn}n. Then q � Ḟ (x<ω) ⊂ x. ��

Proper forcing does not collapse ℵ1. In fact, an easy argument shows that
a stronger property is true:

Lemma 31.4. If P is proper then every countable set of ordinals in V [G] is
included in a set in V that is countable in V .

Proof. Let X be a countable set of ordinals in V [G] and let λ be uncountable
in V such that X ⊂ λ. The set ([λ]ω)V remains stationary in V [G] and
therefore meets the set {A ∈ [λ]ω : A ⊃ X}, which is a closed unbounded set
in V [G]. Thus X ⊂ A for some A ∈ ([λ]ω)V . ��

We shall now formulate a technical condition that is equivalent to proper-
ness of a forcing notion, and that will be used to prove that properness is
preserved under countable support iteration. We refer the reader to the ex-
ercises for other equivalents of properness.

Let (P, <) be a fixed notion of forcing. We say that λ is sufficiently large
if λ is a cardinal and λ > 2|P |. A model M is an elementary submodel of
(Hλ,∈, <, . . .) where Hλ is the collection of all sets hereditarily of cardinality
less than λ, < is some unspecified well-ordering of Hλ (to allow for inductive
constructions), and the structure of Hλ contains all the relevant parameters;
in particular, M contains (P, <).

Definition 31.5. A condition q is (M, P )-generic if for every maximal an-
tichain A ∈ M , the set A ∩ M is predense below q.

The following lemma (the proof is a routine exercise) illuminates the con-
cept of (M, P )-genericity:

Lemma 31.6. Let λ be sufficiently large, let M ≺ Hλ be such that P ∈ M ,
and let q ∈ P . The following are equivalent :

(i) q is (M, P )-generic.
(ii) If α̇ ∈ M is an ordinal name then q � α̇ ∈ M , i.e.,

∀r ≤ q ∃s ≤ r ∃β ∈ M s � α̇ = β.

(iii) q � Ġ ∩ M is a filter on P generic over M . ��

Theorem 31.7. A forcing notion P is proper if and only if for all sufficiently
large λ there is a closed unbounded set C of elementary submodels M ≺
(Hλ, . . .) such that

(31.1) ∀p ∈ M ∃q ≤ p (q is (M, P )-generic).
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Proof. First we show that the condition is necessary. Let P be proper and
let λ be sufficiently large. Toward a contradiction assume that the set of all
models M ≺ Hλ for which (31.1) fails is stationary. By normality there exist
a stationary set S ⊂ [Hλ]ω and a condition p ∈ P such that for every q ≤ p
and every M ∈ S, q is not (M, P )-generic.

Now let V [G] be a generic extension with G � p, and let us argue in V [G].
Every maximal antichain A below p (in V ) meets G in a unique condition qA.
Let

C = {M ≺ (Hλ)V : if A ∈ M then qA ∈ M};
C is closed unbounded. Since S remains stationary in V [G], there exists some
M ∈ S ∩ C.

For each A ∈ M we have
∑

(A ∩ M) ∈ G (because qA ∈ G), and by
genericity,

∏
A∈M

∑
(A ∩ M) ∈ G. Let q ≤

∏
A∈M

∑
(A ∩ M). Then q ≤ p

and q is (M, P )-generic, contradicting M ∈ S.
Now we prove that the condition is sufficient. Let P be a forcing notion

that satisfies the condition of the theorem; we shall prove that P preserves
stationary sets. Let λ be an uncountable cardinal and let S ⊂ [λ]ω be sta-
tionary. Let Ḟ be a name for a function Ḟ : λ<ω → λ and p ∈ P . We shall
find a q ≤ p and x ∈ S such that q � x is closed under Ḟ .

Let µ ≥ λ be sufficiently large. By the assumption there exists a closed
unbounded set C ⊂ [Hµ]ω such that (31.1) holds for every M ∈ C. By
Theorem 8.27, {M ∩λ : N ∈ C} contains a closed unbounded set in [λ]ω and
hence there exists some M ∈ C with M ∩ λ ∈ S.

Let q ≤ p be (M, P )-generic. We finish the proof by showing that q �
M∩λ is closed under Ḟ . Let e ∈ (M∩λ)<ω; we shall show that q � Ḟ (e) ∈ M .
There is A ∈ M such that A is a maximal antichain below p and every w ∈ A
decides Ḟ (e). Now if r ≤ q forces Ḟ (e) = α, then because A ∩ M is predense
below q, r is compatible with some w ∈ A ∩ M and so w � Ḟ (e) = α. Since
α is definable from w, Ḟ , and e, we have α ∈ M . ��

Another characterization of properness is formulated in terms of infinite
games.

Definition 31.8. Let P be a forcing notion and let p ∈ P . The proper game
(for P , below p) is played as follows: I plays P -names α̇n for ordinal numbers,
and II plays ordinal numbers βn. Player II wins if there exists a q ≤ p such
that

(31.2) q � ∀n ∃k α̇n = βk.

Theorem 31.9. A forcing notion P is proper if and only if for every p ∈ P ,
II has a winning strategy for the proper game.

Proof. Exercise 31.3. ��

We shall now present some examples of proper forcing. The following
concept is due to J. Baumgartner:
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Definition 31.10. A notion of forcing (P, <) satisfies Axiom A if there is
a collection {≤n}∞n=0 of partial orderings of P such that p ≤0 q implies p ≤ q
and for every n, p ≤n+1 q implies p ≤n q, and

(i) if 〈pn : n ∈ ω〉 is a sequence such that p0 ≥0 p1 ≥1 . . . ≥n−1 pn ≥n . . .
then there is a q such that q ≤n pn for all n;

(ii) for every p ∈ P , for every n and for every ordinal name α̇ there exist
a q ≤n p and a countable set B such that q � α̇ ∈ B.

Lemma 31.11. If P satisfies Axiom A then P is proper.

Proof. Let P satisfy Axiom A and let p ∈ P . The following is a winning
strategy for II in the game from Exercise 31.2: When I plays α̇n, let II find
a condition pn ≤n−1 pn−1 (with p0 ≤ p) and a countable set Bn such that
pn � α̇n ∈ Bn. If q is a lower bound for {pn}∞n=0 then q witnesses that II wins
the game. ��

Example 31.12. Every ω-closed forcing satisfies Axiom A.
Let p ≤n q if and only if p ≤ q, for all n. ��

Example 31.13. Every c.c.c. forcing satisfies Axiom A.
Let p ≤n q if and only if p = q, for all n > 0. ��

Example 31.14. The notions of forcing that add a Sacks real, a Mathias
real or a Laver real satisfy Axiom A.

For Sacks reals, see (15.26). For Laver forcing, see (28.17); Mathias forcing
is similar. ��

In Exercises 31.5 and 31.6 we give Baumgartner’s example of proper forc-
ing that does not satisfy Axiom A.

Iteration of Proper Forcing

It is obvious that a two-step iteration of proper forcing is proper: If P pre-
serves stationary sets and in V P , Q̇ preserves stationary sets then P ∗ Q̇
preserves stationary sets. What is more important however is that proper-
ness is preserved under countable support iteration. The present section is
devoted to the proof of this.

Theorem 31.15 (Shelah). If Pα is a countable support iteration of {Q̇β :
β < α} such that every Q̇β is a proper forcing notion in V Pα�β , then Pα is
proper.

Toward the proof of Theorem 31.15 we first observe that the properness
condition in Theorem 31.7 can be somewhat simplified:
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Lemma 31.16. P is proper if and only if for every p ∈ P , every sufficiently
large λ and every countable M ≺ (Hλ,∈, <) containing P and p, there exists
a q ≤ p that is (M, P )-generic.

Proof. Let P be proper and p ∈ P . Let µ = 2|P | and λ > µ; we recall that < is
a well-ordering of Hλ. By Theorem 31.7 the set of all countable elementary
submodels of Hµ with property (31.1) contains a closed unbounded set, and
so it contains CF for some function F : H<ω

µ → Hµ. If F is the least such
function in Hλ then every M ≺ (Hλ,∈, <) is closed under F and so M ∩Hµ

satisfies (31.1). Hence every such M with P, p ∈ M satisfies the condition of
the lemma. ��

In order to prove that an iteration Pα is proper, we wish to show that if
λ is sufficiently large and M ≺ Hλ contains Pα then for every p ∈ Pα ∩ M
there is some (M, Pα)-generic q ∈ Pα such that q �α p ∈ Ġ. We prove this
by induction; the main point is that the inductive condition is somewhat
stronger:

Lemma 31.17. Let Pα be a countable support iteration of proper forcing
notions. Let λ be sufficiently large and let M ≺ (Hλ,∈, <) be countable, with
Pα ∈ M . For every γ ∈ α∩M , every q0 ∈ Pγ = Pα�γ that is (M, Pγ)-generic,
and every ṗ ∈ V Pγ such that

(31.3) q0 �γ ṗ ∈ (Pα ∩ M) and ṗ�γ ∈ Ġγ

there exists an (M, Pα)-generic condition q ∈ Pα such that q�γ = q0 and
q �α ṗ ∈ Ġα.

Ġα and Ġγ are the canonical names for generic filters on Pα and Pγ

respectively. Letting γ = 0 (and q0 the trivial condition 1 in P0 = {1}), we
get the desired result.

Lemma 31.17 is proved by induction on α. In order to handle the successor
stages we need first to prove the special case α = 2, γ = 1; then the inductive
step from α to α + 1 is a routine modification of the special case:

Lemma 31.18. Let P be proper, let Q̇ ∈ V P be such that �P Q̇ is proper
and let R = P ∗ Q̇. Let M ≺ Hλ be countable, with R ∈ M . For every
(M, P )-generic q0 ∈ P and every ṗ ∈ V P such that

q0 �P ṗ ∈ (M ∩ R) and ṗ0 ∈ ĠP

(where ṗ is a name for (ṗ0, ṗ1) and ĠP is generic on P ) there is some q̇1 ∈ V P

such that (q0, q̇1) is (M, R)-generic and (q0, q̇1) �R ṗ ∈ ĠR.

Proof. To find the name q̇1, let G be a generic filter on P containing q0. Let
p = ṗG and q = Q̇G; then p ∈ M ∩ R and p = (p0, ṗ1) with p0 ∈ G. Since
ṗ1 ∈ M , we have p1 ∈ M [G]∩Q, and since Q is proper, there exists (in V [G])
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a stronger condition q1 that is (M [G], Q)-generic. (Here we use the fact that
M [G] ≺ H

V [G]
λ which we leave as an exercise.) This describes q̇1.

That (q0, q̇1) is (M, R)-generic follows from q0 being (M, P )-generic and
q0 � q̇1 is (M [ĠP ], Q̇)-generic (this is routine). Also, since q0 � ṗ0 ∈ ĠP and
q0 � q̇1 ≤ ṗ1, we conclude that (q0, q̇1) �R ṗ ∈ ĠR. ��
Proof of Lemma 31.17. We assume that α is a limit ordinal; hence α ∩ M
is a countable set of ordinals without a maximal element. Let 〈γn : n ∈ ω〉
be an increasing set of ordinals in M with γ0 = γ, cofinal in α ∩ M . Let
{Dn : n ∈ ω} be an enumeration of al dense subsets of Pα that are in M . Let
q0 ∈ Pγ0 be (M, Pγ0)-generic and let ṗ be a V Pγ0 -name such that (31.3) holds.
We shall find a (M, Pα)-generic condition q ∈ Pα such that q�γ0 = q0 and
q �α ṗ ∈ Ġα.

We construct q as the limit of conditions qn ∈ Pγn such that qn+1�γn = qn,
and such that each qn is (M, Pγn)-generic.

Along with the qn we construct Pγn -names ṗn such that ṗ0 = ṗ and that
for each n, qn forces

(i) ṗn ∈ (Ṗα ∩ M),
(ii) ṗn ≤ ṗn−1,
(iii) ṗn ∈ Dn−1,
(iv) ṗn�γn ∈ Ġγn .

(31.4)

Assume that qn and ṗn have been constructed. To find ṗn+1, let G be a Pγn -
generic filter such that qn ∈ G, and let pn = ṗG

n . We have pn ∈ Pα ∩ M
and pn�γn ∈ G. Since qn is (M, Pγn)-generic and Dn ∈ M , we can find
a condition pn+1 ≤ pn in Dn ∩M such that pn+1�γn ∈ G. This describes the
Pγn+1-name ṗn+1. Now we apply the inductive condition to γn+1 (in place
of α) and γn (in place of γ), for qn and ṗn+1�γn+1; we obtain a qn+1 ∈ Pγn+1

that forces (31.4) (with n replaced by n + 1).
Now we let q be the limit of the qn. Clearly, q ∈ Pα and q�γ0 = q0. We

complete the proof by showing that for every n, q �α ṗn ∈ Ġα. This implies
not only that q �α ṗ ∈ Ġα, but also that q is (M, Pα)-generic, because
q � ṗn ∈ (Dn−1 ∩ M).

To verify that q �α ṗn ∈ Ġα, let G be a generic filter on Pα and let
pn = ṗG

n . We have pn ∈ M and pn�γk ∈ Gγk
∩M for all k ≥ n. Thus if we let

δ = sup(α ∩ M), we have pn�δ ∈ Gδ. Since pn ∈ M , its support is included
in M and therefore pn�δ = pn. It follows that pn ∈ G. ��

A significant consequence of Theorem 31.15 is that countable support it-
eration of proper forcing preserves ℵ1. As for cardinals above ℵ1, one often
needs additional assumptions on the iterates Q̇β to calculate the chain condi-
tion. The easiest case was already stated in Exercise 16.20: If P is a countable
support iteration of length κ ≥ ℵ2 such that each P �β, β < κ, has a dense
subset of size < κ, then P satisfies the κ-chain condition. In particular, iter-
ation of length ω2 with each P �β having a dense set of size ℵ1, satisfies the
ℵ2-chain condition, and all cardinals are preserved.
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A somewhat better result is the following which we state without a proof.
For a proof, see Abraham’s paper [∞] in the Handbook of Set Theory. [She-
lah’s book [1998] contains more general chain condition theorems.]

Theorem 31.19. Assume CH. If P is a countable support iteration of length
κ ≤ ω2 of proper forcings Q̇β of size ℵ1, then P satisfies the ℵ2-chain condi-
tion. ��

The Proper Forcing Axiom

When we replace the countable chain condition in Martin’s Axiom MAℵ1

by properness we obtain a more powerful statement, the Proper Forcing Ax-
iom (PFA):

Definition 31.20 (Proper Forcing Axiom (PFA)). If (P, <) is a proper
notion of forcing and if D is a collection of ℵ1 dense subsets of P , then there
exists a D-generic filter on P .

It turns out that PFA implies that 2ℵ0 = ℵ2, and therefore PFA is a gen-
eralization of Martin’s Axiom MA. Unlike MA, consistency of PFA requires
large cardinals: It follows from the results stated later in this chapter that at
least a Woodin cardinal is necessary. The consistency proof given below uses
a supercompact cardinal.

Theorem 31.21. If there exists a supercompact cardinal then there is a
generic model that satisfies PFA.

Proof. The proof follows loosely the proof of the consistency of MA. Let κ
be a supercompact cardinal. The model is obtained by countable support
iteration of length κ. Each notion of forcing used in the iteration is proper
and has size < κ, thus both ℵ1 and all cardinals ≥ κ are preserved. Cardinals
between ℵ1 and κ are collapsed and so κ becomes ℵ2, and the model satisfies
2ℵ0 = ℵ2.

In order to show that the resulting model satisfies PFA, we use a Laver
function (see Theorem 20.21); this makes it possible to handle all potential
proper forcing notions in κ steps.

Let f : κ → Vκ be a Laver function. We construct a countable support
iteration Pκ of {Q̇α : α < κ} as follows: At stage α, if f(α) is a pair (Ṗ , Ḋ)
of Pα-names such that Ṗ is a proper forcing notion and D is a γ-sequence
of dense subsets of Ṗ for some γ < κ, we let Q̇α = Ṗ ; otherwise, Q̇α is the
trivial forcing.

Let G be a generic filter on Pκ, the countable support iteration of {Q̇α :
α < κ}. Since each Q̇α is proper, Pκ is proper and therefore ℵ1 is preserved.
Each Pα (the iteration of {Q̇β : β < α}) has size less than κ (because
f(α) ∈ Vα) and so Pκ has the κ-chain condition; hence all cardinals ≥ κ
are preserved.
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Lemma 31.22. In V [G], if P is proper and D = {Dα : α < γ}, with γ < κ,
is a family of dense subsets of P , then there exists a D-generic filter on P .

This lemma will complete the proof of the theorem: For every γ < κ,
let P be the forcing that collapses γ onto ω1 with countable conditions, and
for α < γ let Dα = {p ∈ P : α ∈ ran(p)}. By Lemma 31.22, there exists
a collapsing map of γ onto ω1. Thus κ = ℵ2 in V [G]. Now Lemma 31.22
implies that V [G] satisfies PFA. Moreover, 2ℵ0 = ℵ2 in V [G]: On the one
hand, PFA implies MAℵ1 and so 2ℵ0 > ℵ1, and on the other hand, 2ℵ0 ≤ κ
because |Pκ| = κ.

Proof of Lemma 31.22. Let Ṗ and Ḋ be Pκ-names for P and D. Let λ > 22|P |

be sufficiently large; we may also assume that P ⊂ λ. Since f is a Laver
function, there exists an elementary embedding j : V → M with critical
point κ such that j(κ) > λ, Mλ ⊂ M , and (jf)(κ) = (Ṗ , Ḋ).

P is a proper forcing in V [G]. This is witnessed by some closed unbounded
set C ⊂ [Hη]ω of countable models for some η with 2|P | < η < λ. Since Mλ ⊂
M and Pκ has the κ-chain condition, V [G] satisfies that M [G]λ ⊂ M [G],
and therefore C is closed unbounded in M [G]. Therefore P is proper in the
model M [G].

Now consider the forcing notion j(Pκ) in M . It is a countable support
iteration of length j(κ) using the Laver function j(f). Since j�Vκ is the iden-
tity, we have j(Pκ)�κ = Pκ. As (jf)(κ) = (Ṗ , Ḋ) and P is proper in M [G],
it follows that (jQ̇)κ = Ṗ . Hence

j(Pκ) = Pκ ∗ Ṗ ∗ Ṙ

for some Ṙ.
Let H ∗ K be a V [G]-generic ultrafilter on Ṗ ∗ Ṙ. In V [G ∗ H ∗ K] we

extend the elementary embedding j : V → M to an elementary embedding
j∗ : V [G] → M [G ∗ H ∗ K] as follows: For every Pκ-name ẋ, let

j∗(ẋG) = j(ẋ)G∗H∗K .

The definition of j∗ does not depend on the choice of the name ẋ, since
‖ẋ = ẏ‖ ∈ G implies ‖j(ẋ) = j(ẏ)‖ ∈ G ∗ H ∗ K (because j(p) = p for every
p ∈ Pκ). Similarly, ‖ϕ(ẋ)‖ ∈ G implies ‖ϕ(j(ẋ))‖ ∈ G ∗ H ∗ K, and so j∗ is
elementary. Clearly, j∗ extends j.

The filter H on P is V [G]-generic and thus meets every Dα, α < γ. Let
E = {j(p) : p ∈ H}. Since j�λ ∈ M , the set E is in M [G ∗ H ∗ K], and
generates a filter on j∗(P ) that is j∗(D)-generic. Thus

M [G ∗ H ∗ K] � there exists a j∗(D)-generic filter on j∗(P )

and since j∗ : V [G] → M [G ∗ H ∗ K] is elementary, there exists in V [G] a D-
generic filter on P . ��
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Applications of PFA

Our first goal is to outline the proof of the following theorem:

Theorem 31.23 (Todorčević). PFA implies 2ℵ0 = ℵ2.

As the first step we show that the Open Coloring Axiom (29.6) is a con-
sequence of PFA. If [X ]2 = K0 ∪ K1 with K0 open, let us call Z ⊂ X
0-homogeneous if [Z]2 ⊂ K0 and 1-homogeneous if [Z]2 ⊂ K1. It is clear that
the closure of a 1-homogeneous set is also 1-homogeneous, and so in (29.6)
we can further assume that the sets Hn are closed.

The proof of OCA from PFA uses the following technical lemma that we
state without proof:

Lemma 31.24 (Todorčević). Assume 2ℵ0 = ℵ1. Let X ⊂ R and [X ]2 =
K0 ∪ K1 with K0 open, and assume that X is not the union of countably
many closed 1-homogeneous sets. Then there exists an uncountable Y ⊂ X
such that in any uncountable set W ⊂ {p ∈ [Y ]<ω : p is 0-homogeneous}
there exist p �= q such that p ∪ q is 0-homogeneous.

Proof. See Theorem 4.4 of Todorčević [1989]. (To apply the theorem, let F (x)
be the closure of {y ∈ X : x < y and {x, y} ∈ K1}.) ��

Theorem 31.25. PFA implies OCA.

Proof. Let X ⊂ R and let [X ]2 = K0 ∪ K1 with K0 open, and assume that
X is not the union of countably many closed 1-homogeneous sets. We shall
use PFA to find an uncountable 0-homogeneous set.

Let P be the forcing (15.2) that adds a subset of ω1 with countable con-
ditions. By Exercise 15.14, V P satisfies 2ℵ0 = ℵ1. Since P does not add new
reals, it does not add new closed sets of reals and so in V P , X is not the
union of countably many closed 1-homogeneous sets.

By Lemma 31.24 there exists an uncountable Ẏ ∈ V P such that if we let
Q̇ = {p ∈ [Ẏ ]<ω : p is 0-homogeneous} (and p is stronger than q if p ⊃ q)
then the forcing notion Q̇ satisfies the countable chain condition. Hence P ∗Q̇
is proper.

Let 〈yα : α < ω1〉 be an enumeration of Ẏ in V P . For each α < ω1,
the set Dα = {(p, q) ∈ P × Q̇ : p � yα ∈ q} is a dense set in P ∗ Q̇. Let
D = {Dα : α < ω1}. By PFA there exists a D-generic filter G on P ∗ Q̇, and
then the set Y =

⋃
{q : (p, q) ∈ G} is an uncountable 0-homogeneous set. ��

Theorem 31.25 appears in Todorčević [1989]. Its proof does not require
the full force of PFA. What we used is a weaker statement that is obtained
by replacing “proper notion of forcing” in Definition 31.20 by “Axiom A
forcing of cardinality ≤ 2ℵ0 .” This axiom is weaker than PFA (and stronger
than MAℵ1) and is consistent relative to ZFC+“there exists a weakly compact
cardinal” (see Baumgartner [1984]).
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The consistency of related partition axioms was first established in Abra-
ham, Rubin and Shelah [1985].

By Theorems 31.25 and 29.8, PFA implies OCA which implies b = ℵ2.
Thus to complete the proof of Theorem 31.23 it is enough to show that
PFA implies b = 2ℵ0 . We shall use another technical lemma of Todorčević
that we state without a proof.

Let κ ≤ 2ℵ0 be a regular uncountable cardinal and let F : [κ]2 → ω be
a partition. Let P be the forcing with countable conditions that adds a subset
of ω1. In V P , |κ| = ℵ1 and cf κ = ω1; let Ċ ∈ V P be a closed unbounded
subset of κ of order-type ω1, consisting of limit ordinals. For every n and k let
Ṙk

n be the forcing where conditions are finite k-homogeneous (for F ) subsets
of Ċ + n = {α + n : α ∈ Ċ}. Ṙk

n adds a k-homogeneous subset Ġk
n of Ċ + n.

(In general, Ṙk
n need not satisfy the countable chain condition.) Let Q̇k

n be
the product of ω copies of Ṙk

n, and for every real r ∈ ωω, let Q̇r = Q̇r(Ċ) be
the product of Q̇r(n)

n , n < ω.

Lemma 31.26. There exists a partition F : [b]2 → ω such that in V P , for
every Ċ as above and every r ∈ ωω, Q̇r(Ċ) satisfies the countable chain
condition.

Proof. See Bekkali [1991], page 49. The partition F is obtained by using
oscillating real numbers, cf. Chapter 1 of Todorčević [1989]. ��

Lemma 31.27. PFA implies b = 2ℵ0 .

Proof. Let F : [b]2 → ω be as in Lemma 31.26. Let P be the ω-closed forcing
that adds a subset of ω1, and let Ċ ∈ V P be a closed unbounded subset of b,
of order-type ω1.

Let r ∈ ωω. The forcing P ∗ Q̇r(Ċ) is proper and we apply PFA to obtain
a sufficiently generic filter G×

∏
n

∏
i Gn,i. Let C(r) = C = ĊG; C is a closed

unbounded subset of some δ(r) = δ < b, cf δ = ω1, and for each n, each Gn,i

is an r(n)-homogeneous subset of C + n. Let Cn,i = Gn,i − n; by genericity,
we have C =

⋃
i<ω Cn,i for each n, and

(31.5) r(n) = k if and only if ∀i ∀α, β ∈ Cn,i F (α + n, β + n) = k.

We claim that if r �= s then δ(r) �= δ(s).
Let n be such that r(n) �= s(n). Assuming that δ(r) = δ(s) = δ, the set

C(r) ∩ C(s) is closed unbounded in δ, and we can find i and j such that
Cn,i(r) ∩ Cn,j(s) is unbounded. Let α < β be in this unbounded set; then
by (31.5), F (α + β, β + n) = r(n) = r(s), a contradiction.

Thus we have produced a one-to-one mapping of ωω into b. ��

The next theorem establishes the consistency strength of PFA (see the
discussion following the proof):

Theorem 31.28 (Todorčević). PFA implies that �κ fails for every un-
countable cardinal κ.
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Proof. Let κ be an uncountable cardinal, assume that �κ holds, and let
〈Cα : α ∈ Lim(κ+)〉 be a square-sequence (cf. (23.4)).

Let T be the tree whose nodes are limit ordinals below κ+, and β ≺ α if
β ∈ Lim(Cα). Since 〈Cα〉α is a square-sequence, T has no κ+-branch.

Let λ be sufficiently large, and consider countable elementary submod-
els M of Hλ such that 〈Cα : α < κ+〉 ∈ M ; let δM =

∑
(M ∩κ+). An elemen-

tary chain is a sequence 〈Mα : α < ω1〉 of elementary submodels of Hλ such
that Mα ⊂ Mβ and Mα ∈ Mβ whenever α < β, and Mα =

⋃
β<α Mβ if α is

a limit ordinal. If E is a finite subset of ω1 then an E-chain is 〈Mα : α ∈ E〉
such that each Mα is an elementary submodel of Hλ, and Mα ∪ {Mα} ⊂ Mβ

for α < β in E.
We now define a forcing notion P as follows: A condition p ∈ P is a pair

(〈Nα : α ∈ E〉, f) where

(i) E is a finite subset of ω1 and 〈Nα : α ∈ E〉 is an E-chain such
that there exists an elementary chain 〈Mα : α < ω1〉 such that
Nα = Mα for all α ∈ E,

(ii) f is a function from {δNα : α ∈ E} into ω such that f(γ) �= f(δ)
whenever γ ≺ δ.

(31.6)

A condition q is stronger than p if p = q�E.
Note that (i) resembles the forcing that adds a closed unbounded set with

finite conditions, and (ii) resembles the forcing that specializes an Aronszajn
tree.

Lemma 31.29. P is proper.

Proof. We omit the proof, as it is similar to the proof of properness in Exer-
cise 31.5 (and using the fact that (T,≺) has no κ+-branch). ��

Now we use PFA to reach a contradiction. Let G be a sufficiently generic
filter on P . The filter G yields an elementary chain 〈Nα : α < ω1〉 and a closed
unbounded set {δα : α < ω1} (where δα = δNα) with supremum γ. There is
a closed unbounded set C ⊂ ω1 such that for all α ∈ C, δα is a limit point
of Cγ . Since δα ≺ δβ whenever α < β ∈ C, it follows that {δα : α ∈ C} is an
ω1-chain in T .

On the other hand, the filter G yields a specializing function on {δα :
α < ω1}, that is a function F with values in ω such that F (δα) �= F (δβ)
whenever δα ≺ δβ . A contradiction. ��

The proof of Theorem 31.28 has been modified by Magidor to show that
under PFA, even a weak version of � fails (we shall discuss these versions
of � in Chapter 38). It has been proved by Schimmerling that the failure of
those principles imply an inner model for a Woodin cardinal. Thus we have:

Theorem 31.30 (Schimmerling). If PFA holds then there exists an inner
model of “there exists a Woodin cardinal.” ��
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Martin’s Axiom MAℵ1 implies that there are no Suslin trees, and more-
over, that every Aronszajn tree is special. PFA implies a stronger result. If
T is a normal ω1-tree and C ⊂ ω1 a closed unbounded set, then T �C is the
tree {t ∈ T : o(t) ∈ C}. Two trees T1 and T2 are club-isomorphic if there
exists a closed unbounded C such that T1�C and T2�C are isomorphic.

Theorem 31.31. If PFA holds then any two normal Aronszajn trees are
club-isomorphic.

Proof. Let T1 and T2 be two normal Aronszajn trees. Consider the forcing
with finite conditions (E, f) such that

(i) E is a finite subset of ω1,
(ii) dom(f) is a subtree of T1�E in which every branch has size |E|;

similarly for ran(f) ⊂ T2�E,
(iii) f us an isomorphism.

(31.7)

We omit the proof that P is proper and refer the reader to Todorčević [1984],
Theorem 5.10.

A sufficiently generic filter on P yields an uncountable set A and an
isomorphism between T1�A and T2�A, which easily extends to T1�C where
C is the closure of A. ��

We present one more consequence of PFA, due to J. Baumgartner (com-
pare with Theorem 28.24):

Theorem 31.32. If PFA holds then there are no ℵ2-Aronszajn trees.

Proof. Assume that T is an ℵ2-Aronszajn tree. Let P be the forcing that adds
a subset of ω1 with countable conditions. Since 2ℵ0 = ℵ2, P collapses ω2 and
so there is in V P a closed unbounded subset Ċ of ω2, of order-type ω1. The
tree T has no new branches (this is proved as in Lemma 27.10, because the
levels of T have size ℵ1 < 2ℵ0). Thus U̇ = T �Ċ is in V P an ω1-tree with no
ω1-branches.

Now let Q̇ ∈ V P be the specializing forcing for U̇ , as in Theorem 16.17.
Q̇ satisfies the countable chain condition, and so P ∗ Q̇ is proper.

Let G be a sufficiently generic filter on P ∗Q̇. It yields a closed unbounded
subset C of some γ < ω2, a tree U = T �C, and a specializing function f :
U → ω. This is a contradiction, since a special tree has no ω1-branches, while
every t ∈ T at level γ produces an ω1-branch in U . ��
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Exercises

31.1. If P is strategically ω-closed then P is proper.

The following two exercises present equivalent versions of the proper game:

31.2. Let p ∈ P . Player II has a winning strategy in the proper game if and only if
II has a winning strategy in the game where I plays ordinal names α̇n and II plays
countable sets of ordinals Bn, and II wins if some q ≤ p forces ∀n ∃k α̇n ∈ Bk.

31.3. P is proper if and only if for every p ∈ P , II has a winning strategy in the
following game: At move n, I plays a maximal antichain An and II responds by
playing countable sets Bn

0 ⊂ A0, . . . , Bn
n ⊂ An. II wins if for some q ≤ p, ∀n

S∞
k=n Bk

n is predense below q.
[In the forward direction, let λ be sufficiently large and let C be a closed un-

bounded set of models M ≺ Hλ that satisfy (31.1) and p ∈ M . The following is
a winning strategy for II: When I plays An, let II choose some Mn ∈ C such that
Mn ⊃Mn−1 and An ∈Mn, and let Bn

k = Ak∩Mn, k = 0, . . . , n. Let M =
S∞

n=0 Mn

and let q ≤ p be (M, P )-generic. Since An ∩M =
S∞

k=0 Bk
n, II wins.

Conversely, let σ be a winning strategy for II, and let λ be sufficiently large
with σ ∈ Hλ. Show that for every M ≺ Hλ such that P, p, σ ∈ M there is some
(M, P )-generic q ≤ p (by playing a game in which I plays successively all maximal
antichains A ∈M). Let Cp be the closed unbounded set of all such M ; the diagonal
intersection �p Cp witnesses that P is proper.]

31.4. If P satisfies Axiom A and p ∈ P then II has a winning strategy in the
following game (more difficult for player II than the proper game): I plays ordinal
names α̇n and II plays countable sets of ordinals Bn; II wins if some q ≤ p forces
∀n α̇n ∈ Bn.

Adding a closed unbounded set with finite conditions: A condition p ∈ P
is a finite function with dom(p) ⊂ ω1, ran(p) ⊂ ω1 such that there exists a normal
function f : ω1 → ω1 with f ⊃ p. A condition q is stronger than p if q ⊃ p. If
G is generic then fG =

S{p : p ∈ G} is a normal function. Note that if α = ωβ

(an indecomposable ordinal) and p ⊂ α× ω is a condition then p ∪ {(α, α)} is also
a condition.

31.5. Let P be as above and let p ∈ P . Then II has a winning strategy in the game
from Exercise 31.3. Hence P is proper.

[When I plays An, II finds some indecomposable αn > αn−1 such that for all
k ≤ n

(∀β < α)(∃γ < α)(∀p ⊂ γ × γ)(∃q ⊂ γ × γ) q ∈ Ak

(and q is compatible with p), and plays Bn
k = {p ∈ Ak : p ⊂ αn × αn}.]

31.6. Let P be as above. Then I has a winning strategy in the game from Exer-
cise 31.4. Hence P does not satisfy Axiom A.

[Let ḟ be the name for fG. At move n, player I chooses an indecomposable
ordinal αn greater than Bn−1 and plays ḟ(αn).]

31.7. Let P be the ω-closed forcing for collapsing ω2 to ω1 with countable condi-
tions. There exists a set D of ℵ2 dense sets for which there is no D-generic filter.

[For α < ω2, let Dα = {p ∈ P : α ∈ ran(p)}.]

PFA+ is the following statement: If P is proper, if D = {Dα : α < ω1} are
dense sets and if � Ṡ ⊂ ω1 is stationary, then there exists a D-generic filter G such
that ṠG is stationary (where ṠG = {α : ∃p ∈ G p � α ∈ Ṡ}).
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31.8. PFA+ is consistent relative to a supercompact cardinal.
[Modify the proof of Theorem 31.21.]

31.9. PFA+ implies that for every regular κ ≥ ω2, every stationary set A ⊂ Eκ
ω

reflects at some γ of cofinality ω1.
[Let A ⊂ Eκ

ω be stationary. Let P consist of closed countable subsets of κ,
ordered by end-extension. P is ω-closed and adds a closed unbounded subset Ċ ⊂ κ
of order-type ω1. A remains stationary and so A∩ Ċ is a stationary subset of Ċ; let
Ṡ = f−1(A ∩ Ċ) where f is the isomorphism between ω1 and Ċ. If G is sufficiently
generic such that ṠG is stationary, then A ∩ ĊG is stationary in γ = sup ĊG.]

PFA− is the statement: If P is proper such that |P | ≤ ℵ1 and if D = {Dα :
α < ω1} are dense then there exists a D-generic filter. In [1982] Shelah proves that
PFA− is consistent relative to ZFC only.

31.10. PFA− implies that any two normal Aronszajn trees are club-isomorphic.
[The forcing in (31.7) has size ℵ1.]

Historical Notes

Proper forcing was introduced by Shelah, cf. [1982] and [1998]. The iteration The-
orem 31.15 is due to Shelah; our treatment follows Abraham’s article [∞]. The
proper game was formulated independently by Shelah and C. Gray.

Proper Forcing Axiom was introduced by Baumgartner [1984]; earlier (Baum-
gartner [1983]) he introduced Axiom A. Theorem 31.21 is due to Baumgartner.

Theorem 31.23: Todorčević [1989], see also Bekkali [1991]. (The claim in
Veličković [1992] to this result cannot be substantiated.)

Theorem 31.25: Todorčević [1989]; Abraham, Rubin and Shelah [1985].
Theorem 31.28: Todorčević [1984].
Theorem 31.31: Abraham and Shelah [1985].
Theorem 31.32: Baumgartner [1984].
The forcing for adding a closed unbounded set with finite conditions is due to

Baumgartner [1983].
Exercises 31.8, 31.9: Baumgartner [1984].
Exercise 31.10: Abraham and Shelah [1985].


