
32. More Descriptive Set Theory

Π1
1 Equivalence Relations

Theorem 32.1 (Silver). If E is a Π1
1 equivalence relation on N then either

E has at most ℵ0 equivalence classes or there exits a perfect set of mutually
inequivalent reals.

Thus every Π1
1 (and in particular) Borel equivalence relation has either at

most countably many or 2ℵ0 equivalence classes. This can be viewed as a gen-
eralization of the perfect set property for analytic sets (Theorem 11.18); cf.
Exercise 32.1. The theorem does not extend to Σ1

1, as there exists a Σ1
1 equiv-

alence relation with exactly ℵ1 equivalence classes (Exercise 32.2).
We present a proof of Theorem 32.1 that is due to Leo Harrington. We

start with an easy lemma.

Lemma 32.2. Let E be a meager equivalence relation on N . Then there
exist a perfect set of inequivalent reals.

Proof. Let {Dn}n be dense open sets in N×N such that N 2−E ⊃
⋂∞

n=0 Dn.
We construct a binary tree of finite sequences {us : s ∈ Seq({0, 1})} ⊂ Seq
such that for every n, if |s| = |t| = n and s �= t, then O(us) × O(ut) ⊂ Dn.

This is done by induction on the length of s. If the us have been defined
for all s ∈ {0, 1}n, we consider successively all possible pairs (s�i, t�j), and
using the density of Dn+1, successively extend each us�i until O(us�i) ×
O(ut�j) ⊂ Dn+1 for all s, t ∈ {0, 1}n and i, j = 0, 1.

For each f ∈ {0, 1}ω let af be the unique member of
⋂∞

n=0 O(uf�n). The
set {af : f ∈ {0, 1}ω} is perfect, and if f �= g then (af , ag) /∈ E. ��

We shall use a version of Lemma 32.2 for a different topology on N ×N .
Toward the proof let us recall some basic facts about the property of Baire.
In particular, Lemmas 11.16 and 11.17 as well as the fact that the σ-algebra
of sets with the Baire property is closed under the Suslin operation A, remain
true in every second countable space (i.e., space that has a countable basis).

We shall prove Silver’s Theorem for (lightface) Π1
1 equivalence relations;

the proof relativizes to Π1
1(a) for every real parameter a.

Definition 32.3. The Σ1
1-topology on N is the topology with basic open sets

being all the Σ1 subsets of N .
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The Σ1
1-topology has a countable base and is larger than the standard

topology, as every basic open set O(s) in N is Σ0
1.

Lemma 32.4. The Σ1
1-topology satisfies the Baire Category Theorem.

Proof. Exercise 32.3. ��

Lemma 32.5. If X is comeager in the Σ1
1-topology then for every nonempty

Σ1
1 subset A of N ×N , A ∩ (X × X) �= ∅.

Proof. The lemma states that X ×X is dense in the Σ1
1-topology on N ×N

(which is larger than the product of the Σ1
1-topology). If D is a dense open

set in the Σ1
1-topology then D ×N is dense open in the Σ1

1-topology on N 2:
This is because if A �= ∅ is a Σ1

1 subset of N 2 then its projection is Σ1
1 and

hence meets D.
Let X ⊃

⋂∞
n=0 Dn where each Dn is dense open. Then X × X ⊃⋂∞

n=0(Dn × N ) ∩
⋂∞

n=0(N × Dn), and the latter set is dense, by the Baire
Category Theorem applied to the Σ1

1-topology on N ×N . ��

Given a Π1
1 equivalence relation E on N , consider the set that is the

complement of the union of all Σ1
1 sets contained in some equivalence class:

(32.1) H = {a ∈ N : for every Σ1
1 set U , if a ∈ U then there is a b ∈ U with

(a, b) /∈ E}.

Note that if H is empty then every equivalence class is the union of Σ1
1 sets

and therefore there are at most ℵ0 equivalence classes. We shall prove that if
H �= ∅ then there exists a perfect set of inequivalent reals.

Lemma 32.6. H is a Σ1
1 set.

Proof. First note that if an equivalence class A of E contains a nonempty
Σ1

1 set U then A is Π1
1:

x ∈ A ↔ ∀y (y ∈ U → x E y).

Then by the separation principle there exists a ∆1
1 set V such that U ⊂

V ⊂ A. It follows that

(32.2) H = {a : for every ∆1
1 set U , if a ∈ U then ∃b ∈ U with (a, b) /∈ E}.

The quantification “for every ∆1
1 set” in (32.2) can be replaced by “for every

Borel code for a ∆1
1 set” and since we are dealing only with lightface ∆1

1 sets,
this can be replaced by a number quantifier ∀n. Similarly, “a ∈ U” and
“b ∈ U” are ∆1

1 properties, and it follows that H is Σ1
1. ��

Lemma 32.7. For every a ∈ N , Ea∩H is meager in the Σ1
1-topology, where

Ea = {b : (a, b) ∈ E}.
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Proof. If H = ∅ then there is nothing to prove; thus assume H �= ∅. The
set Ea is Π1

1 and therefore has the Baire property in the Σ1
1-topology. If

Ea ∩ H is not meager then there exists a nonempty Σ1
1 set U such that

Ea ∩ U is comeager in U . As U ⊂ H , U × U is not contained in E and so
U2−E is nonempty; hence we have (by Lemma 32.5) (U2−E)∩(Ea∩U)2 �= ∅.
In other words there exist b, c ∈ U such that a E b, a E c and (b, c) /∈ E,
a contradiction. ��

Lemma 32.8. E ∩ (H × H) is meager (in the product of the Σ1
1-topology).

Proof. By Lemma 32.7 and Lemma 11.16. ��

Proof of Theorem 32.1. If H is empty then E has at most ℵ0 equivalence
classes. If H �= ∅ then H is Σ1

1 and therefore a basic open set in the Σ1
1-

topology. By Lemma 32.8 E ∩ (H × H) is meager in the product of the
Σ1

1-topology. The rest of the proof (which we omit) is a combination of the
construction in the proof of Lemma 32.2 and the construction in Exercise 32.3:
One can produce a perfect set {af : f ∈ {0, 1}ω} ⊂ H2 such that (af , ag) /∈ E
whenever f �= g. ��

Σ1
1 Equivalence Relations

Theorem 32.9. If E is a Σ1
1 equivalence relation on N then either E has

at most ℵ1 equivalence classes or there exists a perfect set of mutually in-
equivalent reals.

This theorem, due to J. Burgess, extends Silver’s Theorem and uses it in
the proof. Note that Exercise 32.2 makes it best possible.

Proof. Let E be a Σ1
1 equivalence relation. There exists a tree T on (ω×ω)×ω

such that for all a, b ∈ N

(32.3) a E b ↔ T (a, b) is ill-founded.

We define, for each α < ω1, a relation Eα on N as follows:

(32.4) a Eα b ↔ not (‖T (a, b)‖ < α).

It is clear that each Eα is a Borel relation, Eα ⊃ Eβ if α < β, Eα =
⋂

β<α Eβ

if α is limit, and E =
⋂

α<ω1
Eα. Moreover, each Eα is reflexive as Eα ⊃ E.

Lemma 32.10. There is a closed unbounded set C ⊂ ω1 such that for each
α ∈ C, Eα is an equivalence relation.
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Proof. If T (x, y) is well-founded then so is T (y, x) (by the symmetry of E) and
so for every α < ω1 the set {T (y, x) : ‖T (x, y)‖ < α} is a set of well-founded
trees. The set is Σ1

1 and so, by the Boundedness Lemma there is a countable
ordinal f(α) such that ‖T (y, x)‖ < f(α) whenever ‖T (x, y)‖ < α. Let γ be
a closure point of f , i.e., if α < γ then f(α) < γ. Let a, b ∈ N . If (b, a) /∈ Eγ ,
or ‖T (b, a)‖ < γ, then ‖T (a, b)‖ < γ, or (a, b) /∈ Eγ and so Eγ is symmetric.

Similarly, there is a function g : ω1 → ω1 such that if γ is a closure
point of g then for all a, b, c ∈ N , if (a, c) /∈ Eγ then either (a, b) /∈ Eγ or
(b, c) /∈ Eγ . Let C be the set of all closure points of both f and g. ��

Now assume that E has more than ℵ1 equivalence classes. We shall prove
that there exists a perfect set of E-inequivalent reals.

Let V [G] be a generic extension of V that collapses ℵ1 and makes ℵV
2 =

ℵV [G]
1 . Let Ẽ denote the relation defined in V [G] by (32.3), and for each

α < ωV [G]
1 let Ẽα be defined by (32.4). Ẽ is Σ1

1, and each Ẽα is Borel. By
absoluteness, Ẽ ∩ V = E and Ẽ is an equivalence relation, Ẽα ∩ V = Eα

for each α < ωV
1 , and if Eα is an equivalence relation then so is Ẽα. Since

ẼωV
1 =

⋂
α<ωV

1
Ẽα, it is a Borel equivalence relation. We assume that E has,

in V , a set X of size ℵ2 of inequivalent reals. If x, y ∈ X and x, y /∈ E then
(x, y) /∈ Eα for some α < ωV

1 . Hence X is a set of ẼωV
1 -inequivalent reals,

and X is uncountable in V [G].
By Silver’s Theorem, ẼωV

1 has a perfect set of inequivalent reals. These
reals are Ẽ-inequivalent and so

(32.5) V [G] � there is a perfect set of Ẽ-inequivalent reals.

However, the statement in (32.5) true in V [G] is clearly Σ1
2 and so by Shoen-

field’s Absoluteness Theorem, it holds in V . Therefore in V , there exists
a perfect set of E-inequivalent reals. ��

Constructible Reals and Perfect Sets

We recall (Lemma 26.50) that if there exists a nonconstructible real then the
set R ∩ L is Lebesgue measurable only if it is null, and has the property of
Baire only if it is meager. The following theorem proves a similar result for
perfect sets.

Theorem 32.11. If there exists a nonconstructible real then the set R ∩ L
does not have a perfect subset.

Proof. As a first step we show that R∩L does not have a superperfect subset.
A tree T ⊂ Seq is superperfect if for every t ∈ T there exists an s ⊃ t in T
such that s�k ∈ T for infinitely many k ∈ ω. (We call s an ω-splitting node
of T .) A nonempty set P ⊂ N is superperfect if P = [T ] for some superperfect
tree T .
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Lemma 32.12. If N ∩ L has a superperfect subset then every real is con-
structible.

Proof. Instead of N , consider the space [ω]ω of increasing sequences of natural
numbers. Let x, y, z be distinct elements of [ω]ω and let

(32.6) O(x, y, z) = {n ∈ ω : z(n − 1) ≤ x(n − 1), z(n − 1) ≤ y(n − 1) and
z(n) > x(n), z(n) > y(n)}.

If O(x, y, z) is infinite, let 〈nk : k ∈ ω〉 be its increasing enumeration and let

(32.7) o(x, y, z) = {k : x(nk) ≤ y(nk)}.

Now assume that P = [T ] is a superperfect subset of [ω]ω such that every
x ∈ P is constructible. We shall prove that every real is constructible as
follows: Let A ⊂ ω be arbitrary; we shall find x, y, z ∈ [T ] such that o(x, y, z)
(is defined and) is equal to A. Then A is constructible, as the definition (32.7)
is absolute for L.

Thus let A ⊂ ω be arbitrary. We find x, y, z ∈ [T ] by constructing in-
ductively their initial segments. We construct sequences x0 ⊂ x1 ⊂ . . . ⊂
xk ⊂ . . ., y0 ⊂ y1 ⊂ . . . ⊂ yk ⊂ . . ., and z0 ⊂ z1 ⊂ . . . ⊂ zk ⊂ . . . of
ω-splitting nodes of T such that for each k, nk = |zk| is the kth element of
O(x, y, z), and k ∈ o(x, y, z) if and only if k ∈ A. Inductively, we arrange
lk = |xk| > nk and mk = |yk| > nk, as well as zk(nk − 1) ≤ xk(nk − 1) and
zk(nk − 1) ≤ yk(nk − 1).

We omit the initial stage of the induction as it is similar to the induc-
tion step: At stage k + 1 we find an integer i greater than xk(lk − 1) and
yk(mk − 1) such that z �

k i ∈ T . Then we let zk+1 ⊃ zk be an ω-splitting node
above such that nk+1 = |zk+1| is greater than lk and mk. Now if k + 1 ∈ A,
let j > zk+1(nk+1 − 1) be such that x�

k j ∈ T , and let xk+1 ⊃ x�
k j be an ω-

splitting node such that lk+1 = |xk+1| > nk+1. Then let h > xk+1(lk+1 − 1)
be such that y �

k h ∈ T and let yk+1 ⊃ y �
k h be an ω-splitting node such that

mk+1 = |yk+1| ≥ lk+1. If k + 1 /∈ A, we reverse the construction of xk+1

and yk+1. Since xk+1, yk+1, and zk+1 are all increasing it follows that nk+1 is
the least n > nk that belongs to O(x, y, z), and the construction guarantees
that x(nk+1) ≤ y(nk+1) if and only if k + 1 ∈ A. ��

Now we complete the proof of the theorem. If R∩L is countable then the
theorem is true trivially, so assume that ℵL

1 = ℵ1. If X is a countable subset
of R∩L, then given a constructible enumeration 〈aα : α < ω1〉 of R∩L, we
have X ⊂ {aα : α < γ} for some γ < ω1, and so there exists a constructible
Y ⊂ R ∩ L such that X ⊂ Y and |Y |L = ℵ0.

Let P be a perfect subset of the Cantor space and assume that P ⊂
{0, 1}ω ∩ L. Applying the preceding argument to a countable dense subset
X ⊂ P , we obtain a constructible countable set D ∈ L that is a dense subset
of C = {0, 1}ω and that D ∩ P is dense in P . Let C − D = X .
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The space X is homeomorphic to the irrationals which in turn is homeo-
morphic to N and N is homeomorphic to [ω]ω. Thus there exists a homeomor-
phism h between X and [ω]ω; moreover h is coded in L because D ∈ L. The
set P −D, a closed subset of X , contains no compact subset with nonempty
interior, and therefore the set h(P −D) has the same property in [ω]ω; it fol-
lows that h(P −D) is superperfect. Hence h(P −D) is a superperfect subset
of [ω]ω ∩ L, contradicting Lemma 32.12. ��

Projective Sets and Large Cardinals

One of the successes of modern set theory has been the discovery of the close
relationship between the hierarchy of definable sets of reals and the hierar-
chy of large cardinals. We shall elaborate on this relationship in subsequent
chapters. In the present section we apply the large cardinal theory to Σ1

3 sets.
By Theorem 25.38, the perfect set property for Σ1

2 sets is equivalent to
the large cardinal assumption

(32.8) ℵ1 is inaccessible in L[a], for every a ∈ R

(see Exercise 32.4). The statement (32.8) also implies that every Σ1
2 set is

Lebesgue measurable and has the Baire property.
By Solovay’s Theorem 26.14, inaccessibility is sufficient for the consis-

tency of Lebesgue measurability and the Baire property of all projective sets.
The following theorem shows that the assumption is necessary for Lebesgue
measurability, while by another result of Shelah, the Baire property for all
projective sets is consistent relative to ZFC only:

Theorem 32.13 (Shelah [1984]). If every Σ1
3 set of reals is Lebesgue mea-

surable then ℵ1 is an inaccessible cardinal in L. ��

We shall outline a result that shows that under a suitable strengthening
of (32.8), every Σ1

3 set is Lebesgue measurable, has the Baire property, and
has the perfect set property. The key is a tree representation of Σ1

3 sets in
the presence of a measurable cardinal.

Theorem 32.14 (Martin and Solovay [1969], Mansfield [1971]). If
there exists a measurable cardinal then for every Σ1

3 set A there exists a tree T
on ω × λ (for some λ) such that A = p[T ].

Proof. Let κ be a measurable cardinal and let U be a normal measure on κ.
For each n, let Un be the ultrafilter {X ⊂ κn : X ⊃ [Z]n for some Z ∈ U}, and
let jn = in,n+1 be the canonical elementary embedding in,n+1 : UltUn(V ) →
UltUn+1(V ).
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Let A ⊂ N be a Σ1
3 set. A can be expressed as

(32.9) x ∈ A ↔ ∃y ∀z R(x, y, z) is ill-founded

where R is a recursive function, R(x, y, z) is, for each x, y, z, a linear order
of ω and R(x, y, z) restricted to n = {0, . . . , n − 1} depends only on x�n,
y�n, z�n. Let π : Seq3 → ω be defined so that π(x�n, y�n, z�n) is the position
of n − 1 in the order R(x, y, z)�n. Let {sk}∞k=0 be an enumeration of Seq. We
let α = i0,ω(κ), and define

(32.10) (x�n, y�n, 〈β0, . . . , βn−1〉) ∈ T ↔ jπ(x�l,y�l,sk)(βk) > βi

for every i = 0, . . . , n − 2, where l = length(si) and sk = si�l.
We leave to the reader to verify that x ∈ A if and only if T (x), a tree

on ω × α, is ill-founded. For details we refer to Kanamori’s book [1994],
Chapter 15. ��

A careful analysis of the tree representation in Theorem 32.14 shows that
the assumption can be weakened to

(32.11) for every a ∈ R, a� exists

and the tree T can be constructed on ω×ω2 (see Kanamori [1994] for details).
Thus one obtains:

Theorem 32.15 (Martin). If for every a ∈ R, a� exists, then every Σ1
3 set

is ω2-Suslin, and hence a union of ℵ2 Borel sets. ��

The following theorem establishes good behavior of Σ1
3 sets under a large

cardinal assumption:

Theorem 32.16 (Magidor [1980]). Let us assume that there exists a mea-
surable cardinal, and that ω1 carries a precipitous ideal. Then every Σ1

3 set
is Lebesgue measurable, has the Baire property, and is either countable or
contains a perfect subset.

Proof. Let A be a Σ1
3 set and let A = p[T ] where T is the tree defined in the

proof of Theorem 32.14. We shall prove that under the given assumptions,

(32.12) R ∩ L[T ] is countable.

Then the statements on Lebesgue measurability and the Baire property can
be derived as the corresponding result (Theorem 26.20 and Corollary 26.21)
for Σ1

2 sets: Using absoluteness, one can show that

A = {x ∈ R : L[T ] � ϕ(x)}

for some formula ϕ, and apply Corollary 26.6. The perfect set property is
derived by using Lemma 25.24.
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Let I be a precipitous ideal on ω1, and let M = UltG(V ) be the generic
ultrapower by I, that is by a generic ultrafilter G obtained by forcing P
consisting of I-positive sets. As I is precipitous, M is well-founded and we
identify it with a transitive class M ⊂ V [G]. Let i : V → M be the corre-
sponding elementary embedding. We shall prove

(32.13) i(T ) = T.

This will suffice, as (32.13) implies (32.12), as follows: Assume that aξ, ξ < ω1,
are uncountably many (distinct) reals in L[T ]. The function 〈aξ : ξ < ω1〉
represents a real a ∈ UltG, and since each aξ ∈ L[T ], we have a ∈ L[i(T )] =
L[T ]; hence a ∈ V . But then i(a) = a, and so a = aξ for G-almost all ξ. This
is a contradiction since G is nonprincipal.

Toward the proof of (32.13), let κ, U , Un, and jn be as in the proof of
Theorem 32.14.

If γ is an inaccessible cardinal then γ is still inaccessible in V [G] and it
follows that i(γ) = γ. In particular i(κ) = κ. Let U be the filter in V [G]
generated by U ; similarly Un.

Lemma 32.17. i(U) = U ∩ M , i(Un) = Un ∩ M .

Proof. It suffices to show that i(U) ⊂ U ∩M ; if X ∈ i(U) we want a W ∈ U
such that X ⊃ W . X is represented by 〈Xξ : ξ < ω1〉, so let Y =

⋂
ξ<ω1

Xξ;
we have Y ∈ U and i(Y ) ⊂ X . Now if W = {γ ∈ Y : γ is inaccessible} we
have W ∈ U and W = i“Y ⊂ i(Y ) ⊂ X . ��
Lemma 32.18. Let h ∈ V [G] be a function h : κ → V . Then there exists
a function H ∈ V such that h(α) = H(α) a.e. mod U . Similarly for h : κn →
V (and Un).

Proof. For each α < κ there is a maximal antichain Wα in P and a set
{xα

p : p ∈ Wα} such that p � ḣ(α) = xα
p . Let W be such that Wα = W for

U -almost all α, and let p be the unique p ∈ G ∩ W . Now let H(α) = xα
p , for

all α < κ. ��
Lemma 32.19. Let f ∈ V be a function f : κ → Ord. Then there exists
a function g ∈ M such that f(α) = g(α) a.e. mod U . Similarly for f : κn →
Ord.

Proof. Every ordinal β is represented in M by some hβ : ω1 → Ord , hβ ∈ V .
For each α < κ, pick (in V [G]) some hf(α) : ω1 → Ord that represents f(α)
and let h(α) = hf(α). By Lemma 32.18 there is some H ∈ V such that
H(α) = hf(α) a.e.; let A ∈ U be a set of inaccessibles such that H(α) = hf(α)

for all α ∈ A.
For each ξ < ω1, let gξ (a function on κ, in V ) be defined by gξ(α) =

(H(α))(ξ), and let G(ξ) = gξ. G is in V and represents in M some function g.
For each α ∈ A, i(α) = α, and g(α) is represented by the function that

sends ξ to (H(α))(ξ), but since (H(α))(ξ) = hf(α)(ξ) for all ξ, g(α) is repre-
sented by hf(α). It follows that g(α) = f(α). ��
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As a consequence of Lemmas 32.17, 32.18, and 32.19, if a function f ∈ V
represents an ordinal in UltUn(V ) then there is an Un-equivalent function
g ∈ M that represents the same ordinal in Ulti(Un)(M). Consequently,

(32.14) (i(jn))(α) = jn(α) for all α

(where i(jn) =
⋃

γ∈Ord i(j�Vγ)). Using (32.14) and the definition of T , one
can now verify that i(T ) = T . ��

The existence of a measurable cardinal alone is not sufficient in Theo-
rem 32.16. If V = L[U ] then there exists an uncountable Σ1

3 set that is not
Lebesgue measurable, does not have the Baire property, and does not contain
a perfect subset:

Theorem 32.20 (Silver [1971a]). R∩L[U ] is a Σ1
3 set. The ordering <L[U ]

of R is a Σ1
3 relation. ��

Also, the analog of Lemma 25.27 holds for <L[U ], and the arguments for
Σ1

2 sets and L can be adopted for Σ1
3 and L[U ].

Universally Baire sets

Definition 32.21. A set A ⊂ R is universally Baire if for any compact
Hausdorff space X and any continuous function f : X → R, the set
f−1(A) has the property of Baire in X .

The set of all universally Baire sets is a σ-algebra and is closed under
operation A. Thus every Σ1

1 set is universally Baire. We show below that
every universally Baire set is Lebesgue measurable and that the statement
that every ∆1

2 set is universally Baire has consistency strength between inac-
cessible and Mahlo cardinals. The assumption that every projective (or even
every Σ1

2 set) is universally Baire is considerably stronger; we refer to Feng,
Magidor and Woodin [1992] for details.

Theorem 32.22. A set A ⊂ R is universally Baire if and only if for every
notion of forcing P there exist trees T and S on ω ×λ (where λ = 2|P |) such
that

(32.15) A = p[T ], R − A = p[S]

and for every generic filter G on P ,

V [G] � p[T ] ∪ p[S] = R and p[T ] ∩ p[S] = ∅. ��(32.16)

We omit the proof of this equivalence. We remark that in the definition the
space X can be replaced by the generalized Cantor space λω (for all λ), and
in the theorem, the forcing notion P can be replaced by Col(λ) = Col(ω, λ),
the collapse of λ with finite conditions.
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Corollary 32.23. Every universally Baire set is Lebesgue measurable.

Proof. Let A ⊂ R be universally Baire. Let B be the measure algebra, and
let T and S be trees on ω × λ such that A = p[T ], R − A = p[S], and
(32.16) holds for every generic ultrafilter G on B.

Let ȧ be the canonical name for a random real and let B be a Borel set
such that ‖ȧ ∈ p[T ]‖ = [B]. We will show that A 
 B has measure 0, and
thus A is measurable.

Let M be a countable elementary submodel of Hκ where Hκ is sufficiently
large. We claim that for every random real x over M ,

(32.17) x ∈ p[T ] ↔ x ∈ B.

If x ∈ B then B � ȧ ∈ p[T ] and hence M � (B � ȧ ∈ p[T ]). Thus
M [x] � x ∈ p[T ], and so x ∈ p[T ]. If x /∈ B then −B � ȧ ∈ p[S] and
M [x] � x ∈ p[S], and hence x /∈ p[T ], proving (32.17).

Since M is countable, almost all reals are random over M , and therefore
A 
 B is null. ��

Theorem 32.24. The following are equivalent :

(i) Every ∆1
2 set is universally Baire.

(ii) V is Σ1
3-absolute with respect to every generic extension.

The statement (ii) states precisely: If P is a forcing notion and ϕ(x1, . . . ,
xn) a Π1

3 formula then for all reals a1, . . . , an,

ϕ(a1, . . . , an) if and only if �P ϕ(a1, . . . , an).

Its consistency strength is between inaccessible and Mahlo: It is the exis-
tence of an inaccessible cardinal κ such that Vκ ≺Σ2 V ; see Exercises 32.6,
32.7, 32.8.

Proof. First assume Σ1
3-absoluteness for generic extensions and let A be

a ∆1
2 set. We have

(32.18) x ∈ A ↔ ∃y ϕ(x, y) ↔ x ∈ p[T ]

and

(32.19) x ∈ A ↔ ∃y ψ(x, y) ↔ x ∈ p[S]

where ϕ and ψ are Π1
1 and T and S are trees on ω × ω1.

If V [G] is a generic extension then the second equivalences in (32.18)
and (32.19) hold in V [G], by Σ1

2-absoluteness. Since p[T ] ∪ p[S] = R is
a Π1

3 statement (namely ∀x (∃y ϕ ∨ ∃y ψ)), and p[T ] ∩ p[S] = ∅ is Π1
2, Σ1

3-
absoluteness gives (32.16).
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Now assume that every ∆1
2 set is universally Baire and prove the generic

Σ1
3-absoluteness. It is enough to prove it for P = Col(λ), as every V P embeds

in V Col(λ) for sufficiently large λ.
Let ϕ be a Σ1

1 formula (with a parameter in RV ) and assume that V [G] �
∃x∀y ϕ(x, y). Let ẋ ∈ V Col(λ) be such that � ∀y ϕ(ẋ, y). There is a function
f : λω → ωω such that f is continuous on a comeager Gδ set such that for
every generic collapse G ∈ λω , f(G) = ẋG.

Toward a contradiction, assume that V � ∀x∃y ¬ϕ(x, y). By Kondô’s Uni-
formization Theorem, there exists a Π1

1 function g such that ∀x¬ϕ(x, g(x)).
We claim that the function g ◦ f is continuous on a comeager set in λω. For
each s ∈ Seq, g−1(O(s)) is a ∆1

2 set, therefore universally Baire, and so there
exists an open set Ds such that Bs = Ds 
 f−1(g−1(O(s))) is meager. Let
A = λω −

⋃
{Bs : s ∈ Seq}; A is comeager and g ◦ f is continuous on A.

We may assume that A =
⋂∞

n=0 Dn, with each Dn dense open. For x ∈ A,
let F (x) = (f(x), g(f(x))); F is continuous on A.

Let T be a tree on ω×ω×ω such that p[T ] is the Σ1
1 set {(x, y) : ϕ(x, y)}.

Since V [G] � ϕ(f(G), g(f(G))) and G ∈
⋂∞

n=0 Dn, we have that T (F (G)) is
ill-founded. In other words, V [G] satisfies

(32.20) ∃xT (F (x)) is ill-founded.

The statement (32.20) can be expressed as “T ∗ is ill-founded” where T ∗ is
the tree

(σ, s, t, u) ∈ T ∗ ↔ (s, t, u) ∈ T , length(σ) = length(s) = n

and ∃τ O(σ�τ) ⊂
⋂

i≤n Di and

F“(O(σ�τ) −
⋃∞

n=0(λ
ω − Dn)) ⊂ O(s, t)

(where O(σ�τ) and O(s, t) are basic open sets in λω and ωω × ωω).
By absoluteness, T ∗ is ill-founded in V , and so (32.20) holds in V . In

other words, for some x ∈ A we have ϕ(f(x), g(f(x))), a contradiction. ��

Exercises

32.1. Let A ⊂ N be Σ1
1. The equivalence relation on N whose equivalence classes

are the singletons {a} where a ∈ A, and the complement of A, is Π1
1. If A is

uncountable then it has a perfect subset.

32.2. The relation “‖a‖ = ‖b‖ or a, b /∈WO” is Σ1
1 and has ℵ1 equivalence classes.

32.3. Let {Dn}∞n=1 be dense open sets in the Σ1
1-topology and let B be a nonempty

Σ1
1 set. Then B ∩T∞

n=1 Dn �= ∅.
[Let B = p[T0] for some recursive tree T on ω × ω. By induction on n, con-

struct recursive trees Tn, a finite sequence sn of length n, finite sequences ti
n

(0 ≤ i ≤ n) of length n such that ∅ = s0 ⊂ . . . ⊂ sn and ti
0 ⊂ . . . ⊂ ti

n,
and

Tn
i=0{x : x ⊃ sn and (∃y ⊃ ti

n) (x, y) ∈ [Ti]} �= ∅, and for all 1 ≤ i ≤ n,
{x : x ⊃ sn and (∃y ⊃ ti

n) (x, y) ∈ [Ti]} ⊂ Di.]
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32.4. If a ∈ R and ℵ1 is a successor cardinal in L[a], then for some b ∈ R,
ℵL[a,b]

1 = ℵ1.
[If ℵ1 = (κ+)L[a], let b ⊂ ω code the countable ordinal κ.]

32.5. Every universally Baire set is Ramsey.
[Use Mathias forcing.]

32.6. Σ1
3-absoluteness for generic extensions implies that ℵ1 is inaccessible in

each L[a], a ∈ R.
[“ωL[a]

1 is countable” is Σ1
3(a).]

32.7. Generic Σ1
3-absoluteness implies that Lκ ≺Σ2 L where κ = ℵ1.

32.8. If Vκ ≺Σ2 V and κ is inaccessible, let P be the Lévy collapse bellow κ. Show
that V P satisfies the generic Σ1

3-absoluteness.
[If Q̇ ∈ V P , and ϕ is Σ1

3, then V P � ϕ if and only if V P∗Q̇ � ϕ.]

Historical Notes

Theorem 32.1 on Π1
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is Harrington’s as presented in Kechris and Martin [1980]. Lemma 32.5 is due to
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Theorem 32.11 is due to Groszek and Slaman [1998]. The proof presented here
is from Veličković and Woodin [1998].

Theorem 32.13: Shelah [1984]. The tree representation of Σ1
3 sets is implicit in

Martin and Solovay [1969] and described in Mansfield [1971]. Theorem 32.16 is due
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