
33. Determinacy

With each subset A of ωω we associate the following game GA, played by
two players I and II. First I chooses a natural number a0, then II chooses
a natural number b0, then I chooses a1, then II chooses b1, and so on. The
game ends after ω steps; if the resulting sequence 〈a0, b0, a1, b1, . . .〉 is in A,
then I wins, otherwise II wins.

A strategy (for I or II) is a rule that tells the player what move to make
depending on the previous moves of both players. A strategy is a winning
strategy if the player who follows it always wins. The game GA is determined
if one of the players has a winning strategy.

The Axiom of Determinacy (AD) states that for every A ⊂ ωω, the
game GA is determined.

Determinacy and Choice

First some definitions: Let A ⊂ ωω be given and let GA denote the corre-
sponding game. A play is a sequence 〈a0, b0, a1, b1, . . .〉 ∈ ωω; for each n, an is
the nth move of player I and bn is the nth move of player II. A strategy for I
is a function σ with values in ω whose domain consists of finite sequences
s ∈ Seq of even length. Player I plays 〈a0, b0, a1, b1, . . .〉 by the strategy σ
if a0 = σ(∅), a1 = σ(〈a0, b0〉), a2 = σ(〈a0, b0, a1, b1〉), and so on; it is clear
that if I plays by σ, then the play is determined by σ and the sequence
b = 〈bn : n ∈ ω〉. We denote the play by σ ∗ b. A strategy σ is a winning
strategy for I if

{σ ∗ b : b ∈ N} ⊂ A,

in other words, if all plays that I plays by σ are in A. Similarly, a strategy
for II is a function τ with values in ω, defined on finite sequences s ∈ Seq of
odd length. If a ∈ N and if τ is a strategy for II, then a ∗ τ denotes the play
in which I plays a and II plays by τ . A strategy τ for II is a winning strategy
if

{a ∗ τ : a ∈ N} ⊂ N − A.

We sometimes consider games GA whose moves are not natural numbers
but elements of an arbitrary set S. A play is then a sequence p ∈ Sω, and the
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result of the game depends on whether p ∈ A or p /∈ A (here A is a subset
of Sω). The other relevant notions are defined accordingly.

Since the number of strategies is 2ℵ0 , an easy diagonal argument shows
that the Axiom of Choice is incompatible with the Axiom of Determinacy:

Lemma 33.1. Assuming the Axiom of Choice, there exists A ⊂ ωω such
that the game GA is not determined.

Proof. Let {σα : α < 2ℵ0} and {τα : α < 2ℵ0} enumerate all strategies
for I and all strategies for II. We construct sets X = {xα : α < 2ℵ0} and
Y = {yα : α < 2ℵ0}, subsets of N , as follows: Given {xξ : ξ < α} and
{yξ : ξ < α}, let us choose some yα such that yα = σα ∗ b for some b and
yα /∈ {xξ : ξ < α} (such yα exist because the set {σα ∗ b : b ∈ N} has
size 2ℵ0); similarly, let us choose xα such that xα = a ∗ τα for some a and
xα /∈ {yξ : ξ ≤ α}. It is clear that the sets X and Y are disjoint, that for
each α there is b such that σα ∗ b /∈ X , and there is a such that a ∗ τα ∈ X .
Thus neither I nor II has a winning strategy in the game GX , and hence
GX is not determined. ��

In contrast with this lemma, the Axiom of Determinacy implies a weak
form of the Axiom of Choice:

Lemma 33.2. The Axiom of Determinacy implies that every countable fam-
ily of nonempty sets of real numbers has a choice function.

Proof. We prove that if X = {Xn : n ∈ ω} is a family of nonempty sub-
sets of N , then there exists f on X such that f(Xn) ∈ Xn for all n. Let
us consider the following game: If I plays 〈a0, a1, a2, . . .〉 and and II plays
〈b0, b1, b2, . . .〉, then II wins if and only if b ∈ Xa0 . It is clear that I does not
have a winning strategy: Once I plays a0, the player II finds some b ∈ Xa0 ,
plays b = 〈b0, b1, b2, . . .〉 and wins. Hence II has a winning strategy τ , and we
can define f on X as follows: f(Xn) = τ ∗ 〈n, 0, 0, 0, . . .〉. ��

As we show below, Determinacy has desirable consequences for sets of
reals: AD implies that every set of reals is Lebesgue measurable, has the
Baire property and the perfect set property. Thus it is natural to postulate
that Determinacy holds to the extent it does not contradict the Axiom of
Choice. The appropriate postulate turns out to be that AD holds in the
model L(R), and therefore all sets of reals definable from a real parameter are
determined. This implies, in particular, that the game GA is determined for
every projective set—Projective Determinacy (PD). It has been established
that both ADL(R) and PD are large cardinal axioms; we shall elaborate on
this later in this chapter.

Throughout the rest of the present chapter we work in ZF+the Principle
of Dependent Choices.
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Some Consequences of AD

We shall now prove that under the assumption of Determinacy, sets of real
numbers are well behaved.

Theorem 33.3. Assume the Axiom of Determinacy. Then:

(i) Every set of reals is Lebesgue measurable.
(ii) Every set of reals has the property of Baire.
(iii) Every uncountable set of reals contains a perfect subset.

Proof. (i) It suffices to prove the following lemma:

Lemma 33.4. Assuming AD, let S be a set of reals such that every measur-
able Z ⊂ S is null. Then S is null.

It is easy to see that Lemma 33.4 implies that every set X is Lebesgue
measurable: Let A ⊃ X be a measurable set with the property that every
measurable Z ⊂ A−X is null. Then A−X is null and hence X is measurable.

Proof. Thus let S be a set of reals with the property

(33.1) if Z ⊂ S is Lebesgue measurable, then Z is null;

we shall use AD to show that S is null. It is clear that we can restrict ourselves
to subsets of the unit interval; thus assume that S ⊂ [0, 1]. In order to show
that S is null, it suffices to show that the outer measure µ∗(S) is less than
any ε > 0. Thus let ε be a fixed positive real number.

33.5. The Covering Game. Given S and ε, let us set up a game as follows:
If 〈a0, a1, a2, . . .〉 is a sequence of 0’s and 1’s, let a be the real number

(33.2) a =
∞∑

n=0

an

2n+1
.

For each n ∈ ω, let Gn
k , k = 0, 1, 2, . . . , be an enumeration of the set Kn of

all sets G such that

(i) G is a union of finitely many intervals with rational endpoints;
(ii) µ(G) ≤ ε/22(n+1).

(33.3)

The rules of the game are that player I tries to play a real number a ∈ S,
and player II tries to cover the real a by the union

⋃∞
n=0 Hn such that Hn ∈

Kn for all n. More precisely, a play 〈a0, b0, a1, b1, . . .〉 is won by player I if

(i) an = 0 or 1, for all n;
(ii) a ∈ S; and
(iii) a /∈

⋃∞
n=0 Gn

bn
.
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We claim that player I does not have a winning strategy in the game. To
show this, notice that if σ is a winning strategy for I, then the function f
that to each b = 〈b0, b1, b2, . . .〉 ∈ N assigns the real number a = f(b) such
that 〈a0, b0, a1, b1, . . .〉 = σ ∗ b is continuous and hence the set Z = f(N ) is
analytic and hence measurable. Moreover Z ⊂ S, and therefore Z is null. Now
a null set can be covered by a countable union

⋃∞
n=0 Hn such that Hn ∈ Kn

for all n, and therefore, if II plays 〈b0, b1, b2, . . .〉 where Gn
bn

= Hn and I plays
by σ, then II wins. Thus σ cannot be a winning strategy for I.

Assuming AD, the covering game is determined, and therefore player II
has a winning strategy. Let τ be such a strategy. For each finite sequence
s = 〈a0, . . . , an〉 of 0’s and 1’s, let Gs ∈ Kn be the set Gn

bn
, where 〈b0, . . . , bn〉

are the moves that II plays by τ in response to a0, . . . , an. Since τ is a winning
strategy, every a ∈ S is in the set

⋃
{Gs : s ⊂ a} and hence

(33.4) S ⊂
⋃
{Gs : s ∈ Seq({0, 1})} =

∞⋃
n=1

⋃
s∈{0,1}n

Gs.

Now for every n ≥ 1, if s ∈ {0, 1}n, then µ(Gs) ≤ ε/22n and hence

µ
(⋃

s∈{0,1}n

)
≤ ε

22n
· 2n =

ε

2n
.

It follows that µ(
⋃∞

n=1

⋃
s∈{0,1}n Gs) ≤

∑∞
n=1 ε/2n = ε and thus µ∗(S) ≤ ε.

Since ε > 0 was arbitrary, S is null. This completes the proof. ��

(ii) Next we consider the property of Baire:

33.6. The Banach-Mazur Game. Let X be a subset of the Baire space N ,
and let us consider the following game: Player I plays a finite sequence s0 ∈
Seq ; then II plays a proper extension t0 ⊃ s0; then I plays s1 ⊃ t0, etc.:

(33.5) s0 ⊂ t0 ⊂ s1 ⊂ t1 ⊂ . . . .

The sequence (33.5) converges to some x ∈ N . If x ∈ A, then I wins, and
otherwise II wins.

First we verify that this game can be reformulated as a game GA of
the kind introduced at the beginning of the section (i.e., when the moves
are natural numbers). Let uk, k ∈ N , be an enumeration of the set Seq. If
〈a0, b0, a1, b1, . . .〉 is a sequence of numbers, then consider the sequence

(33.6) ua0 , ub0 , ua1 , ub1 , . . .

and let A be the set of all 〈a0, b0, a1, b1, . . .〉 ∈ N such that: Either there is n
such that

ua0 ⊂ ub0 ⊂ . . . uan �⊂ ubn

or the sequence (33.6) is increasing and converges to some x ∈ X . It is clear
I wins the Banach-Mazur game if and only if I wins the game GA.

Thus if AD holds, the game is determined, for every X ⊂ N . We will use
this to show that every X ⊂ N has the Baire property.
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Lemma 33.7. Player II has a winning strategy in the Banach-Mazur game
if and only if X is meager.

Proof. Let Y be the complement of X in N . For each s ∈ Seq, O(s) denotes
the basic open set {x ∈ N : s ⊂ x}.

(a) If X is a meager set, then there exist open dense sets Gn, n ∈ N ,
such that Y ⊃

⋂∞
n=0 Gn. It is easy to find a winning strategy τ for II: If

I plays s0, let t0 = τ(〈s0〉) be some t0 ⊃ s0 such that Ut0 ⊂ G0; such t0
exists because G0 is dense. Then if I plays s1 ⊃ t0, let t1 = τ(〈s0, t0, s1〉)
be some t1 ⊃ s1 such that Ut1 ⊂ G1, and so on. It is clear that every such
play s0 ⊂ t0 ⊂ s1 ⊂ . . . converges to x ∈

⋂∞
n=0 Gn, and hence τ is a winning

strategy for II.
(b) Conversely, assume that II has a winning strategy τ . A correct position

is a finite sequence 〈s0, t0, . . . , sn, tn〉 such that s0 ⊂ t0 ⊂ . . . ⊂ tn and
t0 = τ(〈s0〉), t1 = τ(〈s0, t0, s1〉), etc. We shall first prove the following claim:
Let x ∈ N and assume that for every correct position p = 〈s0, . . . , tn〉 with
tn ⊂ x there exists s ⊃ tn such that τ(p�s) ⊂ x. Then x ∈ Y .

To prove the claim, let x satisfy the condition. To begin, there exists s0

such that τ(〈s0〉) ⊂ x; let t0 = τ(〈s0〉). Then there exists s1 ⊃ t0 such that
t1 = τ(〈s0, t0, s1〉) ⊂ x; then there is s2 ⊃ t1 such that τ(〈s0, t0, s1, t1, s2〉) ⊂
x; and so on. The sequence s0 ⊂ t0 ⊂ s1 ⊂ t1 ⊂ . . . converges to x and is
a play in which II plays by τ . Hence x ∈ Y .

For every correct position p = 〈s0, . . . , tn〉, let

Fp = {x ∈ N : tn ⊂ x and (∀s ⊃ tn) τ(p�s) �⊂ x}.

By the claim, for every x ∈ X there is a correct position p such that x ∈ Fp;
in other words,

X ⊂
⋃
{Fp : p is a correct position}.

It is easy to see that for each p, O(tn) − Fp is on open dense set in O(tn);
hence Fp is a closed nowhere dense set. The number of correct positions is
countable and hence X is meager. ��

Corollary 33.8. Let X ⊂ N . Player I has a winning strategy in the Banach-
Mazur game if and only if for some s ∈ Seq, O(s) − X is meager.

Proof. Note that I has a winning strategy if and only if there exists s ∈ Seq
(the first move of I) such that player II has a winning strategy in the following
game: I plays t0 ⊃ s, II plays s0 ⊃ t0, I plays t1 ⊃ s0, etc.; and I wins if
t0 ⊂ s0 ⊂ t1 ⊂ . . . converges to x ∈ Us−X . By Lemma 33.7, II has a winning
strategy in this game if and only if O(s) − X is meager. ��

Now part (ii) of Theorem 33.3 follows. If X ⊂ N , then since the Banach-
Mazur game is determined, either X is meager or for some s ∈ Seq, O(s)−X
is meager. Thus let X ⊂ N be arbitrary. If X is meager, then X has the
Baire property. If X is nonmeager, then let G =

⋃
{O(s) : O(s) − X is
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meager}. Clearly, G− X is meager, and X −G must be meager too because
otherwise there would exist some s such that O(s)−(X−G) is meager, which
contradicts the definition of G. It follows that X has the Baire property.

(iii) We will use AD to prove that every uncountable set in the Cantor
space C = {0, 1}ω has a perfect subset. We consider the following game:

33.9. The Perfect Set Game. Let X be a subset of {0, 1}ω. The game is
defined as follows: Player I plays a sequence s0 ∈ Seq({0, 1}) of 0’s and 1’s
(possibly the empty sequence), then player II plays n0 ∈ {0, 1}, then I plays
s1 ∈ Seq({0, 1}), and so on. Let x = s�

0 n�
0 s�

1 n�
1 . . .. Player I wins if x ∈ X ,

and II wins if x /∈ X .

The game can be reformulated as a game GA, for some A ⊂ ωω.

Lemma 33.10. Let X ⊂ C. If II has a winning strategy in the perfect set
game, then X is countable.

Proof. Let τ be a winning strategy for II. A correct position is a finite se-
quence 〈s0, n0, . . . , sk, nk〉 such that n0 = τ(〈s0〉), n1 = τ(〈s0, n0, s1〉), etc.
By the same argument as in Lemma 33.7, we get the following claim: Let
x ∈ {0, 1}ω and assume that for every correct position p = 〈s0, . . . , nk〉
if s�

0 n�
0 . . . �nk ⊂ x, then there exists an s ∈ Seq({0, 1}) such that

s�
0 n�

0 . . . �n�
k s�τ(p�s) ⊂ x. Then x /∈ X .

It follows that X ⊂
⋃
{Fp : p is a correct position}, where

Fp = {x ∈ C : s�
0 . . . �nk ⊂ x and ∀s (s� . . . �n�

k s�τ(p�s) �⊂ x)}.

The lemma will follow if we show that each Fp has exactly one element x ∈ C.
This element x is uniquely determined as follows (because each x(m) is either
0 or 1); first, for some l ∈ N , 〈x(0), . . . , x(l − 1)〉 = s�

0 n�
0 . . . �nk; then

x(l) = 1 − τ(p�∅), x(l + 1) = 1 − τ(p�〈x(l)〉), x(l + 2) = 1 − τ(p�〈x(l),
x(l + 1)〉), and so on. ��

Now part (iii) of Theorem 33.3 follows. If X ⊂ C is uncountable, then
II does not have a winning strategy; and since the game is determined, I has
a winning strategy σ. For each x = 〈n0, n1, . . .〉 ∈ C, let F (x) ∈ C denote
the 0–1 sequence

s�
0 n�

0 s�
1 n�

1 . . .

where s0 = σ(∅), s1 = σ(〈s�
0 n0〉), s2 = σ(〈s�

0 n�
0 s�

1 n1〉), etc. The func-
tion f is continuous and one-to-one, and hence f(C) is a perfect set. But
X ⊃ f(C) and hence X has a perfect subset. ��

We proved earlier that if ℵ1 = ℵL[a]
1 for some a ⊂ ω, then there is an

uncountable set without a perfect subset. Thus we have:

Corollary 33.11. If AD holds, then ℵ1 is inaccessible in L[a], for every
a ⊂ ω. ��
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AD and Large Cardinals

To illustrate the relationship between the Axiom of Determinacy and the
theory of large cardinals, we show that AD implies that ℵ1 and ℵ2 are mea-
surable cardinals.

Theorem 33.12 (Solovay). The Axiom of Determinacy implies that :

(i) ℵ1 is a measurable cardinal, and moreover, the closed unbounded filter
on ℵ1 is an ultrafilter.

(ii) ℵ2 is a measurable cardinal.

Proof. (i) We first show that AD implies that ω1 is measurable. We already
know that ω1 is inaccessible in every L[a], a ⊂ ω.

Let us consider the following partial ordering of the Baire space:

(33.7) x � y if and only if x ∈ L[y]

and the corresponding equivalence relation

(33.8) x ≡ y if and only if x � y and y � x.

We say that A ⊂ N is ≡-closed if (x ∈ A and y ≡ x) implies y ∈ A. Note
that the collection B of all ≡-closed sets in N is a complete Boolean algebra.

If x0 ∈ N , then we let

(33.9) cone(x0) = {x ∈ N : x0 � x} = {x : x0 ∈ L[x]}

and call cone(x0) a cone. Clearly, every cone is ≡-closed. Let

F = {A ∈ B : A contains a cone}.

We claim that F is a σ-complete filter on B. Let A0, A1, . . . , An, . . . be
elements of F . For each n, we choose xn ∈ N such that An ⊃ cone(xn). Let
x ∈ N be defined as follows: x(〈n, m〉) = xn(m) for all n, m ∈ N (where
〈 〉 is a pairing function). It is clear that for each n, xn ∈ L[x] and hence
cone(x) ⊂ cone(xn) ⊂ An. Thus

⋂∞
n=0 An is in F .

Lemma 33.13. AD implies that for every ≡-closed A ⊂ N , either A or its
complement contains a cone. Hence F is a σ-complete ultrafilter on B.

Proof. We show that if I has a winning strategy in the game GA, then A con-
tains a cone (and similarly, if II has a winning strategy, then N − A ∈ F).
Let σ be a winning strategy for I. It suffices to show that A contains the cone
{x ∈ N : σ ∈ L[x]}.

Let x ∈ N be such that σ ∈ L[x]. Then a = σ ∗ x is in A because σ is
a winning strategy. Clearly, x ∈ L[a], and because σ ∈ L[x], we also have
a ∈ L[x] and hence x ≡ a. Since A is ≡-closed, we have x ∈ A. ��
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Now we can use AD to find a nonprincipal σ-complete ultrafilter U on ω1.
For each x ∈ N , let f(x) = ℵL[x]

1 ; f(x) is a countable ordinal. Note that if
x ≡ y, then f(x) = f(y), and hence for every X ⊂ ω1, the set f−1(X) ⊂ N
is ≡-closed. Let

U = {X ⊂ ω1 : f−1(X) ∈ F}.

Since F is a σ-complete ultrafilter on B, U is a σ-complete ultrafilter on ω1.
It remains to show that U is nonprincipal. But for every α < ω1, if x ∈ N
is such that ℵL[x]

1 = α, then there is y � x such that ℵL[y]
1 > α; and hence

f−1({α}) /∈ F .
Thus AD implies that ω1 is a measurable cardinal.

Lemma 33.14. Assume AD. Then for every S ⊂ ω1, the set {x ∈ WO :
‖x‖ ∈ S} is Π1

1. Consequently, there is some a ⊂ ω such that S ∈ L[a].

Proof. If x ∈ N , then for each n ∈ N we let xn ∈ N be such that xn(m) =
x(〈n, m〉) for all m ∈ N . We consider the following game:

33.15. The Solovay Game. Let S ⊂ ω1. Player I plays a = 〈a(0), a(1), . . .〉,
and II plays b = 〈b(0), b(1), . . .〉. If a /∈ WO, then II wins; if a ∈ WO, then
II wins if

{α ∈ S : α ≤ ‖a‖} ⊂ {‖bn‖ : n ∈ ω} ⊂ S.

We claim that I does not have a winning strategy in the Solovay game.
Let σ be a winning strategy for I; for each b ∈ N , let f(b) be the a ∈ N such
that 〈a(0), b(0), a(1), b(1), . . .〉 = σ ∗ b. The set f(N ) is a Σ1

1 subset of WO,
and by the Boundedness Lemma, there is an α < ω1 such that ‖f(b)‖ < α
for all b ∈ N . Hence let b ∈ N be such that {‖bn‖ : n ∈ ω} = S ∩ α. Then
σ ∗ b is a play won by player II, and hence σ cannot be a winning strategy
for I.

Now the lemma follows: Let S ⊂ ω1. By AD, player II has a winning
strategy τ in the Solovay game. For each a, let g(a) be the b ∈ N such that
〈a(0), b(0), . . .〉 = a ∗ τ . It follows that for each a ∈ WO,

‖a‖ ∈ S if and only if ∃n ‖a‖ = ‖(g(a))n‖

and consequently the set {x ∈ WO : ‖x‖ ∈ S} is Π1
1. By Lemma 25.22,

S ∈ L[a] for some a ⊂ ω. ��

We can now complete the proof of (i). If X ⊂ ω1, then X ∈ L[a] for some
a ⊂ ω. Since ℵ1 is a measurable cardinal, a� exists, and it follows that either
X or ω1−X contains a closed unbounded subset. Thus the closed unbounded
filter on ω1 is an ultrafilter.

By the Countable Axiom of Choice, the closed unbounded filter is σ-
complete, and we therefore conclude (as we work in ZF + the Principle of
Dependent Choices) that AD implies that the closed unbounded filter on ω1

is the unique σ-complete normal ultrafilter on ω1.
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(ii) We shall now show that, assuming AD, ℵ2 is a measurable cardinal.
For each x ∈ N , let f(x) denote the successor cardinal of the (real) cardinal ℵ1

in L[x]:
f(x) = ((ℵ1)+)L[x].

If x ⊂ ω, then because x� exists, f(x) is an ordinal less than ℵ2. Moreover,
if x ≡ y, then f(x) = f(y), and hence f−1(X) is ≡-closed for each X ⊂ ω2.
Thus let us define an ultrafilter U on ω2 as follows:

U = {X ⊂ ω2 : f−1(X) ∈ F}.

We wish to show that U is an ℵ2-complete nonprincipal ultrafilter on ω2.
Since F is σ-complete, U is σ-complete. It is also easy to see that U is
nonprincipal: If α < ω2 and f(x) = α, then there exists an S ⊂ ω1 such that
α is not a cardinal in L[S]; then by Lemma 33.14 there is a y ∈ N such that
x ∈ L[y] and f(y) > α. Hence f−1({α}) does not contain a cone.

It remains to show that U is ℵ2-complete. Since U is σ-complete, it suffices
to show that if

(33.10) X0 ⊃ X1 ⊃ . . . ⊃ Xα ⊃ . . . (α < ω1)

is a descending sequence of subsets of ω2 such that each f−1(X) contains
a cone then f−1(

⋂
α<ω1

Xα) contains a cone.
Let us consider such a sequence (33.10), and let X =

⋂
α<ω1

Xα. We
shall use the following game: Player I plays a = 〈a(0), a(1), . . .〉, and II plays
b = 〈b(0), b(1), . . .〉. If a /∈ WO, then I loses; if a ∈ WO and ‖a‖ = α, then
II wins if cone(b) ⊂ f−1(Xα).

We claim that I does not have a winning strategy in this game: If σ is
a winning strategy for I, then the set of all a ∈ N that I plays by σ against
all possible b ∈ N , is a Σ1

1 subset of WO and hence there is α such that
‖a‖ < α for all these a’s. Now II can beat I simply by playing some b ∈ N
such that cone(b) ⊂ f−1(Xα).

Thus II has a winning strategy τ , and we intend to show that f−1(X) con-
tains the cone {x ∈ N : τ ∈ L[x]}. Let α < ω1 and let x ∈ N be such that
τ ∈ L[x]; we want to show that f(x) ∈ Xα.

Let Pα be the notion of forcing that collapses α onto ω: The conditions
are finite sequences of ordinals less than α. Since ℵ1 is inaccessible in L[x],
L[x] has only countably many subsets of Pα, and therefore there exists an
L[x]-generic filter G on Pα. Let a ∈ WO be such that ‖a‖ = α and let
L[a] = L[G] and let y ∈ N be such that L[y] = L[x][G] = L[x][a].

Since G is generic on Pα over L[x], all cardinals in L[x] greater than α
are preserved in L[x][G]. In particular, (ℵ+

1 )L[x] is preserved and hence
f(y) = f(x).

Now if I plays a = 〈a(0), a(1), . . .〉 and if II plays against a by his winning
strategy τ , II produces b = 〈b(0), b(1), . . .〉 such that cone(b) ⊂ f−1(Xα). But
since b ∈ L[τ, a] and τ ∈ L[x], we have b ∈ L[x, a] = L[y] and therefore
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y ∈ cone(b). It follows that f(y) ∈ Xα; and because f(x) = f(y), we have
f(x) ∈ Xα, as we wanted to prove.

This completes the proof of Theorem 33.12. ��

It turns out that under Determinacy there exist many measurable cardi-
nals. Of particular interest have been the projective ordinals δ1

n. By definition

δ1
n = sup{ξ : ξ is the length of a ∆1

n prewellordering of N}.

By the results in Chapter 25, δ1
1 = ω1 and δ1

2 ≤ ω2. It has been estab-
lished (under AD) that all the δ1

n are measurable cardinals, along with other
properties, such as δ1

2n+2 = (δ1
2n+1)

+. The size of each δ1
2n+1 has now been

calculated exactly; in particular, δ1
3 = ℵω+1 and δ1

5 = ℵωωω +1. The analy-
sis of the δ1

n’s depends heavily on calculations of length of ultrapowers by
measures on projective ordinals.

An important ordinal (isolated by Moschovakis) is

Θ = sup{ξ : ξ is the length of a prewellordering of N}.

AD implies that Θ = ℵΘ, and if in addition V = L(R) then Θ is a regular car-
dinal (Solovay). Θ is the limit of measurable cardinals (Kechris and Woodin),
and for every λ < Θ, there exists a normal ultrafilter on [λ]ω (Solovay). As
for the consistency strength of AD, we have:

Theorem 33.16 (Woodin). Assume AD and V = L(R). Then there exists
an inner model with infinitely many Woodin cardinals. ��

Theorem 33.16 is optimal, as the existence of infinitely many Woodin
cardinals is equiconsistent with AD; see Theorem 33.26. (We remark that
the proof of Theorem 33.16 uses the following result: If AD and V = L(R),
then Θ is a Woodin cardinal in the model HOD .)

Projective Determinacy

In this section we address the question how strong is the determinacy as-
sumption when restricted to games that have a simple enough definition. In
particular, we turn our attention to the game GA where A ⊂ N is a projective
set.

When A is open (or closed) then GA is determined:

Lemma 33.17. If A ⊂ N is an open set, then GA is determined.

Proof. Player I plays 〈a0, a1, . . .〉, player II plays 〈b0, b1, . . .〉, and I wins if
〈a0, b0, a1, b1, . . .〉 ∈ A. Let us assume that player I does not have a winning
strategy, and let us show that II has a winning strategy. The strategy for II is
as follows: When I plays a0, then because I does not have a winning strategy,
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there exists b0 such the position 〈a0, b0〉 is not yet lost for II. That is, I does
not have a winning strategy in the game G

〈a0,b0〉
A that starts at 〈a0, b0〉, in

which I plays 〈a1, a2, . . .〉 and II plays 〈b1, b2, . . .〉, and in which I wins when
〈a0, b0, a1, b1, . . .〉 ∈ A.

Let II plays such b0. When I plays a1, then again, because II is not yet
lost at 〈a0, b0〉, there exists b1 such that II is not yet lost at 〈a0, b0, a1, b1〉.
Let II play such b1. And so on. We claim that this strategy for II is a winning
strategy.

Let x = 〈a0, b0, a1, b1, . . .〉 be a play which II plays by the above strategy;
We want to show that x /∈ A. If x ∈ A, then because A is open, there is
s = 〈a0, b0, . . . , an, bn〉 ⊂ x such that O(s) ⊂ A. But then it is clear that II is
lost at s; a contradiction. ��

The same argument (interchanging the players) would show that every
closed game is determined. Or, we can show that every closed game is deter-
mined as follows: If A is closed, then I has a winning strategy in GA if and
only if there is a0 ∈ N such that II does not have a winning strategy in the
open game Ga0

A in which II make a first move b0, then I plays a1, etc., and
II wins if 〈a0, b0, a1, b1, . . .〉 is in the open set N −A. Since Ga0

A is determined
for all a0 ∈ N , GA is determined.

One of the major results in descriptive set theory is Martin’s proof that
for every Borel set A the game GA is determined:

Theorem 33.18 (Martin [1975]). All Borel games are determined. ��

We shall not give a proof. It can be found either in Martin’s paper [1975],
or in the survey article [1980] by Kechris and Martin; furthermore, Martin
gives a simplification of his proof in [1985].

Analytic Determinacy, i.e., determinacy of all analytic games, is already
a large cardinal assumption:

Theorem 33.19. Let a ∈ N . Every Σ1
1(a) game is determined if and only

if a� exists.

Thus Analytic Determinacy is equivalent to the statement

(33.11) a� exists for all a ∈ N .

The proof of Analytic Determinacy from (33.11) is due to Martin [1969/70].
The necessity of (33.11) is a result of Harrington [1978]. We omit Harrington’s
proof and prove a corollary of Martin’s result. We note however that the proof
of the corollary can be converted into a proof of the “if” part of Theorem 33.19
without much difficulty.

Corollary 33.20. If there exists a measurable cardinal, then all analytic
games are determined.
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Proof. Let κ be a measurable cardinal and let A ⊂ N be an analytic set. We
want to show that the game GA is determined.

Let us use the tree representation of analytic sets. There is a tree T ⊂ Seq2

such that for all x ∈ N ,

x ∈ A ↔ T (x) is ill-founded.

Let � be the linear ordering of the set Seq that extends the partial ordering⊃:
If s, t ∈ Seq, then s � t either if s ⊃ t, or if s and t are incompatible, and
s(n) < t(n) where n is the least n such that s(n) �= t(n). Thus

x ∈ A ↔ T (x) is not well-ordered by �.

We also recall that T (x) = {t : (x�n, t) ∈ T for some n} and that the first
n levels of T (x) depend only on x�n. For s ∈ Seq, we let Ts = {t : (u, t) ∈ T
for some u ⊂ s}; then Tx�n is exactly the first n levels of the tree T (x).
We need some further notation. Let t0, t1, . . . , tn, . . . be an enumeration of
the set Seq. If s ∈ Seq is a sequence of length 2n, let Ks be the finite set
{t0, . . . , tn−1} ∩ Ts and let ks = |Ks|.

We shall now define an auxiliary game G∗: Player I plays natural numbers
a0, a1, a2, . . . , and player II plays pairs (b0, h0), (b1, h1), (b2, h2), . . . where
b0, b1, b2, . . . are natural numbers, and for each n, hn is an order-preserving
mapping from (Ks, �) into κ where s = 〈a0, b0, . . . , an, bn〉 such that h0 ⊂
h1 ⊂ h2 ⊂ . . . ⊂ hn ⊂ . . .. If player II is able to follow these rules throughout
the game, then he wins. Otherwise, I wins.

It is clear that the game G∗ is determined: If I does not have a winning
strategy, then he cannot prevent II from following the rules and thus II has
a winning strategy, namely his each move is to reach a position in which
I does not have a winning strategy. (The argument is the same as in the
proof of determinacy of open games; in fact, G∗ is an open game in a suitable
topology.)

If II wins a play in the game G∗, then he has constructed an order-
preserving mapping h =

⋃∞
n=0 hn of (T (x), �) into κ, where x = 〈a0, b0,

a1, b1, . . .〉; hence � well-orders T (x) and so x /∈ A. Thus we can view the
game G∗ as a variant of GA, but more difficult for player II: II tries to make
sure that x /∈ A, and in addition, he tries to construct an embedding of
(T (x), �) in κ. Hence it is fairly obvious that if II has a winning strategy
in the game G∗, then II has a winning strategy in GA: If τ∗ is a winning
strategy for II in G∗, let τ be as follows. When I plays a0, let τ(〈a0〉) = b0

where (b0, h0) = τ∗(〈a0〉); then when I plays a1, let τ(〈a0, b0, a1〉) = b1 where
(b1, h1) = τ∗(〈a0, (b0, h0), a1〉); etc.

Since G∗ is determined, it suffices to prove the following lemma in order
to show that GA is determined:

Lemma 33.21. If I has a winning strategy in G∗, then I has a winning
strategy in GA.
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Proof. Let σ∗ be a winning strategy for I in G∗. After 2n+2 moves, the players
have produced a sequence s = 〈a0, b0, . . . , an, bn〉, and II has constructed
order-preserving functions h0 ⊂ . . . ⊂ hn; the strategy σ∗ then tells player I
what to play next. Let E be the range of hn; E is a finite subset of κ, and
in fact its size is ks. We observe that there is one and only one way II could
have constructed h0, . . . , hn so that ran(hn) = E; the reason is that hn is
the unique order-preserving one-to-one function between (Ks, �) and E. Thus
σ∗ depends (as long as II plays correctly) only on s ∈ Seq and the finite set
E ⊂ κ.

For each s ∈ Seq of even length, let Fs be the following function from [κ]ks

into ω:

(33.12) Fs(E) = σ∗(s, E).

Each Fs is a partition of [κ]ks into ω pieces; and because κ is measurable,
there exists a set H ⊂ κ of size κ homogeneous for each Fs. Let us denote
by σ(s) the unique value of Fs(E) for E ∈ [H ]ks .

We shall complete the proof by showing that σ is a winning strategy for I
in the game GA. Let x = 〈a0, b0, a1, b1, . . .〉 be a play in which I plays by σ.
We shall show that x ∈ A.

Assume that on the contrary, x /∈ A. Then (T (x), �) is well-ordered and
has order-type < ω1. Since H is uncountable, there exists an embedding h of
(T (x), �) into H . Let us consider the following play of the game G∗: I plays a0.
Then II plays (b0, h0) where h0 is the restriction of h to K〈a0,b0〉. Then
I plays a1 and II plays (b1, h1) where h1 is the restriction of h to K〈a0,b0,a1,b1〉.
And so on.

We show that in this play, player I plays by the strategy σ∗. Clearly,
a0 = σ(∅) = σ∗(∅, ∅). Then a1 = σ(〈a0, b0〉), and by the definition of σ it
is clear that σ(〈a0, b0〉) = σ∗(〈a0, b0〉, h(K〈a0,b0〉)) and therefore a1 is a move
according to σ∗. And so on: All the moves a0, a1, . . . , an, . . . are by σ∗.

This is a contradiction because σ∗ is a winning strategy for I in G∗, but
the play we described is won by player II. It follows that x ∈ A and hence
σ is a winning strategy for I in the game GA. ��

This completes the proof of Σ1
1 Determinacy assuming a measurable car-

dinal. This assumption can be weakened to the assumption that a� exists for
all a ⊂ ω. The above proof is then modified as follows: We play the auxiliary
game as before; κ is an uncountable cardinal. The definition of the auxiliary
game is absolute for the model L[T ], and it follows that either I or II has
a winning strategy for G∗, which si in L[T ]. In particular, in Lemma 33.21, we
may take σ∗ ∈ L[T ]. Then the collection {Fs : s ∈ Seq}, where Fs is defined
by (33.12), is in L[T ], and an indiscernibility argument shows that there is
an uncountable set H ⊂ κ of indiscernibles for L[T ] such that each Fs has
the same value for all E ∈ [H ]ks . The rest of the proof is the same.

Determinacy of all projective games is considerably stronger than Ana-
lytic Determinacy: ∆1

2 Determinacy yields an inner model with a Woodin
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cardinal, and for every n, ∆1
n+1 Determinacy yields an inner model with

n Woodin cardinals.
The proof of Theorem 33.3 shows that Projective Determinacy implies

that every projective set of reals is Lebesgue measurable, has the Baire prop-
erty, and if uncountable, contains a perfect subset. The most important con-
sequence of PD for the structure of projective sets of reals is the existence of
scales. The following is a generalization of (25.28) and (25.34):

Definition 33.22. A Π1
n-norm on a Π1

n set A is a norm ϕ on A with the
property that there exist a Π1

n relation P (x, y) and a Σ1
n relation Q(x, y) such

that for every y ∈ A and all x,

x ∈ A and ϕ(x) ≤ ϕ(y) ↔ P (x, y) ↔ Q(x, y).

A Σ1
n-norm on a Σ1

n set A is defined similarly, as is a Π1
n-scale on a Π1

n set
(or a Σ1

n-scale on a Σ1
n set).

We say that the class Π1
n has the prewellordering property (the scale prop-

erty) if every Π1
n set has a Π1

n-norm (a Π1
n-scale). Π1

n has the uniformization
property if every Π1

n relation on N × N is uniformized by a Π1
n function.

Similarly for Σ1
n.

Theorem 33.23 (Moschovakis [1971]). Assume Projective Determinacy.
Then the following classes have the scale property (for every a ∈ N ):

Π1
1(a), Σ1

2(a), Π1
3(a), Σ1

4(a), . . . , Π1
2n+1(a), Σ1

2n+2(a), . . . .

Corollary 33.24. Assume PD. The classes Π1
2n+1(a) and Σ1

2n+2(a) have
the prewellordering property and the uniformization property and satisfy the
reduction principle; the classes Σ1

2n+1(a) and Π1
2n+2(a) satisfy the separation

principle.

The scale property generalizes the prewellordering property, and implies
uniformization (using the proof of Kondô’s Theorem 25.26; cf. Exercise 33.4).
The prewellordering property implies the reduction principle (as in Exer-
cise 25.7; see Exercise 33.5), which in turn implies the separation principle
for the dual class (cf. Exercise 25.9).

Moreover, since reduction holds for Π1
2n+1 and Σ1

2n+2, separation fails
for these classes (see Exercise 25.11 and Exercise 33.6). Hence reduction,
prewellordering and scale properties fail for the dual classes Σ1

1, Π1
2, Σ1

3, . . . .
Instead of proving Theorem 33.23 we shall prove the weaker statement:

Assuming PD, every Π1
2n+1 and every Σ1

2n+2 have the prewellordering prop-
erty. The full result is proved by a similar, somewhat more complicated,
method.

In Chapter 25 we proved that every Π1
1 set has a Π1

1-norm and that every
Σ1

2 set has a Σ1
2-norm. The latter statement is easily derived from the former

(Exercise 25.6). The same proof shows that if Π1
2n+1 has the prewellordering

property then so does Σ1
2n+2 (Exercise 33.7). Thus it suffices to prove the

following:



33. Determinacy 641

Lemma 33.25. Assume that every ∆1
2n game is determined, and that every

Σ1
2n set has a Σ1

2n-norm. Then every Π1
2n+1 set has a Π1

2n+1-norm.

Proof. Assume that the hypotheses hold and let B be a Π1
2n+1 set

x ∈ B ↔ ∀u (x, u) ∈ A

where A is Σ1
2n. Let ψ be a Σ1

2n-norm on A. For x, y ∈ N consider the game
G(x, y) where I plays a(0), a(1), . . . , a(k), . . . and II plays b(0), b(1), . . . ,
b(k), . . . and II wins if (y, b) /∈ A, or (x, a) ∈ A and ψ(x, a) ≤ ψ(y, b). The
game G(x, y) is determined: If y /∈ B then II can win by playing b such that
(y, b) /∈ A; if y ∈ B then

II wins G(x, y) ↔ P (x, a, y, b) ↔ Q(x, a, y, b)

and so the payoff set is ∆1
2n and hence determined.

For x, y ∈ B, define

x � y ↔ II has a winning strategy in G(x, y).

We will show that � is a prewellordering of B and the corresponding norm
is a Π1

2n+1-norm.
Clearly, x � x for every x ∈ B (II wins by copying I’s moves).
To check that � is transitive, let x � y and y � z. Thus II has winning

strategies both in G(x, y) and G(y, z). We describe a winning strategy for II
in G(x, z): Let k ≥ 0. When I plays a(k) in G(x, z), consider this the kth move
in G(x, y) and apply the strategy in G(x, y) to respond b(k). Consider b(k)
to be the kth move of I in G(y, z) and apply the strategy in G(y, z) to
respond c(k). This c(k) is then the kth move of II in G(x, z). It is clear that
II wins.

Now assume that x, y ∈ B and x �� y. Then I has a winning strat-
egy in G(x, y) (because II does not); we describe a winning strategy for II
in G(y, x) so that y � x: Let k ≥ 0. When I plays a(k) in G(y, x), let b(k)
be the move by I’s winning strategy in G(x, y) (responding to II’s a(k − 1)).
Let II play b(k) in G(y, x). As I wins in G(x, y), we have ψ(x, a) > ψ(y, b),
and so II wins.

To verify that � is well-founded, we assume to the contrary that x0 $ x1 $
. . . $ xn $ . . . is a descending chain, that I has a winning strategy in each of
the games G(xi, xi+1). Let a0(0), a1(0), . . . , ai(0), . . . be the first moves of I
by the winning strategies in the games G(xi, xi+1), and for each k ≥ 1, let
a0(k), a1(k), . . . , ai(k), . . . be I’s moves responding to a1(k − 1), a2(k − 1),
. . . , ai+1(k − 1), . . . II’s moves in these games. Since I wins all these games,
we have ψ(x0, a0) > ψ(x1, a1) > . . . > ψ(xi, ai) > . . ., a contradiction.

Finally, for every y ∈ B,

x ∈ B and x � y ↔ ∃τ ∀a (x, a) ≤ψ (y, a ∗ τ) ↔ ∀σ ∃b (x, σ ∗ b) ≤ψ (y, b)

(where σ and τ denote strategies for I and II) and since ψ is a Σ1
2n-norm

on A, it follows that the norm associated with � is a Π1
2n+1-norm on B. ��
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Consistency of AD

The following theorem confirms what has been expected since the early
1970’s: Determinacy is a large cardinal axiom:

Theorem 33.26 (Martin-Steel-Woodin). If there exist infinitely many
Woodin cardinals and a measurable cardinal above them, then the Axiom of
Determinacy holds in L(R). ��

In the rest of this chapter we shall outline some ideas on which this result
is based. But first we state two related results:

Theorem 33.27 (Woodin). The following are equiconsistent :

(i) ZFC + “There exist infinitely many Woodin cardinals.”
(ii) ZF + AD. ��

Theorem 33.28 (Martin-Steel). Let n ∈ N . If there exist n Woodin car-
dinals with a measurable cardinal above them then every Π1

n+1 game is de-
termined. ��

The crucial concept in these proofs is that of a homogeneous tree.
Following the terminology and notation of Chapter 25, and specifically

Definition 25.8, let K be a set and let T be a tree on ω × K (or more
generally, on ωr × K). For s ∈ Seq let

(33.13) Ts = {t : (s, t) ∈ T }.

In the present context, a measure is a σ-complete ultrafilter, not necessarily
nonprincipal.

Definition 33.29. A tree T on ω ×K is homogeneous if there are measures
µs, s ∈ Seq, such that µs is a measure on Ts and:

(i) If t extends s then πs,t(µt) = µs where πs,t is the natural projection
map from Tt to Ts.

(ii) If x ∈ p[T ] then the direct limit of the ultrapowers by {µx�n : n ∈ ω}
is well-founded.

(See Exercise 33.8 for an explicit formulation of (ii).)
A tree T is κ-homogeneous (where κ is a regular uncountable cardinal) if

the measures µs are all κ-complete. A set A ⊂ N is (κ-)homogeneously Suslin
if A = p[T ] for some (κ-)homogeneous tree T .

Homogeneous trees are an abstraction of Martin’s proof of Π1
1 Determi-

nacy from a measurable cardinal. First, an analysis of Martin’s proof shows
the following:

Lemma 33.30. If A ⊂ N is Π1
1 and κ is a measurable cardinal then A is

κ-homogeneously Suslin.
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Proof. Exercise 33.10. ��

Martin’s proof essentially uses this (Exercise 33.11):

Lemma 33.31. If A ⊂ N is homogeneously Suslin then A is determined.
��

A related concept is a weakly homogeneous tree:

Definition 33.32. A tree T on ω × K is weakly homogeneous if there are
measures µs,t, where s, t ∈ Seq and length(s) = length(t), such that µs,t is
a measure on Ts and

(i) If s̄ ⊃ s and t̄ ⊃ t then πs,s̄(µs̄,t̄) = µs,t.
(ii) If x ∈ p[T ] then there exists a y ∈ N such that the direct limit of the

ultrapowers by {µx�n,y�n : n ∈ ω} is well-founded.

A tree T is κ-weakly homogeneous if the µs,t are κ-complete. A set A is
(κ-)weakly homogeneously Suslin if A = p[T ] for some (κ-)weakly homoge-
neous tree T .

It is not difficult to show that a set A ⊂ N is κ-weakly homogeneously
Suslin if and only if it is a projection of a homogeneously Suslin set B ⊂ N×N
(Exercises 33.12 and 33.13).

Theorem 33.26 follows, via Lemma 33.31, from the following two deep
results:

Theorem 33.33 (Woodin [1988]). If there exist infinitely many Woodin
cardinals with a measurable cardinal above, then every subset of N in L(R)
is δ+-weakly homogeneously Suslin, for some Woodin cardinal δ. ��

Theorem 33.34 (Martin and Steel [1988]). If A ⊂ N is δ+-weakly ho-
mogeneously Suslin, where δ is a Woodin cardinal, then N − A is homoge-
neously Suslin. ��

We shall return to Theorem 33.33 in a later chapter. As for Theorem 33.34,
assume that A = p[T ] where T is weakly homogeneous. Then one constructs
a tree T̃ such that N−A = p[T̃ ] in a manner similar to the tree representation
for Π1

2 sets in Theorem 32.14. The heart of the argument in Martin-Steel’s
proof is to show that T̃ is a homogeneous tree.

Exercises

33.1. (i) The function f(b) = σ ∗ b is a one-to-one continuous function.
(ii) The set {σ ∗ b : b ∈ N} contains a perfect subset.

33.2. I has a winning strategy in the perfect set game if and only if X has a perfect
subset. II has a winning strategy if and only X is at most countable.
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33.3. Let n > 0. If GA is determined for every Σ1
n set A, then GA is determined

for every Π1
n set, and vice versa.

33.4. If every Π1
2n+1 set has a Π1

2n+1-scale then every Π1
2n+1 relation is uniformized

by a Π1
2n+1 function.

33.5. If every Π1
2n+1 set has a Π1

2n+1-norm then Π1
2n+1 satisfies the reduction

principle.

33.6. If Π1
2n+1 satisfies the reduction principle then it does not satisfy the separa-

tion principle.

33.7. If every Π1
2n+1 set has a Π1

2n+1-norm (has a Π1
2n+1-scale) then every Σ1

2n+2 set
has a Σ1

2n+2-norm (has a Σ1
2n+2-scale).

33.8. Property (ii) in Definition 33.29 is equivalent to this: If x ∈ p[T ] and A1,
A2, . . . are such that µx�n(An) = 1, then there exists an f ∈ Kω such that (x, f) ∈
[T ] and f�n ∈ An for all n.

33.9. Every closed set is homogeneously Suslin.
[T is on ω × ω and each µs is principal.]

33.10. Let κ be a measurable cardinal. If A is Π1
1 then there is a κ-homogeneous

tree T on ω × κ such that A = p[T ].
[As A is Π1

1 there are linear orders <s, s ∈ Seq , such that <s orders {0, . . . , n−1}
where n = length(s), <t extends <s if s ⊂ t, and such that A = {x : <x is a well-
ordering} where <x is the limit of the <x�n. Let T be the tree on ω × κ such that
[T ] = {(x, f) : f is order-preserving from (ω,<x) into (κ, <)}. Let U be a normal
measure on κ and let for s of length n, let µs on Ts be induced by Un (on [κ]n).]

33.11. If A = p[T ] and T is a homogeneous tree then the game GA is determined.
[Use an auxiliary game G∗ as in the proof of Corollary 33.20.]

33.12. If B ⊂ N 2 is weakly homogeneously Suslin then so is the projection of B.

33.13. If T is a weakly homogeneous tree on ω×K then there exists a homogeneous
tree U on (ω × ω)×K such that p[T ] is the projection of p[U ].

33.14. Let T be a homogeneous tree on (ω × ω) × K, and let T ′ = {(s, (t, u)) :
((s, t), u) ∈ T}. Then T ′ is a weakly homogeneous tree on ω × (ω ×K).

Historical Notes

Infinite games were first considered in the 1930. Mazur described an infinite game
and conjectured its connection to Baire category, which was then proved by Banach.

In [1953] Gale and Stewart investigated infinite games in general and proved
that the Axiom of Choice implies that there exist undetermined games and that
open games are determined.

In [1962] Mycielski and Steinhaus proposed an axiom and called it the Axiom of
Determinateness (AD). In [1963/64, 1966] Mycielski gave a comprehensive account
of consequences of AD and related open problems.

Theorem 33.3(i) is due to Mycielski and Świerczkowski [1964]; the present proof
(and the covering game) is due to Harrington. Theorem 33.3(iii) is due to Morton
Davis [1964].
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Following Solovay’s discovery that AD implies that ℵ1 is a measurable cardinal,
attention has been turned to the relation between Determinacy and large cardinals.
There have been numerous results in this direction, and a vast of literature exists
on the subject. The reader can find an excellent account of current research on AD
in Kanamori’s book [1994]; a comprehensive treatment of the subject is expected
to appear in the near future (Woodin et al. [∞]).

Theorem 33.12 is due to Solovay; the present proof of measurability of ℵ1

(Lemma 33.13) is due to Martin [1968].
Projective ordinals δ1

n as well as the cardinal Θ were introduced by Moschovakis
[1970] and studied extensively by Kechris [1974, 1978]. The calculation of the size
of the δ1

5 was accomplished by Steve Jackson, cf. [1988, 1999]. For the results on Θ,
see e.g. Kechris [1985].

Theorem 33.18 (Borel Determinacy) is due to Martin [1975]; see also Mar-
tin [1985] and Kechris and Martin [1980].

Theorem 33.19: In [1969/70], Martin proved that analytic games are determined
if a� exists for all a ∈ N ; the converse was proved by Harrington in [1978].

Moschovakis’ Theorem 33.23, cf. [1971], is the culmination of applications of
Projective Determinacy to classical descriptive set theory: among others, see Black-
well [1967], Addison and Moschovakis [1968] and Martin [1968]. For a comprehensive
survey, see Kechris and Moschovakis [1978].

Consistency of AD follows from the results of Martin, Steel and Woodin, cf. Mar-
tin and Steel [1988, 1989] and Woodin [1988].

Homogeneous trees are implicit in Martin and Solovay [1969] and in Mar-
tin [1969/70]. They were explicitly isolated by Kechris [1981]. Weakly homogeneous
trees figured prominently in Woodin [1988].


