
34. Supercompact Cardinals and the Real Line

In this chapter we present results showing the effect of very large cardinals
(such as supercompact) on the structure of sets of real numbers. In earlier
chapters we showed that if ℵ1 is inaccessible in every L[x] (where x ∈ R)
then all Σ1

2 sets of reals are Lebesgue measurable, have the Baire property,
and the perfect set property. If x� exists for all x ∈ R then every Π1

1 game is
determined. Thus already the existence of moderately large cardinals (such as
measurable) has an effect on regularity of projective sets (but recall that—by
Silver’s Theorem 32.20—measurability is still weak to influence Σ1

3 sets, as
measurable cardinals are consistent with a Σ1

3 well-ordering of R). It follows
from the results presented below that if a supercompact cardinal exists, then
all sets of reals in L(R) have the regularity properties mentioned above.

Woodin Cardinals

As we mentioned in the last chapter (Theorem 33.27), the consistency
strength of Determinacy is below a supercompact cardinal; the appropri-
ate large cardinal concept (a Woodin cardinal) was isolated in the course of
investigations leading to the proof of AD. Let us elaborate on the definition
(Definition 20.31) of Woodin cardinals: Let κ and λ ≥ κ be cardinals, and
let A be an arbitrary set. We say that κ is λ-strong for A if there exists an
elementary embedding j : V → M with critical point κ such that

(i) j(κ) > λ,
(ii) Vλ ⊂ M ,
(iii) A ∩ Vλ = j(A) ∩ Vλ.

(34.1)

Hence κ is λ-strong if it is λ-strong for ∅, and by definition, δ is a Woodin
cardinal if for every A ⊂ Vδ there are arbitrarily large κ < δ that are λ-strong
for A for all λ < δ. We now present a different definition of Woodin cardinals
and show that it is equivalent to Definition 20.31.

Definition 34.1. A cardinal δ is a Woodin cardinal if for every function
f : δ → δ there exists a κ < δ with f“κ ⊂ κ, and an elementary embedding
j : V → M with critical point κ such that Vj(f)(α) ⊂ M .
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Every supercompact cardinal is Woodin, and is a limit of Woodin car-
dinals (Exercise 34.1). An immediate consequence of Definition 34.1 is that
every Woodin cardinal is a Mahlo cardinal, and in fact has a stationary set
of measurable cardinals. The following lemma proves the equivalence of Def-
initions 20.31 and 34.1:

Lemma 34.2. The following are equivalent :

(i) For every A ⊂ Vδ there exists a κ < δ that is λ-strong for A for all
λ < δ.

(ii) For every A ⊂ Vδ the set of all κ < δ that are λ-strong for A for all
λ < δ is stationary.

(iii) For every f : δ → δ there exists a κ < δ with f“κ ⊂ κ, and an
elementary embedding j : V → M with critical point κ such that
Vj(f)(α) ⊂ M .

(iv) For every f : δ → δ there exists a κ < δ with f“κ ⊂ κ, and an
extender E ∈ Vκ with critical point κ such that jE(f)(κ) = f(κ) and
Vf(κ) ⊂ UltE.

Proof. It suffices to show that (i) implies (iv) and that (iii) implies (ii).
Assume that (i) holds, and let f : δ → δ. By (i) there exists a κ < δ that

is λ-strong for A for all λ < δ. Let λ < δ be sufficiently large, and let E be an
extender with critical point κ such that Vf(κ) ⊂ UltE and f∩Vλ = jE(f)∩Vλ;
such an extender exists in Vδ. Clearly, f“κ ⊂ κ, and since λ is sufficiently
large, we have jE(f)(κ) = f(κ). Therefore (iv) holds.

Now assume that (iii) holds; let A ⊂ Vδ and let C ⊂ δ be a closed
unbounded set. To prove (ii) we need a κ ∈ C that is λ-strong for A for all
λ < δ. For each α < δ let f(α) be a limit ordinal β ∈ C such that if there
exists a λ < δ such that α is not λ-strong for A, then such a λ exists below β.
By (iii) there exists some κ < δ with f“κ ⊂ κ, and an elementary j : V → M
with critical point κ such that Vj(f)(κ) ⊂ M . Since f“κ ⊂ κ, C ∩ κ is closed
unbounded in κ and hence κ ∈ j(C). By elementarity it suffices to show that

(34.2) M � κ is λ-strong for j(A) for all λ < j(δ).

Assume that (34.2) fails, and let λ be the least λ such that in M , κ is not
λ-strong for j(A). By definition of f we have λ < j(f)(κ). Let E be the
(κ, λ)-extender derived from j. It is routine to verify that Vλ ⊂ UltE and
since UltE = {(jf)(a) : f ∈ V , a ∈ Vλ} ⊂ M , it follows that E ∈ M . In M ,
E is a (κ, λ)-extender, and V M

λ = Vλ ⊂ UltE(M).
We complete the proof by showing that

(34.3) j(A) ∩ V M
λ = jM

E (j(A)) ∩ V M
λ .

Each of the following equalities is easily verified: j(A) ∩ V M
j(κ) = j(A ∩ Vκ) =

jE(A ∩ Vκ) = jM
E (A ∩ Vκ) = jM

E (j(A) ∩ Vκ) = jM
E (j(A)) ∩ jM

E (Vκ), and
(34.3) holds because λ < jM

E (κ) and V M
λ = Vλ ⊂ UltM

E . Therefore (ii) holds.
��



34. Supercompact Cardinals and the Real Line 649

Property (iv) in Lemma 34.2 is Π1
1 over Vδ and so the least Woodin

cardinal is Π1
1-describable and therefore not weakly compact.

Semiproper Forcing

A property of forcing somewhat weaker than properness, called semiproper-
ness, have been of considerable use in the theory of large cardinals. We shall
investigate it in some detail in Chapter 37; at this point we introduce semi-
proper forcing, prove basic properties and use it in an application involv-
ing L(R) and supercompact cardinals.

Modifying condition (ii) in Lemma 31.6 and the characterization of
properness in Theorem 31.7 we obtain the following: Let P be a notion of
forcing and let λ be sufficiently large. Let M be a countable elementary sub-
model of (Hλ,∈, <). A condition q is (M, P )-semigeneric if for every name
α̇ ∈ M such that � α̇ is a countable ordinal,

(34.4) q � ∃β ∈ M α̇ = β.

Definition 34.3. A notion of forcing P is semiproper if for every sufficiently
large λ there is a closed unbounded set in [Hλ]ω of countable elementary
submodels such that

∀p ∈ M ∃q ≤ p q is (M, P )-semigeneric.

Thus semiproperness is a weaker property than properness: Definition 34.3
is obtained by replacing arbitrary ordinal names in Lemma 31.6 by names
for countable ordinals. While the condition in Theorem 31.7 is equivalent to
preservation of stationary sets in [λ]ω , only the second part of the proof of
Theorem 31.7 remains valid for semiproper forcing, and we get:

Theorem 34.4. If P is semiproper then every stationary set S ⊂ ω1 remains
stationary in V P . ��

If P is semiproper and Q̇ is semiproper in V P , then P ∗ Q̇ is semiproper.
Semiproperness is generally not preserved under countable support iteration;
the proof of Theorem 31.15 does not generalize to iterations of semiproper
forcing. (The reason is that a semiproper forcing may change the cofinality
of a regular uncountable cardinal to ω: It is not necessarily the case that
a countable set of ordinals in V [G] is included in a set that is countable
in V .) When the iteration adds no new countable sets, however, the proof of
Theorem 31.15 does go through for semiproper forcing, and we have:

Lemma 34.5. If P is a countable support iteration of semiproper forcing
notions and if P is ω-distributive, then P is semiproper. ��

In Chapter 37 we shall deal with iterations of semiproper forcings.
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The Model L(R)

We shall now show that if there exists a supercompact cardinal then every
set of reals in L(R) is Lebesgue measurable, has the Baire property and
the perfect set property. In fact, the reals in L(R) behave exactly as the
reals in Solovay’s model in Theorem 26.14(i). The regularity of sets of reals
in L(R) follows of course from Theorem 33.26, and we shall outline later in
this chapter the methods that lead to the proof of that theorem. We shall
prove the following:

Theorem 34.6 (Woodin). Let κ be a superstrong cardinal and let V [G]
be the generic extension of V by the Lévy collapse Col(ℵ0, <κ). Then there
exists an elementary embedding

j : L(R) → (L(R))V [G].

(For superstrong cardinals, see Exercise 34.2.)

Corollary 34.7. If there exists a superstrong cardinal then every set of reals
in L(R) is Lebesgue measurable, has the Baire property, and has the perfect
set property. In particular, there is no projective well-ordering of R. ��

The main result used in the proof of Theorem 34.6 is the following result
on saturated ideals:

Theorem 34.8. If κ is a superstrong cardinal then there exists an ω-dis-
tributive κ-c.c. notion of forcing P such that in V P , κ = ℵ2 and there exists
a normal ℵ2-saturated ideal on ω1.

Let us show how Theorem 34.8 implies Theorem 34.6:

Proof of Theorem 34.6. Let P be the notion of forcing from Theorem 34.8,
and let M be the generic extension of V by P . In M , let I be a normal ℵ2-
saturated ideal on ω1, and let Q be the notion of forcing P (ω1)/I. Q yields an
M -generic M -ultrafilter G on ω1; let N = UltG(M) be the generic ultrapower.
If j : M → N is the generic elementary embedding then (by the results proved
in Chapter 22), ω1 is the critical point, j(ω1) = ωM

2 = κ, and (P (ω1))N =
(P (ω1))M [G]. Hence RN = RM [G], and since RM = R, j yields an elementary
embedding

(34.5) j : L(R) → (L(R))V P∗Q

.

Let B = B(P ∗ Q). Since P satisfies the κ-chain condition and I is κ-
saturated in V P , B satisfies the κ-chain condition. Since P collapses all car-
dinals below κ to ω1, and Q collapses ω1 (because ℵN

1 = j(ℵ1) = ℵM
2 ),
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B makes κ = ℵ1. Every complete subalgebra of B generated by fewer than κ
elements has size less than κ (by weak compactness of κ), and hence we have

(i) B is κ-c.c.,
(ii) B =

⋃
α<κ Bα where |Bα| < κ, and Bα <reg Bβ for all α <

β < κ,
(iii) every γ < κ is countable in V Bα for some α < κ.

(34.6)

It follows from (34.6) that B is isomorphic to the Lévy collapse Col(ω, <κ)
(see Exercise 34.5), and Theorem 34.6 now follows from (34.5). ��

Proof of Theorem 34.8. The notion of forcing P is a countable support it-
eration of length κ, where κ is a superstrong cardinal. The goal is to build
a model V P in which for some stationary set A ⊂ ω1, the nonstationary ideal
estricted to A, i.e., INS�A, is ℵ2-saturated. We shall first describe the iterates.

Let us fix a set A ⊂ ω1 such that both A and ω1 − A are stationary. Let
{Ai : i ∈ W} be a maximal almost disjoint collection of stationary subsets
of A (in this context, almost disjoint means that Ai ∩ Ak is nonstationary).
If |W | > ℵ1, consider the following notion of forcing QW : First let Q be
the forcing that collapses |W | to ℵ1 with countable conditions. In V Q, let
Ṡ =

∑
i∈W Ai, and let PṠ be the forcing (from Theorem 23.8) that shoots

a closed unbounded set through (ω1−A)∪Ṡ. Let QW = Q∗PṠ. Equivalently,
let QW be the set of all pairs (q, p) such that

(i) q : γ + 1 → W for some γ < ω1, and
(ii) p ⊂ ω1 is a closed countable set such that α ∈ p ∩ A implies

α ∈
⋃

ξ<α Aq(ξ).

(34.7)

A condition (q′, p′) is stronger than (q, p) if q′ ⊃ q and p′ is an end-extension
of p.

The forcing QW preserves stationary subsets of ω1 (Exercise 34.6) but is
not necessarily semiproper. If W is not maximal then QW makes it maximal,
and preserves all stationary subsets of ω1 − A and of all Ai (Exercise 34.7).
Note also that if A is a nonstationary set then the forcing QW as defined
in (34.7) has a dense subset that is countably closed.

The effect of QW is that in the generic extension,
∑

i∈W Ai = A (mod INS)
and |W | = ℵ1. (In the intermediate extension by Q there could exist a new
stationary subset of A almost disjoint from each Ai, but it is destroyed by PṠ ,
and in V QW ,

∑
i∈W Ai ∪ (ω1 − A) contains a closed unbounded set.)

Now we define a countable support iteration Pα; and then we let P = Pκ.
Using some book-keeping device (standard in forcing iterations), at stage α
we consider (in V Pα) a maximal almost disjoint collection {Ai : i ∈ W} of
stationary subsets of A such that |W | > ℵ1. If QW is semiproper, we let
Q̇α = QW ; otherwise we let Q̇α be the collapse with countable conditions
of 2ℵ2 to ℵ1.

Thus Pα is a countable support iteration of semiproper forcing notions.
The role of the set A is to guarantee that Pα is ω-distributive. To show that,
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consider the generic extension V [G] obtained by shooting a closed unbounded
set through κ−A. In V [G], each Q̇α has a countably close dense subset, and
so Pα is a countable support iteration of countably closed forcing notions.
Hence Pα is ω-distributive in V [G], and therefore in V .

Thus by Lemma 34.5, each Pα is semiproper. Since κ is inaccessible and
Pκ is the direct limit of small forcing notions, Pκ satisfies the κ-chain condi-
tion. Since at cofinally many stages Q̇α collapses 2ℵ2 (of V Pα) to ℵ1, κ be-
comes ℵ2 in the model V P . The model V P has no new countable sets of
ordinals, and every stationary subset of ω1 remains stationary. Moreover, if
S ∈ V P is a subset of ω1 and is stationary in some V Pα , then it remains sta-
tionary: This is because V P is a semiproper forcing extension of V Pα—the
iteration from α to κ is a countable support iteration of semiproper forcings
in V Pα , and is ω-distributive (in V Pα).

We shall now prove that in V P , the ideal INS�A is ℵ2-saturated. Let G
be a generic filter on Pκ and assume that in V [G] there exists a maximal
almost disjoint family of stationary subsets of A, such that |W | > ℵ1 (hence
|W | = ℵV [G]

2 = κ). Let W be such a family, and assume further that W is
chosen by our book-keeping to be the family considered at stage κ of the
iteration.

Let j : V → M be an elementary embedding with critical point κ such
that Vj(κ) ⊂ M . For all α < j(κ), (Pα)M = Pα; (Pj(κ))M = j(Pκ) is the
direct limit of the Pα while Pj(κ) is the direct or inverse limit, depending
on cf j(κ) in V . Let H be such that G ∗ H is a generic filter on Pj(κ). Let
H̃ =

⋃
κ≤α<j(κ) H�α; G ∗ H̃ is an M -generic filter on j(Pκ), and j : V → M

extends (in V [G ∗ H ]) to an elementary embedding j : V [G] → M [G ∗ H̃ ].
One more remark before we proceed. If X ⊂ ω1 is a stationary set in

M [G][H̃ ] then it is stationary in V [G][H ]. This is because X ∈ M [G][H�α]
for some α < j(κ), hence X is stationary in V [G][H�α], and V [G][H ] is
a semiproper forcing extension of V [G][H�α].

Lemma 34.9. The forcing notion QW is semiproper in V [G].

This will complete the proof: If QW is semiproper then Qκ = QW . It
follows that A =

∑
W , after forcing with Qκ, hence in M [G][H̃ ]. This is

a contradiction, since j(W ) is an almost disjoint family of stationary subsets
of A, and W ⊂ j(W ) and W �= j(W ), since |W | = κ in V [G].

Proof. Assume that QW is not semiproper. Let N = (Hκ+)V [G]; there is
a p ∈ QW such that the set

(34.8) S = {M ∈ [N ]ω : p ∈ M and no q ≤ p is (M, QW )-semigeneric}

is stationary. Since QW is not semiproper, the forcing Q̇κ is the collapse
(with countable conditions) of 2κ to ℵ1. Let Gκ be a generic filter on Q̇κ;
since Q̇κ is ω-closed, S remains stationary in V [G][Gκ]. Since S ∈ M [G], S is
in M [G][Gκ] a stationary subset of [N ]ω and N has cardinality ℵ1. Let π
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be (in M [G][Gκ]) a one-to-one correspondence between N and ω1, and let
S̃ = ω1 ∩ π“S. S̃ is, in M [G][Gκ], a stationary subset of ω1.

Now work in V [G][H ] and consider the forcing notion Qj(W ) = j(QW )
and the condition p ∈ QW from (34.8). By Exercise 34.8, j(p) = p forces
that j(S) is nonstationary. In the generic extension, j(S) is a nonstationary
subset of [j(N)]ω, and hence j“S is a nonstationary subset of [j“N ]ω and
therefore S is a nonstationary subset of [N ]ω. It follows that (in V[G][H])

(34.9) p �Qj(W ) S̃ is a nonstationary subset of ω1.

The set S̃ is stationary in M [G][Gκ] and therefore in M [G][H̃] (which
is a semiproper forcing extension of M [G][Gκ]). The family j(W ) is, in
M [G][H̃ ], a maximal almost disjoint family of stationary subsets of A and
therefore intersects either ω1 − A or some E ∈ W in a stationary set; for
instance let E ∈ j(W ) be such that S̃ ∩ E is stationary. Thus S̃ ∩ E is sta-
tionary in V [G][H ], and (by Exercise 34.7), remains stationary after forcing
(over V [G][H ]) with Qj(W ). This contradicts (34.9). ��

Stationary Tower Forcing

We shall describe a forcing notion, due to Hugh Woodin, that is used, among
other applications, to generalize Theorem 34.6 and prove Theorem 33.33.

Definition 34.10 (Stationary Tower Forcing). Let κ be an inaccessible
cardinal. The forcing notion Q = Q<κ consists of conditions (Vα, S) where
α < κ and S is a stationary subset of [Vα]ω. A condition (Vβ , T ) is stronger
than (Vα, S) if α ≤ β and T �Vα ⊂ S.

Equivalently, (Vβ , T ) ≤ (Vα, S) if α ≤ β and T ⊂ SVβ where SVβ is the
lifting of S to [Vβ ]ω; see Theorem 8.27. The forcing Q<κ is not separative:
Two conditions (Vα, S) and (Vβ , T ) are equivalent if and only if for some (all)
γ ≥ α, β, SVγ � T Vγ mod the nonstationary ideal on [Vγ ]ω.

If (Vα, S) is a condition, Vα is determined by S (Vα =
⋃

S), so we can
abuse the notation by calling S a condition in Q<κ; we say that Vα is the
support of S.

If G is a generic filter then for each α < κ, G∩ [Vα]ω is a normal ultrafilter
extending the closed unbounded filter. In V [G], we define a generic ultrapower
UltG(V ) as follows: Consider formulas f ∈ V defined on some Vα, α < κ, and
let, for f on Vα and g on Vβ ,

(34.10) f =G g if for some S ∈ G with support ≥ α, β, f(x∩Vα) = g(x∩Vβ)
for all x ∈ S;

f ∈G g is defined similarly. Below we prove that if κ is a Woodin cardinal
then UltG(V ) is well-founded.
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The following definition was inspired by the earlier sections of this chapter,
in particular Exercise 34.9: Let M ⊂ N be countable models; we say that
N end-extends M if for all u ∈ M , u ∩ N = u ∩ M .

Definition 34.11. Let A be a dense set of conditions in Q<κ. A is semiproper
if for all sufficiently large λ there is a closed unbounded set in [Hλ]ω of
countable elementary submodels M such that for some countable N ≺ Hλ,

(i) M ⊂ N and N end-extends M ∩ Vκ,
(ii) ∃S ∈ A ∩ N with support Vα such that N ∩ Vα ∈ S.

(34.11)

The definition has equivalent variants:

Lemma 34.12. Each of the following two properties is equivalent to semi-
properness of A:

(i) There is a closed unbounded set of countable M ≺ Vκ+1 such that
some countable N ≺ Vκ+1 satisfies (34.11).

(ii) For all sufficiently large λ, for every countable M ≺ Hλ such that
A ∈ M there is a countable N ≺ Hλ that satisfies (34.11).

Proof. For the nontrivial implication (i) ⇒ (ii) see Exercise 34.10. ��

The following is the key lemma. If δ is a Woodin cardinal and A is a dense
subset of Q<δ then for a closed unbounded set of κ < δ, A ∩ Q<κ is dense
in Q<κ, and for a stationary set of κ, κ is λ-strong for A for all λ < δ.

Lemma 34.13. Let κ < δ be such that A ∩ Q<κ is dense in Q<κ and that
κ is λ-strong for A for all λ < δ. Then A ∩ Q<κ is semiproper in Q<κ.

Proof. Toward a contradiction, assume that the set

S = {M ≺ Vκ+1 : there is no N ≺ Vκ+1 such that (34.11) holds}

is stationary. Let λ > κ + 1 (λ < δ) be such that (Vλ,∈) ≺ (Vδ,∈). Let
j : V → M be an elementary embedding with critical point κ such that
j(κ) > λ, Vλ ∈ M and j(A) ∩ Vλ = A ∩ Vλ. We have S ∈ M , S ∈ j(Q<κ),
and M � j(A) is dense in j(Q<κ), and so there exists a T < S such that
T ∈ j(A) ∩ Vλ = A ∩ Vλ. Note that T < S means that for every z ∈ T ,
z ∩ Vκ+1 ∈ S.

Let Vα be the support of T . We shall find a countable x ≺ Vκ+1, a count-
able y ≺ j(Vα), and a countable z ≺ Vα such that y∩Vα = z ∈ T , z∩Vκ+1 = x,
and T ∈ y. Then y end-extends j(x∩Vκ) = x∩Vκ, T ∈ j(A)∩y, and y∩Vα ∈ T .
This implies (by (34.11)) that j(x) /∈ j(S), but z ∈ T < S implies that x ∈ S,
a contradiction.

To find x, y, and z, let F : V <ω
α → Vα be the function F (e ∪ {f}) =

j(f)(T, e) (if defined and ∈ Vα; e is a finite subset of Vα and f ∈ Vα is
a function), and let z ∈ T be closed under F . Let y = {(jf)(T, e) : f ∈ z and
e ∈ z<ω} and x = z ∩ Vκ+1. We have y ≺ j(Vα), y ∩ Vα = z and T ∈ y, as
desired. ��
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Lemma 34.13 is used to prove the following theorem on the stationary
tower forcing:

Theorem 34.14 (Woodin, [1988]). Let δ be a Woodin cardinal and let
Q<δ be the stationary tower forcing. Let G be a generic filter on Q<δ, and
let j : V → UltG be the canonical elementary embedding into the generic
ultrapower. Then

(i) UltG is well-founded.
(ii) j(ω1) = δ.
(iii) In V [G], the model UltG is closed under <δ-sequences.

We sketch the proof of (i) and refer the reader to Woodin [1988] for the
details of the complete proof. (Woodin’s paper states the theorem for a super-
compact cardinal but the proof can be easily adapted. See also Woodin [1999],
Theorem 2.36.)

Proof. (i) If A is a dense set and N is a countable model, we say that N cap-
tures A if (34.11)(ii) holds. First we claim that if A ⊂ Q<κ is semiproper
then for every condition p ∈ Q<κ there is a stronger condition q such that
every N ∈ q captures A. This is proved by showing that the set

q = {N ≺ Vκ+1 : N ∩ Vα ∈ p and N captures A}

(where Vα is the support of p) is stationary. To show this, let F : V <ω
κ+1 → Vκ+1

and let M ≺ Hλ for some λ be such that A ∈ M , F ∈ M , and M ∩ Vα ∈ p.
Let N ⊃ M be such that N end-extends M ∩ Vκ and captures A. Then
N ∩ Vκ+1 ∈ q and is closed under F .

One proves similarly that if An, n < ω, are semiproper then for every p
there exists a q < p such that every N ∈ q captures every An.

Now let 〈ḟn : n < ω〉 be a sequence of names of functions in the generic
ultrapower, names for a descending sequence of ordinals. For each n there is
a dense set An such that for each S ∈ An there is an ordinal function fS

n on S
such that S � ḟn = fS

n . Let κ < δ be such that each An ∩Q<κ is semiproper,
and let p ∈ G be such that every N ∈ p captures each An.

Now we define, for each n < ω, a function fn on p as follows: If N ∈ p, let
fn(N) = fS

n (N) where S ∈ An (with support Vα) is such that N ∩ Vα ∈ S.
The functions fn are defined for almost all (mod INS) N ∈ p, and fn+1(N) <
fn(N) for all n, producing a descending sequence of ordinals.

(iii) is proved similarly; one can show that if Aα, α < γ, with γ < δ
are semiproper then for every p there exists a q < p such that every N ∈ q
captures Aα for all α ∈ N .

(ii) follows by showing that δ remains a regular cardinal in V [G] and that
every α < δ is collapsed to ω. While the proof of regularity of δ is similar to
the proof of (iii), the proof that α becomes countable is a consequence of the
following fact that is easy to verify: If S ∈ Q<δ has support Vα then

S � j“Vα ∈ j(S). ��
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Weakly Homogeneous Trees

Let δ be a Woodin cardinal. By Theorem 34.14 there exists a generic ele-
mentary embedding j : V → M such that RM = RV [G] and j(ω1) = δ; G is
a generic filter on Q = Q<δ. Consider the following forcing notion P in V [G]:
A forcing condition p is a V -generic filter on the Lévy collapse Col(ω, <λ)
for some λ < δ; p is stronger than q if p ⊃ q. The forcing P does not add
reals and if H ⊂ P is V [G]-generic then H is a V -generic filter on Col(ω, <δ).
Under additional assumptions on δ, such as that δ is also a limit of Woodin
cardinals, every countably generated subalgebra of Q<δ has cardinality less
than δ, and RV [G] = RV [H]. Hence there exists an elementary embedding
j : L(R) → L(R)Col(ω,<δ) and consequently, the sets of reals in L(R) have
the regularity properties stated in Corollary 34.7.

The above argument yields a stronger result:

Corollary 34.15. If δ is a Woodin cardinal and a limit of Woodin cardinals,
if P is a forcing notion such that |P | < δ, and if G is a generic filter on P ,
then the model L(R)V [G] is elementarily equivalent to L(R).

Proof. As δ remains a Woodin cardinal in V [G], we can find a V -generic
filter H on Col(ω, <δ) such that V [G] ⊂ V [H ] and V [H ] is a Col(ω, <δ)-
generic extension of V [G], and elementary embeddings j : L(R) → L(R)V [H]

and k : L(R)V [G] → L(R)V [H]. ��

This property of Woodin cardinals (that the theory of L(R) is unchanged
by small forcing) has been exploited by Woodin to prove the following theo-
rem. In [1988] these results are stated under the assumption that a supercom-
pact cardinal exists, but Woodin subsequently proved the theorem under the
assumption stated below. The assumption is close to optimal as ω Woodin
cardinals do not suffice; compare also with Theorem 35.20. The proof of (ii)
uses the result in (i), and is a restatement of Theorem 33.33, establishing
Determinacy in L(R).

Theorem 34.16 (Woodin, [1988]). Assume that there exist infinitely many
Woodin cardinals with a measurable cardinal above them. Let λ be the supre-
mum of the first ω Woodin cardinals.

(i) For every set A ⊂ R in L(R) there exist trees T and S such that

A = p[T ], R − A = p[S]

and for every forcing P such that |P | < λ, if G ⊂ P is generic then

V [G] � p[T ] ∪ p[S] = R and p[T ] ∩ p[S] = ∅.

(ii) Every set A ⊂ R in L(R) is κ-weakly homogeneously Suslin, for all
κ < λ. ��
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Exercises

34.1. Let κ be a supercompact cardinal. Then

(i) κ is a Woodin cardinal, and
(ii) there is a normal measure on κ such that almost all δ < κ are Woodin.

A cardinal κ is superstrong if there exists an elementary embedding j : V →M
with critical point κ such that Vj(κ) ⊂M .

34.2. If κ is supercompact then there exists a normal measure on κ such that
almost all α < κ are superstrong cardinals.

34.3. If κ is superstrong then κ is a Woodin cardinal, and there exists a normal
measure on κ such that almost all δ < κ are Woodin cardinals.

34.4. P is semiproper if and only if for every p ∈ P , player II has a winning strategy
in the following game: I plays names α̇n for countable ordinals, II plays βn, and
II wins if ∃q ≤ p q � ∀n∃k (α̇n = βk).

34.5. Let B be an atomless complete Boolean algebra that satisfies (34.6). Then
B = Col(ω,<κ).

[Similar to Theorem 26.12.]

34.6. QW preserves stationary subsets of ω1.
[If T ⊂ A is stationary then T ∩ Ai is stationary for some i, and remains

stationary in V Q. Hence T ∩Ai∩ Ṡ is stationary in V Q, and then use Exercise 23.6.]

34.7. Let W be a family of stationary subsets of A ⊂ ω1, and let QW be defined
as in (34.7). If S is a stationary subset of some Ai ∈ W or a stationary subset of
ω1 − A, then S remains stationary. Also, A =

P

W in V QW .
[As in Exercises 23.6 and 34.6.]

34.8. Let N be a transitive model, N ⊃ ω1, let P ∈ N and p ∈ P . Then p forces
that the set

{M ∈ [N ]ω : M ≺ N and ∃q ≤ p q is (M, P )-semigeneric}

contains a closed unbounded set.
[Let C = {M : if α̇ ∈M and α̇G < ω1 then α̇G ∈M}.]

Let W be a family of stationary subsets of ω1 and let QW be defined as in (34.7)
(i.e., A = ω1).

34.9. QW is semiproper if and only if for all sufficiently large λ there is a closed
unbounded set of M ≺ Hλ such that exists an N ≺ Hλ with M ⊂ N and ω1∩M =
ω1 ∩N , and for some S ∈ W ∩N , ω1 ∩N ∈ S.

34.10. Show that (i) implies (ii) in Lemma 34.12.
[By (i) let F ∈ Hλ be such that F : (Vκ+1)

<ω → Vκ+1 and that for every
M ≺ Vκ+1 closed under F there is some N ≺ Vκ+1 such that (34.11) holds. Now
if M ≺ Hλ and A ∈ M , there exists such an F in M , and so M̃ = M ∩ Vκ+1

is closed under F . Let M̃ ⊂ Ñ ≺ Vκ+1 be so that (34.11) holds for Ñ . Then
let N = {f(e) : f ∈ M and e ∈ (Ñ ∩ Vκ)<ω}. Verify that M ⊂ N ≺ Hλ and
(34.11) holds for N .]
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Historical Notes

Woodin cardinals were introduced by Woodin (both Definitions 20.31 and 34.1).
Strong and superstrong cardinals were considered by Mitchell [1979a], Dodd and
Jensen (Dodd [1982]) and Baldwin [1986], in their study of inner models.

Semiproper forcing was introduced by Shelah and was investigated extensively
by Foreman, Magidor, and Shelah in [1988]. For Theorem 34.6, see Shelah and
Woodin [1990]. The proof of Theorem 34.8 was inspired by the work of Foreman,
Magidor, and Shelah on Martin’s Maximum.

Stationary tower forcing and its applications (Theorem 34.14, Corollary 34.15,
and Theorem 34.16) are due to Woodin.


