
35. Inner Models for Large Cardinals

This chapter is an introduction to the highly technical theory of inner models
for large cardinals. We present the fundamental concepts and ideas of the
theory and state, mostly without a proof (or giving an outline of a proof)
some significant results.

There are two major themes in the theory of inner models. One is that
with a given large cardinal property one can associate a minimal inner model
of ZFC for that property. An example is the model L[U ] for a measurable
cardinal. The other is the construction of core models for large cardinals.
These generalize the Dodd-Jensen core model K that we describe in some
detail. K is an inner model of ZFC that satisfies GCH and either the Covering
Theorem holds for K (see below) or L[U ] exists.

Definition 35.1. Let M be an inner model of ZFC. We say that the Cov-
ering Theorem holds for M if for every uncountable set X of ordinals there
exists some Y ∈ M such that |Y | = |X |.

If the Covering Theorem holds for some inner model M that satisfies GCH
then (exactly as in Corollaries 18.31–18.33) the Singular Cardinal Hypothesis
holds, every singular cardinal is singular in M , and (κ+)M = κ+ for every
singular cardinal κ.

A theory of core models has been developed for large cardinals up to
a Woodin cardinal. While the Covering Theorem does not hold beyond K,
a generalized core model possesses the following feature: If there exists no
inner model for a large cardinal with a given property then the core model M
for such a property is “close to” the universe V ; typically, (κ+)M = κ+ for
every singular strong limit cardinal. This feature makes core models a tool
for gauging the consistency strength of set-theoretical conjectures.

As an example, Dodd-Jensen’s Covering Theorem for K gives a lower
bound for the consistency of the failure of SCH: If SCH fails then the Cover-
ing Theorem for K fails and therefore there exists an inner model for a mea-
surable cardinal.
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The Core Model

The origin of the core model theory was the construction, by Dodd and
Jensen, of the core model K. The Dodd-Jensen core model (“the core model
up to a measurable cardinal”) is an inner model K that contains much of
the large cardinal structure without the existence of measurable cardinals.
Its main features are:

(1) K has a definable well-ordering, satisfies GCH and combinatorial prin-
ciples such as �.

(2) There exists a nontrivial elementary embedding j : K → K if and
only if L[U ] exists.

(3) If L[U ] does not exist then the Covering Theorem holds for K.

If L[U ] exists then K has a simple definition:

Definition 35.2. Assume that L[U ] exists. The core model is the inner
model

K =
⋂

α∈Ord

Ult(α)
U (L[U ]).

It is easy to verify that K is an inner model. Only the lower parts of the
iterated ultrapowers matter; see Exercise 35.1.

Central to the theory of inner models is the “internal” definition of K.
The main idea underlying the theory, including the generalizations of K, is
that the core model is approximated by transitive models (sets), so called
mice. Mice are the building blocks of K, as much as the models Lα are for L.

The preferred hierarchy for the fine structure of L is the Jensen hierar-
chy Jα. For K, we use its relativization JA

α for the language {∈, A} where
A is a unary predicate: We modify Definition 27.2 (of rudimentary functions)
by adding the function F (x) = x ∩ A to obtain functions rudimentary in A,
and let, for any set A,

(35.1) rudA(M) = the closure of M ∪ {M} under functions rudimentary
in A.

Definition 35.3. JA
0 = ∅, JA

α+1 = rudA(JA
α ), JA

α =
⋃

β<α Jβ if α is a limit
ordinal.

It follows that L[A] =
⋃

α∈Ord JA
α . See Exercise 35.2 for some properties

of the relativized Jensen hierarchy. Each JA
α is a transitive set and we abuse

the notation by using JA
α to denote also the model (JA

α ,∈, A ∩ JA
α ).

Definition 35.4. A mouse is a transitive model M = JU
α such that

(i) U is a normal κ-complete iterable M -ultrafilter on some κ < α,
(ii) all iterated ultrapowers of JU

α by U are well-founded,
(iii) M = HM

1 (γ ∪ p) (the Σ1 Skolem hull) for some γ < κ and some finite
p ⊂ α.
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More specifically, M is a mouse at κ.

Some remarks about the definition: Iterability is the condition (19.17) that
makes possible iterating the ultrapower. In Chapter 19 we assumed that M is
a model of ZF− which is not the case for mice (the requirement (iii) precludes
it; see Exercise 35.3). �Loś’s Theorem is not true in general in ultrapowers of
mice, only for Σ0 formulas (actually for Σ1 formulas as we discuss below).
One uses the fine structure to overcome this difficulty. Finally, for (ii) it is
sufficient that the ω1st iterate is well-founded.

Definition 35.5. K = L{M : M is a mouse}.

Below we outline a proof of the following theorem:

Theorem 35.6 (Dodd-Jensen).

(i) K is an inner model of ZFC and has a Σ2 well-ordering.
(ii) K satisfies GCH.
(iii) RK has a Σ1

3 well-ordering.
(iv) KK = K, and KV [G] = K for every generic extension.
(v) If L[U ] exists then K =

⋂
α∈Ord Ult(α)

U L[U ].
(vi) In K, L[U ] does not exist.
(vii) If 0� does not exist then K = L. If 0� exists then 0� ∈ K. More

generally, for every x ∈ K, if x� exists then x� ∈ K. ��

We now outline the basic theory of mice and techniques used in the core
model theory. First we state a special case of (vii):

Lemma 35.7. A mouse exists if and only if 0� exists.

Proof. If a mouse exists at κ, then the iterates κ(α) are indiscernibles for L.
Conversely, let 0� exist and let iα be the Silver indiscernibles. For each α,

let jα : L → L be the unique elementary embedding with critical point iα
such that jα(iα) = iα+1; Let Uα be the corresponding L-ultrafilter. Using
indiscernibility, one shows that jUα = jα. Each Uα is iterable and all iterates
Ult(β)

Uα
(L) are well-founded.

Now consider κ = i0 and U = U0, and let M = JU
κ+1. One proves that

U ⊂ JU
κ+1 ⊂ L, and Ult(α)

U (JU
κ+1) = JUα

iα+1. Finally, one verifies that JU
κ+1 =

HM
1 (∅), and hence M is a mouse. ��

Instrumental in the core model theory is the comparison of mice, a Σ2 well-
ordering of the class of all mice obtained by comparing the transfinite iterates
of mice.

For every regular uncountable cardinal λ, let Cλ denote the closed un-
bounded filter on λ. Let M = JU

α be a mouse at κ, and let λ be a regular
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cardinal greater than κ+. Then (as in Chapter 19), the λth iterate of M has
the form

(35.2) Ultλ
U (M) = JCλ

β .

Clearly, JCλ

β is constructible from M , but M is also constructible from JCλ

β :
M is isomorphic to the Σ1 Skolem hull of γ ∪ i0,λ(p) in JCλ

β .
For a given mouse M , γ and p are fixed to be least possible such that

M = HM
1 (γ ∪ p), in the following sense: γ is the least such γ, and then p is

the least p in the lexicographic ordering of finite descending sequences of
ordinals.

Definition 35.8. Let M = JU
α = HM

1 (γ ∪ p) and M ′ = JU ′
α′ = HM ′

1 (γ′ ∪ p′)
be mice, and let λ be (any) sufficiently large regular cardinal. Let i0,λ : M →
JCλ

β and i′0,λ : M ′ → JCλ

β′ be the iterated ultrapowers, with q = i0,λ(p) and
q′ = i′0,λ(p′). We define M < M ′ as follows:

(i) either β < β′,
(ii) or β = β′ and γ < γ′,
(iii) or β = β′ and γ = γ′, and q < q′ (in the descending lexicographic

ordering).

Lemma 35.9. < is a well-ordering of mice, and if M ≤ M ′ then M ∈ L[M ′].

Proof. If β < β′ then JCλ

β ∈ JCλ

β′ , and M ∈ L[JCλ

β ]. ��

An analysis of the complexity of < reveals that it is a Σ2 relation (and that
< on RK is Σ1

3). We recall that the constructible hierarchy is Σ1; the added
complexity in K is caused by the condition that every iterated ultrapower of
a mouse is well-founded.

Being a mouse is absolute for transitive models of ZF, and so is the well-
ordering of mice. Thus if M is an inner model then KM = L{N : N is
a mouse and N ∈ M}, and KK = K. Since the well-ordering of mice is
definable in K, K is a model of ZFC.

If V [G] is a generic extension of V (by a set forcing) then for all sufficiently
large regular cardinals λ, the closed unbounded filter Cλ on λ in V [G] is
generated by the closed unbounded filter in V . Hence JCλ

β is the same in V [G]
as in V , and so every mouse in V [G] is in V . Hence KV [G] = K.

If L[U ] exists then every mouse is in L[Cλ] for some λ; but L[Cλ] =
Ult(λ)

U L[U ]. Hence K ⊂
⋂

α∈Ord Ult(α)L[U ]. If x is a set of ordinals in⋂
α Ult(α) then for some λ > sup x, x ∈ L[U (λ)]. Hence there exists a mouse

M ≺Σ1 JU(λ)

λ+ such that x ∈ M . Therefore K =
⋂

α∈Ord Ult(α)L[U ]. The
latter model has no submodel with a measurable cardinal and so neither
does K.

One important feature of K is the following, which we state without
a proof:

Lemma 35.10. If mice exist then K =
⋃
{M : M is a mouse}. ��
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Proofs in the core model theory such as the proof of Lemma 35.10 involve
iterations of mice. One of the difficulties is that since mice do not satisfy ZF−,
the resulting embeddings are not fully elementary. It is easy to verify that
i0,1 : M → UltU M is Σ0-elementary, and an additional argument shows that
i0,1 is Σ1-elementary; similarly for iα,β. While the finite iterates of a mouse
are mice, arbitrary iterates are not. See Exercises 35.5–35.7.

The proof of GCH in K resembles somewhat Silver’s proof of GCH
in L[U ]. Instrumental in the proof (and proofs of combinatorial principles
in K) are condensation arguments, similar to Lemmas 18.38 and 27.5. These
proofs use heavily the fine structure of K (including projecta, standard codes
and parameters), reducing arguments about Σn to Σ1.

The fine structure of K makes it possible to generalize combinatorial
properties such as ♦ and � from L to K.

There is an alternative way of developing the theory of K and proving
the main theorems. This method, due to Magidor, uses the closed unbounded
filter directly. Instead of using mice, K can be defined using Definition 35.12
below (this definition is equivalent to the Dodd-Jensen definition).

Definition 35.11. The closed unbounded filter Cκ on κ survives at β if for
every n and f : [κ]n → {0, 1} with f ∈ Lβ+1[Cκ] there is a set C ∈ Cκ

homogeneous for f .

Definition 35.12. A set x belongs to K if and only if for some κ > rank(x)
and some β, x ∈ Lβ[Cκ] and Cκ survives at β.

If Cκ survives at β then it survives at all β′ < β. If it survives at all β then
L[Cκ] is the inner model for one measurable cardinal. Cκ survives vacuously
at every β < κ, and survives at κ if and only if 0� exists (Exercise 35.8).

If L[U ] exists then for every sufficiently large regular κ, L[Cκ] = L[U (κ)],
and so

⋃
{Lβ[Cκ] ∩ Vκ : Cκ survives at β} =

⋃
{L[U (κ)] ∩ Vκ : κ > ω regu-

lar} = K.

The Covering Theorem for K

The two main results on the core model are that unless L[U ] exists, K is
rigid and the Covering Theorem holds for K:

Theorem 35.13 (Dodd-Jensen). The following are equivalent :

(i) L[U ] exists.
(ii) There exists a nontrivial elementary embedding j : K → K. ��

Theorem 35.14 (Dodd-Jensen’s Covering Theorem for K). If L[U ]
does not exist, then for every uncountable set X of ordinals there exists a set
Y ⊃ X in K such that |Y | = |X |. ��
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If L[U ] exists then the ultrapower by U yields an elementary embedding
j : K → K. The proof of the converse shows somewhat more: If j : K → M
is elementary, then necessarily M = K (and L[U ] exists). The proofs of both
theorems use the fine structure of K, but a great deal of the fine structure
can be eliminated when using Magidor’s approach.

Since K is a model of ZFC, Corollaries 18.31, 18.32 and 18.33 all remain
true when L is replaced by K:

Corollary 35.15. If L[U ] does not exist then every singular cardinal is sin-
gular in K, (κ+)K = κ+ for every singular κ, and the Singular Cardinal
Hypothesis holds. ��

The Covering Theorem for L[U ]

By Prikry’s Theorem 21.10 there is a generic extension of L[U ] in which the
measurable cardinal κ of L[U ] remains a cardinal while cf κ = ω. It follows
that the Covering Theorem for L[U ] fails. However, it turns out that the
existence of a Prikry sequence is the only obstacle to the Covering Theorem:

Theorem 35.16 (Dodd-Jensen’s Covering Theorem for L[U ]). As-
sume that there is an inner model with a measurable cardinal, let κ be the
least such cardinal and let U be a measure on κ in L[U ]. Then

(i) either 0† exists, or
(ii) the Covering Theorem holds for L[U ], or
(iii) there exists an ω-sequence S ⊂ κ Prikry generic over L[U ], such that

the Covering Theorem holds for L[U ][S]. ��

Note that by Theorem 21.14, L[U ][S] = L[S].

The Core Model for Sequences of Measures

The theory of K has been generalized by W. Mitchell who constructed a core
model Km for sequences of measures (the “core model up to o(κ) = κ++”).
In analogy with K,

(i) Km has a definable well-ordering, satisfies GCH and �.
(ii) There exists a nontrivial j : Km → Km if and only if there is an inner

model for a measurable cardinal κ with o(κ) = κ++.
(iii) If there is no model for o(κ) = κ++ then a “weak” covering theorem

holds for Km.

Mitchell’s core model is the union of mice where a mouse is an appropri-
ate generalization of the Dodd-Jensen mouse. The main result on Km is as
follows:
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Theorem 35.17 (Mitchell).

(i) Km is a model of ZFC + GCH.
(ii) Km has a Σ2 well-ordering and � holds ; R ∩ Km has a Σ1

3 well-
ordering.

If there exists no inner model for o(κ) = κ++, then:

(iii) If U is a normal iterable Km-ultrafilter with UltU (Km) well-founded
then U ∈ Km.

(iv) If j : Km → M is a nontrivial elementary embedding then j is an iter-
ated ultrapower using measures in Km. (Hence there is no nontrivial
j : Km → Km.)

(v) If κ is a singular strong limit cardinal then (κ+)Km

= κ+. ��

Clause (v) is often called “the Weak Covering Theorem.”
Theorem 35.17 is a useful tool for obtaining lower bounds for the consis-

tency strength. As an example, we present the following application:

Corollary 35.18 (Mitchell). Assume that κ is a measurable cardinal and
2κ > κ+. Then there is an inner model with a measurable λ of order λ++.

Proof. If there is no such model then (iii) and (iv) hold. Let D be a normal
measure on κ and jD : V → M = UltD(V ); let j = jD�Km : Km → N .
By (iv), j is an iterated ultrapower, j = i0,ϑ : Km → Ult(ϑ) = N , by
measures in Km. Let Nν , ν ≤ ϑ, be the iterates; N0 = Km and Nϑ = N .
If ν < ϑ is a limit ordinal then there exist ξν < ν and Uν ∈ Nξν such that
Nν+1 = Ultiξν ,ν(Uν)(Nν). Since o(κ) < κ++ ≤ 2κ ≤ ϑ, there is a stationary
set S ⊂ κ++ of ordinals of cofinality ω such that ξν = ξ and Uν = U are
constant for ν ∈ S. Let ν ∈ S be a limit point of S, let 〈νn : n < ω〉 be
cofinal in S ∩ ν, and let κn be the critical point of iνn,ν , for each n. The
sequence 〈κn : n < ω〉 generates the measure iξ,ν(U) and belongs to M ,
hence iξ,ν(U) ∈ M . By (iii), iξ,ν(U) ∈ (Km)M = Nϑ but this is impossible
since iξ,ν(U) /∈ Nν+1. ��

This, combined with a theorem of Gitik [1989] shows that the existence
of a measurable cardinal κ such that 2κ > κ+ is equiconsistent with the
existence of a measurable cardinal κ of Mitchell order κ++.

Another result of Gitik (cf. [1989] and [1991]) shows that the consis-
tency strength of the failure of SCH is exactly a measurable cardinal κ with
o(κ) = κ++.

Up to a Strong Cardinal

The current core model theory employs sequences of extenders rather than
sequences of measures. This not only enables one to generalize the theory to
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large cardinals beyond measurable but also has some technical advantages
even in the case of Km.

Strong cardinals (see Chapter 20) were introduced by Dodd and Jensen
who also provided their characterization in terms of extenders. They also con-
structed an inner model of the form L[E ] where E is a (transfinite) sequence
of extenders such that

(i) L[E ] is a model of ZFC,
(ii) in L[E ], E witnesses that there exists a strong cardinal,
(iii) L[E ] satisfies GCH, �, and has a Σ1

3 well-ordering of the reals.

They also introduced a real, the sharp for a strong cardinal, that exists if and
only if there exists a nontrivial elementary embedding j : L[E ] → L[E ].

The theory of core models up to a strong cardinal uses mice of the form JE
α

where E is a sequence of JE
α -extenders. The crucial fact that makes the gen-

eralization of the Dodd-Jensen theory possible is that one uses sequences of
non-overlapping extenders. (Two extenders overlap if one is a (κ, λ)-extender,
the other a (κ′, λ′)-extender and κ ≤ κ′ < λ.) This fact allows the compari-
son of mice by iteration, and while the generalization is far from routine, one
obtains a result similar to those for K and Km.

Theorem 35.19. There exists an inner model Kstrong such that :

(i) Kstrong is a model of ZFC + GCH.
(ii) Kstrong has a Σ2 well-ordering and � holds ; R∩Kstrong has a Σ1

3 well-
ordering.

If there exists no inner model for a strong cardinal then:

(iii) If j : Kstrong → M is a nontrivial elementary embedding then j is an
iterated ultrapower by extenders in Kstrong. (Hence there is no non-
trivial j : Kstrong → Kstrong.)

(iv) If κ is a singular strong limit cardinal then (κ+)Kstrong
= κ+. ��

Inner Models for Woodin Cardinals

Inner models for very large cardinals employ a new method of comparison
of mice. Due to the presence of overlapping extenders, a “linear” iteration
of mice does not work and a new technique has been developed—the theory
of iteration trees. Iteration trees were introduced by Martin and Steel, who
used the technique to construct inner models for Woodin cardinals

Theorem 35.20 (Martin-Steel). If there are n Woodin cardinals then
there is an inner model that has n Woodin cardinals, and its reals have
a Σ1

n+2 well-ordering. ��
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The Σ1
n+2 result is best possible: If there are n Woodin cardinals with

a measurable cardinal above them then Π1
n+1 determinacy holds (Theo-

rem 33.26) and so R does not have a Σ1
n+2 well-ordering.

The fine structure for iteration trees was developed further by Mitchell
and Steel who constructed an inner model for a Woodin cardinal that sat-
isfies GCH. Then Steel constructed a core model up to a Woodin cardinal,
under an additional assumption of a measurable cardinal above.

Let Ω be a measurable cardinal. Steel’s core model Ksteel is an inner model
of VΩ and if VΩ has no inner model with a Woodin cardinal then Ksteel is
both rigid and satisfies the Weak Covering Theorem:

Theorem 35.21. Let Ω be a measurable cardinal.

(i) (Ksteel)VΩ[G] = Ksteel, for every generic extension of V Ω (by forcing
in VΩ).

If VΩ has no inner model with a Woodin cardinal then :

(ii) There is no nontrivial elementary embedding j : Ksteel → Ksteel.
(iii) For every singular cardinal λ < Ω, (λ+)Ksteel

= λ+. ��

The following is an application of Steel’s core model:

Theorem 35.22 (Steel). If ℵ1 carries an ℵ2-saturated ideal, and if there
exists a measurable cardinal, then there exists an inner model with a Woodin
cardinal. ��

This is (almost) best possible, as Shelah proved that if κ is a Woodin
cardinal then there is a generic extension in which κ = ω2 and NSω1 is ω2-
saturated.

Exercises

35.1. Assume that L[U ] exists; then K =
S

α∈Ord(Ult
(α)
U (L[U ]) ∩ Vκ(α)).

35.2. (i) There is a Σ1(J
A
α ) map of ωα onto JA

α .
(ii) 〈JA

ξ : ξ < α〉 is Σ1(J
A
α ).

(iii) JA
α has a Σ1(J

A
α ) well-ordering.

(iv) The relation JA
α � ϕ is Σ1(J

A
α ).

35.3. If M is a mouse then ρ1
M < κ, where ρ1

M , the Σ1-projectum of M , is the
smallest ρ ≤ α such that there exists a Σ1(M) function with f“ωρ = JU

ρ .

35.4. Assume that 0� exists, let a ∈ L[0�] be a real Cohen generic over L and let
M = L[a]. Then M ⊂ K and so K ∩M = M , while KM = L.

Let M = JM
α = H1(γ ∪ p) be a mouse. Let i0,ξ : M →Mξ = Ult

(ξ)
U (M).

35.5. �Loś’s Theorem holds in UltU (M) for Σ0 formulas.
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35.6. i0,1 is a cofinal embedding of M into M1 and therefore Σ1-elementary. iξ,η :
Mξ →Mη is Σ1-elementary.

35.7. M1 = H1(γ ∪ i0,1(p) ∪ {κ}), Mn = H1(γ ∪ i0,n(p) ∪ {κ(0), . . . , κ(n−1)}),
Mξ = H1(γ ∪ i0,ξ(p) ∪ {κ(ν) : ν < ξ}).

35.8. For every regular κ > ω, Cκ survives at κ if and only if 0� exists.

Historical Notes

The core model K was introduced by Dodd and Jensen in [1981, 1982a, 1982b];
see also Dodd [1982]. Theorem 35.6 is proved in [1981], Theorem 35.13 and 35.14
in [1982a], and the proof of ♦ and � in K is due to Welch. An overview of K, with
some proofs, can be found in Mitchell [1979b] and Dodd [1983]. Magidor’s approach
is described in Magidor [1990] and in Kanamori’s forthcoming book [∞].

The core model Km for sequences of measures was introduced by Mitchell.
Theorem 35.17 was stated in Mitchell [1984]. Its proof has never been published
but a detailed sketch will appear in Mitchell [∞b] (in the forthcoming Handbook
of Set Theory). Mitchell’s article [∞b] and its companion [∞a] give an excellent
introduction to the inner model theory, as does the more expository Mitchell [1994].

The inner model L[E ] for a strong cardinal appeared in Dodd [1982]. The defi-
nition of Kstrong is given explicitly in Koepke [1989] where Theorem 35.19 is stated
(a proof has not been published).

Iteration trees are introduced in Martin and Steel [1994] where Theorem 35.20 is
proved. Fine structure for iteration trees is developed in Mitchell and Steel [1994]
obtaining an inner model with a Woodin cardinal and GCH. Steel’s core model
is constructed in Steel [1996], proving Theorem 35.21(i), (ii) and Theorem 35.22.
Theorem 35.21(iii) is proved in Mitchell et al. [1997].

An overview of these (and of more recent results) is given in Löwe and
Steel [1999].


