
36. Forcing and Large Cardinals

In this chapter we continue to develop the techniques introduced in Chap-
ter 21. We shall describe several applications of forcing that use various large
cardinal assumptions.

Violating GCH at a Measurable Cardinal

By Silver’s Theorem 21.4 it is consistent, relative to a supercompact cardinal,
that GCH can fail at a measurable cardinal. This, combined with Prikry
forcing, shows further that the Singular Cardinal Hypothesis is unprovable.
The consistency strength of both statements has been proved to be exactly
o(κ) = κ++:

Theorem 36.1 (Gitik). The following are equiconsistent :

(i) There exists a measurable cardinal κ such that 2κ > κ+.
(ii) There exists a strong limit singular cardinal κ such that 2κ > κ+.
(iii) There exists a measurable cardinal κ of Mitchell order κ++.

As proved in Chapter 21 (Corollary 21.13), the consistency of (ii) follows
from the consistency of (i) by Prikry forcing. The necessity of (iii) for the
consistency of “not SCH” was proved by Gitik, by a combination of the pcf
theory and Mitchell’s inner model for sequences of measures. We omit the
proof.

As for the consistency of (i) using o(κ) = κ++, this improvement of Silver’s
Theorem 21.4 is a combination of an intermediate forcing result of Woodin
which we outline below, and an additional forcing argument of Gitik that we
also omit. ��

Theorem 36.2 (Woodin). Assume GCH and assume that there exists an
elementary embedding j : V → M with critical point κ such that Mκ ⊂ M
and that there exists a function f : κ → κ with j(f)(κ) = κ++. Then there is
a generic extension in which κ is a measurable cardinal and 2κ > κ+.

The assumption of Theorem 36.2 is easily seen to follow from κ being
(κ + 2)-strong (Exercise 36.1). By Gitik, the statement holds in some generic
extension of the canonical inner model for o(κ) = κ++.
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Proof. We outline the proof, which follows loosely the proof of Silver’s Theo-
rem 21.4. However, since the assumption is considerably weaker than super-
compactness, more delicate arguments are needed.

We may assume that j = jE and M = UltE , where E is a (κ, κ++)-
extender (Exercise 36.2). Let U be the ultrafilter U = {X ⊂ κ : κ ∈ j(X)}
and consider the commutative diagram
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where N = UltU (V ) and i : V → N is the corresponding elementary embed-
ding. Let

(36.2) λ = i(f)(κ) and µ = crit(k).

We have the following inequalities:

(36.3) κ+ = (κ+)N = (κ+)M < µ ≤ λ < i(κ) < κ++ < j(κ) < κ+++.

Moreover,

(36.4) M = {k(t)(a) : a ⊂ κ++ finite, t ∈ N and t : [λ]|a| → N}

(see Exercise 36.3).
For cardinals α and β, let Add(α, β) denote the notion of forcing that

adds β subsets of α, cf. (15.3). The model for 2κ > κ+ is constructed in two
stages: The first stage is (as in Silver’s proof) an iteration of length κ + 1,
with Easton support. The final model is then obtained by a forcing extension
of this model.

Let P = Pκ+1 be the Easton support iteration of Q̇α, where for each
α < κ, Q̇α = {1} unless α is inaccessible and a closure point of the function f ,
in which case Q̇α = Add(α, f(α)) (in V Pα where Pα is the αth iterate). For
α = κ, Q̇κ = (Add(κ, κ++))V Pκ . Let G be a generic filter on P ; we have
V [G] = V [Gκ][Hκ] where Gκ is V -generic on Pκ and Hκ is V [Gκ]-generic on
Qκ = Add(κ, κ++)V [Gκ].

We recall some of the facts established in the proof of Theorem 21.4:
Pκ is κ-c.c. forcing notion of cardinality κ, κ remains inaccessible in V [G], and
V [G] satisfies 2κ = κ++. Since κ is in M a closure point of j(f), Q̇κ = (Q̇κ)M ,
and so P = (j(P ))κ+1.

As for i : V → N , we use the fact that Nκ ⊂ N and that Pκ is κ-c.c.
to conclude (as in Lemma 21.9) that in V [Gκ], (N [Gκ])κ ⊂ N [Gκ]. Also,
(Qκ)N [Gκ] = Add(κ, λ)V [Gκ].
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Using k(Pκ) = Pκ and the fact that k(p) = p for every p ∈ Pκ, we
extend k : N → M to an embedding k : N [Gκ] → M [Gκ]. Now consider the
forcing Qκ in N [Gκ], and let

(36.5) hκ = k−1(Hκ) = {p ∈ Add(κ, λ)V [Gκ] : k(p) ∈ Hκ}.

As QN [Gκ]
κ has, in N [Gκ], the κ+-chain condition, and crit(k) > κ+, hκ is

QN [Gκ]
κ -generic over N [Gκ] (see Exercise 36.4). Moreover, Gκ∗hκ is V -generic

on (i(P ))κ+1 and in V [Gκ][hκ], (N [Gκ][hκ])κ ⊂ N [Gκ][hκ] (Exercise 36.5).
Note also that (because λ < κ++), V [Gκ][hκ] satisfies 2κ = κ+. It follows
that, in V [Gκ][hκ], k can be extended to an embedding k : N [Gκ][hκ] →
M [Gκ][Hκ].

Let Ṙ ∈ N be the name for the iteration after stage κ + 1:

(36.6) Pκ ∗ Q̇N
κ ∗ Ṙ = i(Pκ)

and let R ∈ N [Gκ][hκ] be the interpretation of Ṙ by Gκ ∗ hκ. In N [Gκ][hκ],
R is an i(κ)-c.c. forcing of cardinality i(κ), and because the least α for which
the αth iterate is nontrivial is above λ, R is λ-closed.

Using the fact that R is λ-closed and that the number of antichains of R
in N [Gκ][hκ] is small in V [Gκ][hκ] we conclude that there exists in V [Gκ][hκ]
an R-generic filter H over N [Gκ][hκ] (Exercise 36.6).

Now define k(H) as follows (in V [Gκ][hκ]):

(36.7) k(H) = {q ∈ k(R) : ∃p ∈ H k(p) ≤ q}.

We claim that k(H) is an M [Gκ][hκ]-generic filter on k(R). We omit the proof
(but see Exercise 36.7).

As p ∈ H implies k(p) ∈ k(H) for every p ∈ R, k can be extended,
in V [Gκ][hκ], to an embedding k : N [Gκ][hκ][H ] → M [Gκ][hκ][k(H)]. It
follows that i and j can be extended (in V [G]), so that we have the following
commutative diagram:

(36.8)

N [Gκ][hκ][H ]

V [Gκ] M [Gκ][hκ][k(H)]
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Now we describe the second stage of the construction, namely a generic
extension of V [G] = V [Gκ ∗Hκ], and in this extension, an elementary embed-
ding that extends j. We force over V [G] with the partial order Q = i(Qκ).
Since i(Qκ) is <i(κ)-closed in N [Gκ][hκ][H ], it follows from Exercise 36.5
that Q is κ-closed in V [Gκ][hκ]. However, as the model V [G] = V [Gκ][Hκ]
is a generic extension of V [Gκ][hκ] by a κ+-c.c. forcing Add(κ, λ), Q is κ-
distributive in V [G] (Exercise 36.8).
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We also claim that in V [G], Q is κ++-c.c. To prove the claim, let Q̃ be,
in V [Gκ], the full support product of κ copies of Qκ. Note that Q̃ is κ++-
c.c. in V [Gκ], and since Q̃ � Qκ × Q̃, Q̃ is κ++-c.c. in V [Gκ][Hκ] = V [G].
Since conditions in Q = i(Qκ) have the form i(g)(κ) where g : κ → Qκ, an
antichain in Q yields an antichain in Q̃, proving the claim.

Hence forcing with Q preserves κ+ and κ++, and so 2κ = κ++ holds in
the extension. Let K be a Q-generic filter over V [G]. The final step is to
find in V [G][K] a generic j(K) over M [G][k(H)] such that the embedding j
from (36.8) extends to an embedding j : V [G][K] → M [G][k(H)][j(K)]. This
step, which we omit, first applies k to K and produces a generic X such that
j extends to j : V [G] → M [G][k(H)][X ], and then applies j to K and pro-
duces a generic Y such that j extends to j : V [G][K] → M [G][k(H)][X ][Y ].
Details can be found in Gitik’s paper [1989].

As this final step is performed inside V [G][K], it follows that in V [G][K],
κ is measurable. ��

The Singular Cardinal Problem

By Corollary 21.13, the negation of the Singular Cardinal Hypothesis is con-
sistent relative to large cardinals, and its consistency strength is determined
by Theorem 36.1. These results belong to a wide area of theorems and con-
jectures known collectively as the Singular Cardinal Problem. Unlike the be-
haviour of the continuum function on regular cardinals, which by Easton’s
Theorem can be quite arbitrary, the values of the continuum function at
singular cardinals are subject to three kinds of constraint:

(1) By Silver’s Theorems 8.12 and 8.13, the value of 2κ for a singular car-
dinal κ of uncountable cofinality depends on the continuum function
below κ.

(2) The Galvin-Hajnal Theorem 24.1 and Shelah’s results in the pcf theory
give upper bounds for the value of 2κ when κ is a strong limit singular
cardinal such that κ < ℵκ.

(3) Jensen’s Covering Theorem 18.30 and the subsequent theory of core
models shows that the consistency of the failure of SCH requires large
cardinal assumptions.

There is a large body of forcing constructions that, using large cardinals,
yield models with various behaviour of the continuum function subject to the
above mentioned constraints. There is, however, no comprehensive solution
of the Singular Cardinal Problem analogous to Easton’s Theorem.

Below we list some of the advances in this area:

Theorem 36.3 (Magidor [1977a], [1977b]).

(i) If there exists a supercompact cardinal then there is a generic extension
in which 2ℵn < ℵω for all n < ω and 2ℵω = ℵω+2.
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(ii) If there exist κ < λ with κ supercompact and λ huge then there exists
a generic extension in which 2ℵn = ℵn+1 for all n < ω and 2ℵω =
ℵω+2. ��

Theorem 36.4 (Woodin, Gitik [1989]). If there exists a measurable car-
dinal κ of Mitchell order κ++, then there exists a generic extension in which
GCH holds below ℵω and 2ℵω = ℵω+2. ��

Theorem 36.5 (Magidor [1977a], Shelah [1983], Gitik [∞]). Assume
that there exists a supercompact cardinal.

(i) There is a generic extension in which GCH holds below ℵω, and 2ℵω =
ℵω+α+1, where α is any prescribed countable ordinal.

(ii) There is a generic extension in which ℵω1 is strong limit and 2ℵω1 =
ℵω1+α+1 for any prescribed ordinal α < ω2.

(iii) There is a generic extension in which GCH holds below the least fixed
point of the aleph function κ = ℵκ while 2κ is any arbitrarily large
prescribed successor cardinal. ��

Theorem 36.6 (Woodin, Cummings [1992]).

(i) If there exists a supercompact cardinal, then there is a generic exten-
sion in which 2κ = κ++ for each cardinal κ.

(ii) If there exists a strong cardinal, then there is a generic extension in
which 2κ = κ+ for each successor cardinal and 2κ = κ++ for each
limit cardinal. ��

There are additional results on the failure of SCH by Gitik, Shelah and
others. The main open problem in this area is the following:

Problem 36.7. Is it consistent that ℵω is strong limit and 2ℵω > ℵω1?

Compare this with Shelah’s Theorem 24.33.

Violating SCH at ℵω

We shall now outline the Woodin-Gitik modification of Magidor’s technique
for getting a model in which ℵω is strong limit and 2ℵω = ℵω+2. First we
describe the preparation forcing (which replaces Magidor’s use of a super-
compact cardinal):

Lemma 36.8. Assume that there exists a measurable cardinal κ with o(κ) =
κ++.

(i) There is a model V that satisfies GCH and

(36.9) ∃j : V → M , crit(j) = κ, Mκ ⊂ M and (κ++)M = κ++.
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(ii) There exists a model V with a measurable cardinal κ such that 2κ =
κ++ and a normal measure U on κ with N = UltU (V ), and there exists
a set G ∈ V which is an N -generic filter on ColN ((κ+++)N , <jU (κ))
(a Lévy collapse in N).

Proof. (i) We outline how to get a model that satisfies (36.9). First one
uses Gitik’s forcing from [1989] to get a model of GCH that has a (κ, κ++)-
extender E and a function f : κ → κ such that j(f)(κ) = κ++ (the as-
sumption of Theorem 36.2). Note that in M (where j : V → M), κ++ is
an inaccessible cardinal. To obtain (36.9), one uses the iteration of length κ,
with Easton support, of Lévy collapses Col(α+, <f(α)), followed by the Lévy
collapse Col(κ+, <κ++). In this generic extension, the embedding j : V → M
can be extended to an embedding that satisfies (36.9). (For details, see Gi-
tik [1989].)

(ii) Starting with j : V → M that satisfies (36.9), we do Woodin’s con-
struction described in the proof of Theorem 36.2, except that by (36.9), we
may assume that f(α) = α++ for all α. In the resulting model, κ is mea-
surable, 2κ = κ++, and if U is the measure {X : κ ∈ j(X)} given by the
extended embedding j, then U has the required property. (Again, details are
in Gitik’s [1989].) ��

For the rest of this section we assume that κ is a measurable cardinal with
2κ = κ++, U is a normal measure on κ, N = UltU (V ) and j = jU : V → N ,
and G ∈ V is an N -generic filter on ColN ((κ+++)N , <j(κ)), the Lévy collapse
in N . Magidor’s forcing conditions are as follows:

A forcing condition has the form p = (κ0, f0, κ1, f1, . . . , κn−1, fn−1,
A, F ) where
(i) κ0 < κ1 < . . . < κn−1 are inaccessible cardinals < κ,
(ii) fi ∈ Col(κ+++

i , <κi), for i < n−1 and fn−1 ∈ Col(κ+++
n−1 , <κ),

(iii) A ∈ U ,
(iv) F is a function on A and F (α) ∈ Col(α+++, <κ) for all α ∈ A,
(v) [F ]U , the element of Col((κ+++)N , <j(κ)) represented by F ,

belongs to G.

(36.10)

A condition p′ = (κ′
0, f

′
0, . . . , κ

′
m−1, f

′
m−1, A

′, F ′) is stronger than p
if
(i) m ≥ n,
(ii) κ′

i = κi for all i < n and κ′
i ∈ A for all i, n ≤ i < m,

(iii) f ′
i ⊃ fi for all i < n and f ′

i ⊃ F (κ′
i) for all i, n ≤ i < m,

(iv) A′ ⊂ A,
(v) F ′(α) ⊃ F (α) for all α ∈ A′.

(36.11)

This forcing produces a Prikry sequence 〈κn : n < ω〉 cofinal in κ. A con-
sequence of (36.10)(v) is that the forcing satisfies the κ+-chain condition
(Exercise 36.9) and so (if κ is preserved) 2κ = κ++ in the generic extension.
The crucial property of this forcing is that the cardinals κn are preserved,
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and 2κn < κn+1. Since all but finitely many cardinals between κn and κn+1

are collapsed, there remain exactly ω cardinals between κ0 and κ. Thus we
can follow this generic extension by a Lévy collapse Col(ℵ0, <κ0) and in the
resulting model we have κ = ℵω and 2ℵω = ℵω+2 with ℵω strong limit.

The key to preservation of the cardinals κn is an analog of Prikry’s
Lemma 21.12:

Lemma 36.9. Let σ be a sentence of the forcing language and let p = (κ0, f0,
. . . , κn−1, fn−1, A, F ) be a condition. Then there exists a stronger condition
p′ = (κ0, f

′
0, . . . , κn−1, f

′
n−1, A

′, F ′) (with the same n) that satisfies σ. ��

We omit the proof of Lemma 36.9 as well as its application and refer the
reader to Magidor [1977a] and Gitik [1989] for the details.

Radin Forcing

As a consequence of Jensen’s Covering Theorem, and more generally of the
inner model theory, large cardinals are necessary for any nontrivial change
of cofinality (with the exception of Namba forcing, Theorem 28.10). Prikry
forcing is the prime example of forcing that changes cofinality. In this section
we describe its generalizations.

The first example, due to Magidor, generalizes Prikry forcing to change
the cofinality of a large cardinal κ to a given regular cardinal λ < κ while
preserving κ as a cardinal:

Let λ be a regular cardinal and let κ > λ be a measurable cardinal such
that o(κ) = λ. Using an inner model for o(κ) = λ, we may assume that there
exists a sequence

(36.12) U0 < U1 < . . . < Uα < . . . (α < λ)

of normal measures on κ, ordered by the Mitchell order. For every α < β < λ,
let fβ

α : κ → Vκ be the function that represents Uα in UltUβ
, i.e., [fβ

α ]Uβ
= Uα.

A forcing condition is a pair (g, G) such that
(i) g is an increasing function from a finite subset of λ into κ,
(ii) G is a function on λ such that G(α) ⊂ κ for all α < λ,
(iii) if α > max(dom g) then G(α) ∈ Uα,
(iv) if α < max(dom g) and β is the least β ∈ dom(g) above α,

then G(α) ∈ fβ
α (g(β)).

(36.13)

The finite function g plays the role of the finite sequence in the Prikry
forcing. The function G plays the role of the measure one set: Clause (iii) is
an obvious generalization while (iv) states that G(α) has measure one with
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respect to the measure fβ
α (g(β)) on g(β), which reflects the properties of the

measure Uα in the ultrapower by Uβ.

A condition (h, H) is stronger than (g, G) if
(i) h ⊃ g,
(ii) for every α, H(α) ⊂ G(α),
(iii) for every α ∈ dom(h) − dom(g), h(α) ∈ G(α).

(36.14)

Magidor’s forcing (36.13) is a generalization of Prikry forcing. A generic
filter yields a cofinal λ-sequence in κ (Exercise 36.10). Similarly to the Prikry
forcing, (36.13) has a κ+-chain condition (Exercise 36.11). The crucial prop-
erty of Magidor’s forcing is that it preserves cardinals. The proof is a gen-
eralization of the proof for the Prikry forcing and the following is the key
lemma:

Lemma 36.10. Let σ be a sentence of the forcing language and let (g, G) be
a condition. Then there exists a stronger condition (g, H) (with the same g)
that decides σ. ��

Magidor’s forcing changes the cofinality of κ to cf κ = λ, under the as-
sumption that o(κ) = λ. If λ is uncountable then by Mitchell [1984] this
assumption is necessary.

Radin forcing generalizes Prikry forcing further and uses objects called
measure sequences. Let j : V → M be an elementary embedding with critical
point κ. Let us define a sequence 〈u(α) : α < ϑ〉 as follows:

(36.15) u(0) = κ,

u(α) = {X ⊂ Vκ : u�α ∈ j(X)} (α > 0).

The sequence 〈u(α)〉α is defined for all α for which u�α ∈ M . Thus the
length ϑ depends on the strength of the embedding j. For example, if j = jU

is the ultrapower embedding by a normal measure U on κ then λ = 2,

u(1) = {X ∈ Vκ : {α : 〈α〉 ∈ X} ∈ U}

is a measure on Vκ concentrating on 1-sequences 〈α〉, α < κ, and 〈u(0), u(1)〉 /∈
M = UltU . As long as u(α) is defined, u(α) is a measure on Vκ concentrating
on α-sequences.

We define measure sequences as sequences obtained by (36.15) from ele-
mentary embeddings, but since we want the measures in measure sequences
to concentrate on measure sequences, the definition is as follows.

Definition 36.11 (Measure Sequences). Let

MS0 = the class of all u�α where u is as in (36.15) for some
elementary j : V → M ,

MSn+1 = {u ∈ MSn : (∀α > 0)MSn ∩ Vu(0) ∈ u(α)},
MS =

⋂∞
n=0 MSn = the class of all measure sequences.
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Since all the measures are σ-complete it follows that for every measure
sequence u and every 0 < α < length(u), u�α ∈ MS and MS ∩ Vu(0) ∈
u(α). Clearly, some large cardinal assumption is necessary for the existence
of nontrivial measure sequences. Under the assumption of a strong cardinal,
there exist long measure sequences (Exercise 36.12).

Let U be a measure sequence of length at least 2, and let κ = U(0). We
associate with U the Radin forcing for U , RU :

A forcing condition p ∈ RU is a finite sequence

〈(u0, A0), . . . , (un, An)〉

such that un = U , and that, letting κi = ui(0) for i = 0, . . . , n,
(i) for each i = 0, . . . , n, ui ∈ MS, Ai ⊂ MS and Ai ∈ ui(α) for

every 0 < α < length(ui),
(ii) for each i = 0, . . . , n − 1, (ui, Ai) ∈ Vκi+1 .

(36.16)

(Thus κ0 < κ1 < . . . < κn−1 < κn = κ. These ordinals will produce a cofinal
sequence in κ, a generalization of a Prikry sequence.)

A forcing condition p = 〈(u0, A0), . . . , (un, An)〉 is stronger than
q = 〈(v0, B0), . . . , (vm, Bm)〉 if
(i) n ≥ m,
(ii) {u0, . . . , un} ⊃ {v0, . . . , vm},
(iii) for each j = 0, . . . , m, if ui = vj then Ai ⊂ Bj ,
(iv) for each i such that ui /∈ {v0, . . . , vn} if vj is the first vj such

that ui(0) < vj(0), then ui ∈ Bj and Ai ⊂ Bj .

(36.17)

If U is a measure sequence of length 2, then RU is more or less the Prikry
forcing (Exercise 36.13); if U has length 3, RU produces a cofinal sequence
of order type ω2 (Exercise 36.14).

A generic filter G on RU produces a set

(36.18) DG = {u : ∃p ∈ G p = 〈(ui, Ai) : i ≤ n〉 and u = ui for some i < n}.

As in Prikry forcing, one proves that V [DG] = V [G]. Let

(36.19) CG = {u(0) : u ∈ DG}.

It is not difficult to show:

Lemma 36.12. CG is a closed unbounded subset of κ.

Proof. Exercise 36.15. ��

When length(U) < κ, Radin forcing is similar to Magidor’s forcing (36.13),
see Exercise 36.16.

The analog of Prikry’s Lemma 21.12 holds for Radin’s forcing as well:
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Lemma 36.13. Let σ be a sentence of the forcing language and let p =
〈(ui, Ai) : i ≤ n〉 be a condition. Then there exists a stronger condition
q = 〈(ui, Bi) : i ≤ n〉 (with the same {ui : i ≤ n}) that decides σ. ��

As a consequence, all cardinals are preserved in the generic extension.
Radin’s forcing is more flexible than Magidor’s forcing, and under suitable

large cardinal assumptions, κ retains its regularity, or even its large cardinal
properties:

Lemma 36.14. If cf(length(U)) > κ then κ remains regular in the forcing
extension by RU . ��

Lemma 36.15. Let j : V → M and let U ∈ MS be defined from j as
in (36.15).

(i) If j witnesses that κ is (κ + 2)-strong then κ remains measurable
in V RU .

(ii) If j witnesses that κ is λ-supercompact then κ remains λ-supercompact.
��

Among applications of Radin forcing is the following theorem:

Theorem 36.16 (Mitchell). If ∃κ o(κ) = κ++ is consistent then so is
ZF + DC + “the closed unbounded forcing on ℵ1 is an ultrafilter.” ��

Stationary Tower Forcing

We now describe the general version of the stationary tower forcing (Defini-
tion 34.10) which can be used, among others, to change cofinalities in a way
that is not possible without very large cardinals.

Let A be an uncountable set. A set S ⊂ P (A) is stationary in P (A) if for
every F : [A]<ω → A, S contains a closure point of F , i.e., a set X ⊂ A such
that F (e) ∈ X for all e ∈ [X ]<ω. As in Theorem 8.27, projections and liftings
of stationary sets are stationary. Also, the analog of Theorem 8.24 holds. For
the relation to stationary sets in Pκ(λ) see Exercise 36.17.

Definition 36.17 (Stationary Tower Forcing). Let δ be a Woodin car-
dinal. The forcing notion P = P<δ consists of conditions (A, S) where A ∈ Vδ

is uncountable and S is stationary in P (A). (B, T ) is stronger than (A, S) if
B ⊃ A and T �A ⊂ S.

If G is a generic filter on P<δ then we form the generic ultrapower UltG(V )
as in (34.10). The general form of Theorem 34.14 is as follows:

Theorem 36.18 (Woodin [1988]). Let δ be a Woodin cardinal. If G is
generic on P<δ then the generic ultrapower UltG(V ) is well-founded and the
model UltG(V ) is closed under < δ-sequences. ��
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Forcing with P<δ gives more flexibility than forcing with Q<δ (from Def-
inition 34.10). In a typical application, one can collapse a successor of a sin-
gular cardinal and give it any prescribed cofinality, see Example 36.19 below.
In fact, the consistency strength of this is exactly that of a Woodin cardinal.

Example 36.19 (Woodin). Assume that ℵω be strong limit, and let S be
the following stationary set in P (Vℵω+1 ):

S = {X ∈ [Vℵω+1 ]
ℵω : X ∩ ℵω+1 ∈ ℵω+1 and cf(X ∩ ℵω+1) = ℵ3}.

Let G be a generic filter on P<δ such that (Vℵω+1 , S) ∈ G, let M = UltG(V )
and let j : V → M be the generic ultrapower embedding. Then crit(j) = ℵω+1

and cfM ℵω+1 = ℵ3 (Exercise 36.20). As PV [G](ωn) = PM (ωn) = P (ωn) for
all n, the forcing P<δ below (Vℵω+1 , S) changes the cofinality of ℵω+1 to ℵ3

while preserving ℵω. ��

Exercises

36.1. Assume that κ is (κ + 2)-strong, and j : V →M with critical point κ be such
that Vκ+2 ⊂M . Then the function f(α) = α++ (α < κ) satisfies j(f)(κ) = κ++.

36.2. Let j : V → M and f : κ → κ be as in Theorem 36.2, and let E be the
(κ, κ++)-extender derived from j. Then jE(f)(κ) = κ++ and (UltE)κ ⊂ UltE.

36.3. Prove (36.4).
[Use the fact that j = jE .]

36.4. The filter hκ is Q
N[Gκ]
κ -generic over N [Gκ].

[Use the crit(k)-chain condition.]

36.5. The filter Gκ ∗ hκ is (i(P ))κ+1-generic over V , and in V [Gκ ∗ hκ],

(N [Gκ ∗ hκ])κ ⊂ N [Gκ ∗ hκ].

[Use that (i(P ))κ+1 is κ+-c.c.]

36.6. In V [Gκ ∗ hκ] there exists an N [Gκ ∗ hκ]-generic filter on R.
[Use the fact that the number of antichains to meet is small, to build R.]

36.7. k(H) is generic over M [Gκ][hκ].
[Use (36.4), or rather the corresponding description of M [Gκ][hκ]. If D is an

open dense set in k(R), let D = k(t)(a), where for each x ∈ [λ]|a|, t(x) is an
open dense subset of R. Then use the fact that

T

x t(x) is open dense to show that
k(H) meets D.]

36.8. If Q is κ-closed then it remains κ-distributive in every κ+-c.c. forcing exten-
sion.

[Let P be κ+-c.c. Show that �Q P is κ+-c.c., that the generics for P and Q are
mutually generic, and that V P and V P∗Q = V Q∗P have the same κ-sequences of
ordinals.]
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36.9. The forcing (36.10) satisfies the κ+-chain condition.
[Use (iii) and (v).]

36.10. If G is generic for the Magidor forcing (36.13) then in V [G], κ has a cofinal
subset of order-type λ.

36.11. The forcing (36.13) has the κ+-chain condition.

36.12. Let κ be a (κ + 2)-strong cardinal. Then there exists a measure sequence u
of length ϑ ≥ κ++.

36.13. Let U ∈ MS have length 2, U = 〈κ, u(1)〉. A condition p ∈ RU has the form
〈(α0, ∅), . . . , (αn−1, ∅), (u(1), A)〉. Compare with the Prikry forcing.

36.14. Analyze RU when length(U) = 3.

36.15. Prove that CG is a closed unbounded subset of κ.

36.16. Assume that length(U) = λ is a regular uncountable cardinal, λ < κ. Show
that the order-type of CG is λ.

36.17. Stationary sets in Pκ(λ) are exactly the sets of the form S�{X ∈ Pκ(λ) :
X ∩ κ ∈ κ} where S is stationary in P (λ).

36.18. Let M = UltG(V ) where G is generic on P<δ, and let j : V → M be the
generic ultrapower embedding. For each (A,S) ∈ P<δ, (A, S) � j“A ∈ j(S).

36.19. Each α ≤ δ is represented in UltG(V ) by the function fα(x) = x ∩ α.

36.20. In Example 36.19, crit(j) = ℵω+1 and cfM ℵω+1 = ℵ3.

Historical Notes

Following the (unpublished) Theorem 36.2 of Woodin, Gitik proved in [1989] that
o(κ) = κ++ suffices for the consistency of a measurable cardinal κ with 2κ = κ++,
as well as for a model of “ℵω is strong limit and 2ℵω = ℵω+2.” In [1991], Gitik
showed that the assumption o(κ) = κ++ is necessary for the negation of SCH.

Methods for violating GCH at ℵω were originated by Magidor in [1977a, 1977b].
Woodin (unpublished) improved the method by using a (κ+2)-strong cardinal, and
Gitik [1989] obtained the result from o(κ) = κ++.

In [1983], Shelah improved Magidor’s method in the direction of getting an ar-
bitrary countable gap between ℵω and 2ℵω . In [1992], Gitik and Magidor introduced
a novel method for blowing up the power of 2κ for singular cardinals, leading to re-
sults that give the precise consistency strength (e.g., the large cardinal assumptions
for Theorem 36.5 are considerably weaker than supercompactness).

In [1991], Foreman and Woodin constructed a model in which GCH fails ev-
erywhere; this was then improved by Woodin to Theorem 36.6(i), and Cummings
followed with 36.6(ii).

Magidor’s forcing for changing cofinality appeared in [1978]. For Radin’s forcing,
see Radin [1982]. Our presentation is based on improvements by Mitchell [1982],
Woodin (unpublished) and Cummings [1992]. Theorem 36.16 is due to Mitchell
[1982].

Stationary tower forcing is due to Woodin.


