
37. Martin’s Maximum

This chapter is devoted to a generalization of the Proper Forcing Axiom.
The stronger axiom is obtained by replacing “proper notion of forcing” in
Definition 31.20 by “stationary set preserving notion of forcing.” A notion of
forcing P is stationary set preserving if every stationary set S ⊂ ω1 remains
stationary in V P .

Definition 37.1 (Martin’s Maximum (MM)). If (P, <) is a stationary
set preserving notion of forcing and if D is a collection of ℵ1 dense subsets
of P , then there exists a D-generic filter on P .

As every proper notion of forcing is stationary set preserving, MM is
a strengthening of PFA which in turn is a strengthening of MA. The ax-
iom MM has been dubbed “Martin’s Maximum” as it is ostensibly the
strongest possible generalization of Martin’s Axiom: If P is not stationary
set preserving then the corresponding axiom for P is false (Exercise 37.1).

Below we establish the consistency of Martin’s Maximum, and present
some applications.

RCS iteration of semiproper forcing

The proof of the consistency of MM is modeled after the consistency proof
of either MA or PFA: By iterated forcing one obtains a generic extension in
which every stationary set preserving P satisfies the statement of MM.

The straightforward approach, iterating stationary set preserving forc-
ings, does not work: If g : ω1 → ω1 dominates the canonical functions fη,
η < ω2, (mod INS) then there is a stationary preserving forcing notion Pg that
produces a function f < g mod INS (and still above the fη) (Exercise 37.2).
An ω-iteration of such forcing collapses ω1.

It turns out that semiproper forcing can be iterated, yielding the consis-
tency of the following principle:

Definition 37.2 (Semiproper Forcing Axiom (SPFA)). If (P, <) is
a semiproper notion of forcing and if D is a collection of ℵ1 dense subsets
of P then there exists a D-generic filter on P .
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Clearly, MM implies SPFA and SPFA implies PFA. In the next section
we show that SPFA is in fact equivalent to MM and so for the consistency
of MM it is enough to construct a model of SPFA.

While under special circumstances semiproperness may by preserved un-
der countable support iteration (see Lemma 34.5), in general this is not the
case. The reason is that a semiproper forcing notion may change the cofinal-
ity of ordinals from uncountable to countable. (An example of such forcing
is the Prikry forcing, see Exercise 37.7.)

The iteration applicable to semiproper forcings is the revised countable
support (RCS) iteration. Informally, a support of a condition is not just
a countable set, but even a name for a countable set.

Definition 37.3. Let α ≥ 1. A forcing notion Pα is an RCS (revised count-
able support) iteration of {Q̇β : β < α} if it is an iteration (cf. Defini-
tion 16.29) consisting of all α-sequences p that satisfy

(37.1) for every q ≤ p there exist a γ < α and an r ≤γ q�γ such that
r �γ cf α = ω or ∀β ≥ γ p�[γ, β) �Pγ,β

p(β) = 1.

In (37.1), q ranges over elements of the inverse limit of the Q̇β , cf. (16.12),
and Pγ,β is the restriction of the inverse limit to the interval [γ, β) = {ξ : γ ≤
ξ < β}.

The main result on RCS iterations is that they preserve semiproperness:

Theorem 37.4 (Shelah). If Pα is an RCS iteration of {Q̇β : β < α} such
that every Q̇β is a semiproper forcing notion in V Pα�β then Pα is semiproper.

Theorem 37.4 can be proved along the lines of the proof of Theorem 31.15.
We shall outline the proof of a special case of Theorem 37.4 (Proposition 37.8
below) which suffices for the consistency proof of SPFA. (To be precise, Shelah
proved Theorem 37.4 for a more complicated definition of RCS iteration;
the current Definition 37.3 is based on simplifications by Schlindwein and
Donder).

A two-step iteration of semiproper forcings is semiproper, cf. Exer-
cise 37.8. The proof of Theorem 37.4 proceeds by induction, showing

(37.2) for all γ < β ≤ α, �γ Bβ : Bγ is semiproper;

here Bβ = B(Pβ), and Bβ : Bγ is the complete Boolean algebra in V Pγ such
that Bγ ∗ (Bβ : Bγ) = Bβ (see Exercise 16.4). One property of RCS that is
used in the proof is that Bβ :Bγ is (in V Pγ ) an RCS iteration (Exercise 37.9).

The following three lemmas, special cases of Theorem 37.4, can be proved
in a similar way as Theorem 31.15:

Lemma 37.5. Let Pω be the inverse limit iteration of semiproper forcings
{Q̇n : n < ω}. Then Pω is semiproper. ��
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Lemma 37.6. Let Pω1 be a countable support iteration such that for all γ <
β < α, �γ Bβ : Bγ is semiproper. Then Pω1 is semiproper. ��

Lemma 37.7. Let λ be a regular uncountable cardinal. Assume that

(i) Pλ is a direct limit,
(ii) for every α < λ of cofinality ω, Pα is the inverse limit,
(iii) for all γ < β < λ, �γ Bβ : Bγ is semiproper,
(iv) Pλ satisfies the λ-chain condition.

Then Pλ is semiproper. ��

We shall now prove a version of Theorem 37.4 that will be used in the
consistency proof of MM:

Proposition 37.8. If Pα is an RCS iteration of semiproper forcings {Q̇β :
β < α} such that for every β < α, �β+1 |Pβ | ≤ ℵ1, then Pα is semiproper.

Proof. We proceed by induction, proving (37.2). As successor stages present
no problem, let α be a limit ordinal. By the induction hypothesis, for every
γ < β < α, �γ Bβ : Bγ is semiproper; we shall prove that Pα is semiproper,
and (37.2) for α then follows by Exercise 37.8.

Case I. Let p ∈ P and γ < α be such that p�γ � cf α = ω. We will show
that P �p is semiproper. In this case, p�γ forces that Bα : Bγ is the inverse
limit, and in fact, an inverse limit iteration of length ω of semiproper forcings,
hence semiproper by Lemma 37.5. It follows that P �p is semiproper.

Case II. Let p ∈ P be such that ∀γ < α p�γ � cf α > ω, and let γ < α be
such that p�γ � cf α = ω1. Again, we will show that P �p is semiproper. In
this case, p�γ forces that Bα : Bγ is a direct limit iteration of length ω1 of
semiproper forcings, and hence semiproper by Lemma 37.6. Therefore P �p is
semiproper.

Case III. Let p ∈ P be such that ∀γ < α p�γ � cf α > ℵ1; we will show that
in this case too, P �p is semiproper. This will complete the proof that P is
semiproper.

Without loss of generality, assume that p = 1, and since Pα is in this case
a direct limit of the Pβ , it is a direct limit of the Pβi , i < cf α (where α =
limi<cf α βi), so we can assume that α is a regular cardinal. For every γ < α,
since �γ+1 |Pγ | ≤ ℵ1 < cf α, we have |Pγ | < α. Also since �γ+1 cf α > ℵ1,
there is a stationary set of β < α (those for which ∀γ �γ cf β ≥ ℵ1) at which
Pβ is a direct limit. By Theorem 16.30, Pα satisfies the α-chain condition.
Therefore P is semiproper by Lemma 37.7. ��
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Consistency of MM

Theorem 37.9 (Foreman, Magidor and Shelah). If there exists a su-
percompact cardinal then there is a generic model that satisfies MM.

Following the proof of Theorem 31.21, we construct a model that satis-
fies SPFA. Instead of proper forcings, we iterated semiproper forcings, and
use the RCS iteration. At each stage α of the iteration, in addition to us-
ing the notion of forcing presented by the Laver function, we also collapse
(with countable conditions) the cardinal |Pα| to ℵ1. By Proposition 37.8,
such iteration is semiproper. An argument similar to the one in the proof of
Theorem 31.21 shows that the iteration up to a supercompact cardinal yields
a model in which SPFA holds.

The consistency of MM then follows from this result:

Theorem 37.10 (Shelah). SPFA implies that every stationary set preserv-
ing notion of forcing is semiproper. Therefore SPFA implies MM.

Proof. Let X be a set of countable elementary submodels of Hλ = (Hλ,∈, <).
We denote X⊥ the set

(37.3) X⊥ = {M ∈ [Hλ]ω : M ≺ Hλ and N /∈ X for every countable N that
satisfies M ≺ N ≺ Hλ and N ∩ ω1 = M ∩ ω1}.

As in Chapter 31, we call an elementary chain (of length ϑ ≤ ω1) a sequence
〈Mα : α < ϑ〉 of countable elementary submodels of (Hλ,∈, <) such that
Mα ⊂ Mβ and Mα ∈ Mβ if α < β, and Mα =

⋃
β<α Mβ if α is a limit

ordinal. (Note that α ⊂ Mα for every α.)

Lemma 37.11. Assume SPFA, and let ω1 ≤ κ < λ with λ regular and
sufficiently large. Let Y ⊂ [Hκ]ω be stationary, and let X = {M ∈ [Hλ]ω :
M ∩ Hκ ∈ Y } be the lifting of Y to Hλ. There exists an elementary chain
〈Mα : α < ω1〉 of submodels of (Hλ,∈, <) such that Mα ∈ X ∪ X⊥ for
every α.

Proof. Let P be the notion of forcing that shoots an elementary chain through
X ∪ X⊥: Conditions are elementary chains 〈Mα : α ≤ γ〉 in X ∪ X⊥ where
γ is a countable ordinal; a stronger condition is an extension. We shall prove
that P is semiproper; then, using SPFA applied to the dense sets Dξ =
{〈Mα : α ≤ γ〉 : γ ≥ ξ} (cf. Exercise 37.10), we obtain an elementary chain
of length ω1 in X ∪ X⊥.

To show that P is semiproper, let µ > λ be sufficiently large, let M ≺
(Hµ,∈, <) be countable, with P ∈ M , and let p ∈ P ∩ M . It suffices (cf.
Exercise 37.6) to find a q ≤ p that is (M, P )-semigeneric.

Claim 37.12. There exists a countable N , M ≺ N ≺ Hµ such that N∩ω1 =
M ∩ ω1 and N ∩ Hλ ∈ X ∪ X⊥.
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Proof. If M ∩ Hλ ∈ X⊥ let N = M . Otherwise, there exists a countable
N ′ ≺ Hλ such that M∩Hλ ⊂ N ′, N ′∩ω1 = M∩ω1 and N ′ ∈ X . Let N be the
Skolem hull of M∪(N ′∩Hκ) in (Hµ,∈, <). We claim that N ∩Hκ = N ′∩Hκ;
hence N ∩ ω1 = M ∩ ω1 and N ∩ Hκ ∈ Y , hence N ∩ Hλ ∈ X .

The equality N ∩Hκ = N ′ ∩Hκ holds because N ∩Hκ ⊂ N ′: notice that
for every Skolem function h for Hµ, h ∩ Hκ ∈ M ∩ Hλ ⊂ N ′. ��

Continuing the proof of Lemma 37.11, let N be as in Claim 37.12. We
can find a decreasing sequence of conditions pn ∈ N with p0 = p such that
pn = 〈Mα : α ≤ γn〉, such that every name for a countable ordinal in N is
decided by some pn (as an ordinal in N) and

⋃∞
n=0

⋃
α≤γn

Mα = N ∩Hλ. Let
γ =

⋃∞
n=0 γn and Mγ = N ∩Hλ. Since N ∩Hλ ∈ X ∪X⊥, q = 〈Mα : α ≤ γ〉

is a condition, and is (N, P )-semigeneric. Since M ⊂ N and M∩ω1 = N∩ω1,
q is (M, P )-semigeneric. ��

Now we finish the proof of Theorem 37.10. Assuming SPFA, let Q be
a stationary set preserving notion of forcing that is not semiproper. Let κ
be sufficiently large (so that all Q-names for countable ordinals are in Hκ).
Since Q is not semiproper, there exists some p ∈ Q such that the set Y =
{M ≺ Hκ : there exists no (M, Q)-semigeneric q ≤ p} is stationary. Let λ > κ
be regular and let X be the lifting of Y to Hλ; since κ is sufficiently large,
X = {M ≺ Hλ : there is no (M, Q)-semigeneric q ≤ p}. We may assume that
p = 1 is the trivial condition.

By Lemma 37.11 there exists an elementary chain 〈Mα : α < ω1〉 in
X ∪ X⊥. We claim that the set S = {α < ω1 : Mα ∈ X} is nonstationary.
Assume that S is stationary and let G be a generic filter on Q. Since Q is
stationary set preserving, S is stationary in V [G]. Let δ̇ξ, ξ < ω1, enumerate
all the names in

⋃
α<ω1

Mα for countable ordinals. In V [G], let

C = {α < ω1 : Mα ∩ ω1 = α and (∀ξ < α)[δ̇ξ ∈ Mα and δ̇G
ξ < α]}.

The set C is closed unbounded, and if α ∈ C then there exists some q ∈ G
such that for every δ̇ξ ∈ Mα, q � (∃β ∈ Mα) δ̇ξ = β; therefore q is (Mα, Q)-
semigeneric. Therefore S is nonstationary in V [G], and hence in V .

Thus there exists an elementary chain 〈Mα : α < ω1〉 in X⊥. Let µ > λ be
sufficiently large; we shall finish the proof by showing that for every countable
M ≺ (Hµ,∈, <, Q, 〈Mα : α < ω1〉), for every p ∈ M there exists an (M, Q)-
semigeneric q ≤ p.

Let M be such; if δ = M ∩ ω1, then M ∩Hλ ⊃ Mδ and δ = Mδ ∩ ω1, and
since Mδ ∈ X⊥ we have M ∩ Hλ /∈ X and we are done. ��

Applications of MM

The first application deals with cardinal arithmetic. Since MM implies PFA,
it follows (by Theorem 31.23) that 2ℵ0 = 2ℵ1 = ℵ2. It turns out that from MM
one can prove much more, including the Singular Cardinal Hypothesis:
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Theorem 37.13 (Foreman, Magidor and Shelah). MM implies that for
every regular κ ≥ ℵ2, κℵ1 = κ.

Corollary 37.14. MM implies 2ℵ0 = ℵ2. ��

Corollary 37.15. MM implies SCH.

Proof. For every cardinal λ of cofinality ω, if 2ℵ0 < λ then λℵ0 ≤ (λ+)ℵ1 =
λ+, and SCH follows by Silver’s Theorem 8.13. ��

Proof of Theorem 37.13. Let Aα, α < κ, be disjoint stationary subsets of
Eκ

ω = {ξ < κ : cf ξ = ω}. We shall prove the following claim that implies the
theorem: For every increasing f : ω1 → κ there exists an ordinal γf < κ of
cofinality ω1 such that

(37.4) ∀α < κ α ∈ ran(f) if and only if Aα ∩ γf is stationary.

(It follows that f �= g implies γf �= γg.)
Thus let f : ω1 → κ be an increasing function, and let Sα, α < ω1,

be disjoint stationary subsets of ω1 such that
⋃

α Sα = ω1 and that for
every stationary S there exists an α such that S ∩ Sα is stationary. We shall
use MM to find a continuous increasing function F : ω1 → κ such that for
every δ < ω1, if δ ∈ Sα then F (δ) ∈ Af(α).

Then if we let γf = supδ<ω1
F (δ), γf ∩

⋃
α<ω1

Af(α) contains a closed
unbounded set {F (δ) : δ < ω1}, and (37.4) holds.

Let P be the following notion of forcing: A condition is a continuous
increasing function p = 〈p(δ) : δ ≤ γ〉 where γ < ω1 such that for every
δ ≤ γ, if δ ∈ Sα then p(δ) ∈ Af(α). A stronger condition is an extension. We
will show that P is stationary set preserving and that for every α < ω1 the
set Dα = {p ∈ P : α ∈ dom(p)} is dense. Then MM applied to the sets Dα

produces the desired function F .
We prove the second claim first, by induction on α. Let α be a limit

ordinal, and assume that all Dβ, β < α, are dense; let p ∈ P . Let γ be such
that α ∈ Sγ . Let λ be sufficiently large, and let M ≺ Hλ be a countable
model with P, p, α ∈ M such that η = sup(M ∩ κ) ∈ Aγ (M exists because
Aγ is stationary). Let 〈αn〉n be an increasing sequence with limit α, and
let 〈ηn〉n be an increasing sequence with limit η. We construct a sequence
of conditions p = p0 ⊂ p1 ⊂ . . . ⊂ pn ⊂ . . ., each pn ∈ M , as follows:
Given pn ∈ M , Dαn ∈ M is dense and so there exists a pn+1 ∈ M such
that pn+1 ⊃ pn, αn ∈ dom(pn+1) and pn+1(αn + 1) ≥ ηn. The function
q =

⋃∞
n=0 pn ∪ {(α, η)} is a condition, proving that Dα is dense.

Now we complete the proof by showing that P is stationary set preserving.
Let S be a stationary subset of ω1, let p ∈ P and let Ċ be a name for a closed
unbounded set. We shall find a q ≤ p and some δ ∈ S such that q � δ ∈ Ċ.

Let α be such that S ∩Sα is stationary. Let λ be sufficiently large and let
M ≺ Hλ be a countable model with P, p, Ċ ∈ M such that η = sup(M ∩κ) ∈
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Aα and δ = M ∩ω1 ∈ S∩Sα (see Exercise 37.11). Let 〈αn〉n be an increasing
sequence with limit δ and let 〈ηn〉n be an increasing sequence with limit η. As
before, we find a sequence of conditions p = p0 ⊂ . . . ⊂ pn ⊂ . . . in M such
that αn ∈ dom(pn+1), pn+1(αn + 1) ≥ ηn, and such that for some βn ≥ αn

in M , pn+1 � βn ∈ Ċ. The function q =
⋃∞

n=0 pn ∪{(δ, η)} is a condition and
since δ = limn βn, we have q � δ ∈ Ċ. ��

Another important application of MM is the saturation of the nonstation-
ary ideal on ℵ1:

Theorem 37.16 (Foreman, Magidor and Shelah). MM implies that the
nonstationary ideal on ℵ1 is ℵ2-saturated.

Proof. Assume MM and let {Ai : i ∈ W} be a maximal almost disjoint
collection of stationary subsets of ω1. We shall find a set Z ⊂ W of size ≤ ℵ1

such that
∑

i∈Z Ai contains a closed unbounded set. That will prove that
INS is ℵ2-saturated.

Let P be the set of all pairs (q, p) such that

(i) q : γ + 1 → W for some γ < ω1, and
(ii) p ⊂ ω1 is a closed countable set such that α ∈ p implies α ∈⋃

ξ<α Aq(ξ).

(37.5)

A condition (q′, p′) is stronger than (q, p) if q′ ⊃ q and p′ is an end-extension
of p. (See also (34.7).)

P can be viewed as a two-step iteration Q∗PṠ where Q collapses |W | to ℵ1

with countable conditions and PṠ shoots a closed unbounded set through
Ṡ =

∑
i∈W Ai. P is stationary set preserving: If A ⊂ ω1 is stationary then

for some i ∈ W , A ∩ Ai is stationary and remains stationary in V Q. Hence
A∩Ai ∩ Ṡ is stationary and remains stationary in V P . Hence A is stationary
in V P . See Exercises 34.6 and 23.6.

For each α < ω1, let Dα = {(q, p) ∈ P : α ≤ max(p)}. Each Dα is dense
and so by MM there is a filter G on P that meets all the Dα. Let

F =
⋃
{q : (q, p) ∈ G for some p}, C =

⋃
{p : (q, p) ∈ G for some q}.

The set C is closed unbounded, and is equal to the set {α : (∃ξ < α) α ∈
AF (ξ)} =

∑
i∈ran(F ) Ai. ��

Reflection Principles

An important consequence of MM are reflection principles. These combina-
torial principles imply some major consequences of MM.
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Definition 37.17 (Reflection Principle (RP)). For every regular λ ≥ ℵ2

the following holds:

RP(λ) If S is a stationary set in [λ]ω then for every X ⊂ λ of cardinality ℵ1

there exists a Y ⊂ λ of cardinality ℵ1 such that X ⊂ Y and that
S ∩ [Y ]ω is stationary in [Y ]ω.

RP follows from Martin’s Maximum, see Theorems 37.21 and 37.23 below.
One consequence of RP is that every stationary set preserving notion of
forcing is semiproper (Exercise 37.13). This in turn implies that INS on ω1

is precipitous (Foreman, Magidor and Shelah [1988], Theorem 26) and is
therefore a large cardinal property.

Theorem 37.18 (Todorčević). RP(ω2) implies that 2ℵ0 ≤ ℵ2.

Proof. One can show that RP(λ) implies a stronger version of RP(λ), namely
that S ∩ [Y ]ω is stationary for stationary many Y ∈ [λ]ℵ1 (Exercise 37.14).
If ω1 ≤ α < ω2, let Cα be a closed unbounded subset of [α]ω of order-
type ω1, and let D =

⋃
ω1≤α<ω2

Cα. Since |Cα| = ℵ1 for each α, we have
|D| = ℵ2. By RP(ω2), D contains a closed unbounded set: Otherwise, if
S = [ω2]ω − D is stationary, there exists an α ≥ ω1 such that S ∩ [α]ω is
stationary, a contradiction.

By a theorem of Baumgartner and Taylor ([1982], Theorem 3.2(a)), every
closed unbounded subset of [ω2]ω has size at least 2ℵ0 . Therefore 2ℵ0 ≤ ℵ2.

��

RP(ω2) is not very strong; its consistency follows from a weakly compact
cardinal (a modification of Theorem 23.23).

Definition 37.19. A set S ⊂ [λ]ω is projective stationary if for every sta-
tionary set T ⊂ ω1, the set {X ∈ S : X ∩ ω1 ∈ T } is stationary.

(Equivalently, for every closed unbounded C ⊂ [λ]ω , the projection
(S ∩ C)�ω1 contains a closed unbounded set.)

Definition 37.20 (Strong Reflection Principle SRP). For every regular
λ ≥ ℵ2, the following holds:

SRP(λ) If S is projective stationary in [Hλ]ω then there exists an elementary
chain 〈Mα : α < ω1〉 of countable models such that Mα ∈ S for all α.

Theorem 37.21. MM implies SRP.

Proof. Let S ⊂ [Hκ]ω be projective stationary. Let P be the forcing notion
that shoots an elementary chain through S: Conditions are elementary chains
〈Mα : α ≤ γ〉 where γ < ω1 and Mα ∈ S for all α ≤ γ. We will show
that P is stationary set preserving; then if G is a filter on P that meets
{p ∈ P : α ∈ dom(p)} for each α < ω1,

⋃
G is an elementary chain in S.
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Let T ⊂ ω1 be stationary, let Ċ be a P -name for a closed unbounded set,
and let p ∈ P . We shall find a q ≤ p and a δ ∈ T such that q � δ ∈ Ċ. Let λ be
sufficiently large and let M ≺ (Hλ,∈, <, P, Ċ, S, T, p) be a countable model
such that M ∩ Hκ ∈ S and δ = M ∩ ω1 ∈ T . Let p = p0 ≥ . . . ≥ pn ≥ . . .
be conditions in M such that for every open dense set D ∈ M , pn ∈ D for
some n. If pn = 〈Mα : α ≤ γn〉 then δ = limn γn and M ∩Hκ =

⋃
n<ω Mγn . If

we let q =
⋃

n<ω pn ∪{(δ, M ∩Hκ)}, then q is a condition and q � δ ∈ Ċ. ��

Theorem 37.22. SRP implies that the nonstationary ideal on ω1 is ℵ2-
saturated.

Proof. Assume SRP and let W be a maximal antichain of stationary subsets
of ω1. We will show that |W | ≤ ℵ1. Consider the set

S = {M ∈ [Hω2 ]
ω : M ≺ Hω2 , W ∈ M and ∃A ∈ W ∩ M (M ∩ ω1 ∈ A)}.

We claim that S is projective stationary. Let T ⊂ ω1 be stationary and let
A ∈ W be such that T ∩ A is stationary. Let C be a closed unbounded set
in [Hω2 ]ω. Then there exists a model M ∈ C such that M ∩ ω1 ∈ A ∩ T ;
hence S is projective stationary. By SRP there exists an elementary chain
〈Mα : α < ω1〉 such that Mα ∈ S for all α. Let M =

⋃
α<ω1

Mα; we shall
finish the proof by showing that W ⊂ M .

Let A ∈ W and assume that A /∈ M . Let N be the Skolem hull of
M ∪ {A} and for each α, let Nα be the Skolem hull of Mα ∪ {A}. Let C be
the closed unbounded set of all α < ω1 such that Mα ∩ ω1 = Nα ∩ ω1 = α,
and let α ∈ C ∩ A. Since Mα ∈ S, there exists some B ∈ W ∩ Mα such
that α ∈ B. As A ∩ B is nonstationary and A, B ∈ Nα, there exists a closed
unbounded set D ∈ Nα such that A ∩ B ∩ D = ∅. This is a contradiction,
since α = Nα ∩ ω1 ∈ D, and also α ∈ A and α ∈ B. ��

Theorem 37.23. For every regular λ ≥ ω2, SRP(λ) implies RP(λ).

Proof. Assuming SRP(λ) we prove a stronger version of RP(λ):

(37.6) If S is a stationary set in [Hλ]ω then there exists an elementary chain
〈Mα : α < ω1〉 such that {α : Mα ∈ S} is stationary.

Let S ⊂ [Hλ]ω be stationary. By Exercise 37.19 (since INS is ℵ2-saturated
by SRP(ω2)), there exists a stationary A ⊂ ω1 such that for every stationary
B ⊂ A, the set {M ∈ S : M ∩ ω1 ∈ B} is stationary. Therefore the set
{M : M ∈ S or M ∩ ω1 /∈ A} is projective stationary, and by SRP(λ)
contains an elementary chain 〈Mα : α < ω1〉. It follows that Mα ∈ S for
every α ∈ A. ��

We mention two other consequences of SRP: the Singular Cardinal Hy-
pothesis (Todorčević, Exercise 37.20) and 2ℵ0 = ℵ2 (Woodin [1999], Theo-
rem 9.82, proves that SRP(ω2) implies δ1

2 = ℵ2).
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Forcing Axioms

Martin’s Maximum (as well as MA and PFA) are principles that postulate
the existence of sufficiently generic filter on every forcing notion of a given
kind. In general, let P be a class of forcing notions.

Definition 37.24 (MA(P)). If P is a forcing notion in P and if {Dα :
α < ω1} are dense (or predense) subsets of P , then there exists a filter G
on P that meets all the Dα.

Thus MA(c.c.c.) is MAℵ1 , MA(proper) is PFA and MA(semiproper) =
MA(stationary set preserving) is SPFA = MM. A useful strengthening of
a given forcing axiom is the following:

Definition 37.25 (MA+(P)). If P is a forcing notion in P , if {Dα : α < ω1}
are dense (or predense) subsets of P and if Ṡ is a name of a subset of ω1 such
that � Ṡ is stationary, then there exists a filter G on P that meets all the Dα,
and ṠG = {α : ∃p ∈ G p � α ∈ Ṡ} is stationary.

MM+ is stronger than MM; its consistency follows by a modification
of the proof of Theorem 37.9. While MA+

ℵ1
is equivalent to MAℵ1 (Exer-

cise 37.22), MA+(P) is generally stronger than MA(P). A useful special case
is MA+(ω-closed). Among others, it implies the Reflection Principle RP and is
therefore a large cardinal axiom. Moreover, it implies (37.6) (Exercise 37.23)
and hence SCH. The following theorem shows that MA+(ω-closed) follows
from MM:

Theorem 37.26 (Shelah). MM implies MA+(ω-closed).

Proof. Assume MM and let P be ω-closed, D a family of ℵ1 dense subsets
of P and Ṡ a P -name for a stationary set. Let {Ai : i ∈ W} be a maximal
antichain of those stationary sets for which �P Ai ∩ Ṡ is nonstationary.
By MM, |W | ≤ ℵ1. Let A =

∑
i∈W Ai be the diagonal union and let T =

ω1 − A. We have �P Ṡ − T is nonstationary (hence T is stationary) and for
every stationary X ⊂ T there exists some p ∈ P such that p � Ṡ ∩ X is
stationary.

Let Q be the countable support product of ω1 copies of P ; let Qα = P
and Ṡα = Ṡ. For every stationary X ⊂ T and every q ∈ Q there exist some
q′ ≤ q and α < ω1 such that q′ � Ṡα ∩ X is stationary. It follows that for
every stationary X ⊂ T , �Q X∩

∑
α<ω1

Ṡα is stationary. In V Q, let Ṙ be the
forcing notion that shoots a closed unbounded set Ċ through A ∪

∑
α<ω1

Ṡα

(with countable conditions). It follows that Q ∗ Ṙ preserves stationary sets.
By MM there exists a filter G×H on Q∗ Ṙ such that each Gα = G�Qα is

D-generic, that for all α and β, G meets {q ∈ Q : q decides α ∈ Ṡβ}, and that
for each α, G × H meets {(q, r) : max(r) ≥ α}. Then C = ĊG×H is a closed
unbounded set and A ∪

∑
α<ω1

ṠG
α ⊃ C. Therefore there exists some α such

that ṠGα
α is stationary, and MA+(ω-closed) follows. ��
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While PFA is a large cardinal axiom and implies that 2ℵ0 = ℵ2 there
are weaker versions that do not need large cardinals, and are consistent with
c > ℵ2: For instance, there is a class P of proper forcings that includes,
among others, the forcings for adding Cohen reals, Sacks reals, Mathias reals
and Laver reals and MA(P) is consistent (relative to ZFC) with 2ℵ0 > ℵ2

(Groszek and Jech [1991]).
Finally, forcing axioms can be further modified by restricting the size of

predense sets that the filter should meet. If only Dα of size ≤ ℵ1 are involved,
these are known as bounded forcing axioms:

Definition 37.27 (Bounded MA(P)). If P is a forcing notion in P and if
{Dα : α < ω1} are predense subsets of P such that |Dα| ≤ ℵ1 for all α, then
there exists a filter G on P that meets all the Dα.

The consistency strength of Bounded PFA is below a Mahlo cardinal
(Goldstern and Shelah [1995]). An interesting equivalence for Bounded MM
was proved by Bagaria:

Theorem 37.28 (Bagaria [2000]). Bounded MM holds if and only if for
every stationary set preserving forcing notion P ,

(Hω2 ,∈) ≺Σ1 (Hω2 ,∈)V P

. ��

Exercises

37.1. Let P be a notion of forcing such that for some stationary S ⊂ ω1, �P S is
nonstationary. Then there exist ℵ1 dense sets such that no filter G on P meets
them all.

[Let Ċ be a closed unbounded set in V P such that �P S ∩ Ċ = ∅. For each
α < ω1, let Dα = {p : (∃β ≥ α) p � β ∈ Ċ} and Eα = {p : either p � α ∈ Ċ or

∃γ < α such that p � ξ /∈ Ċ for all ξ between γ and α}. If G meets all the Dα

and Eα, let C = {α : ∃p ∈ G p � α ∈ Ċ}. Show that C is closed unbounded and so
S ∩ C �= ∅; a contradiction.]

37.2. Let fη : ω1 → ω1, η < ω2, be the canonical ordinal functions, and let
g : ω1 → ω1 be such that g > fη mod INS for all η. A forcing condition in Pg is
(h, c, {cη : η ∈ A}) where h : α + 1 → ω1 for some α < ω1, c and cη are closed
subsets of α + 1, A ⊂ ω2 is countable, and h < g on c, h > fη on cη. The c’s in
a stronger condition are end-extensions. Show that Pg is stationary preserving.

[Shelah [1982], p. 255.]

Let |A| ≥ ℵ2. A set C ⊂ [A]ω is locally closed unbounded if for closed unbounded
many X ∈ [A]ℵ1 , C ∩ [X]ω contains a closed unbounded set in [X]ω .

37.3. The filter of locally closed unbounded sets is a normal filter and extends the
closed unbounded filter on [A]ω.
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37.4. A notion of forcing P is stationary set preserving if and only if for every
sufficiently large λ there is a locally closed unbounded set in [Hλ]ω of countable
elementary submodels such that ∀p ∈M ∃q ≤ p q is (M, P )-semigeneric. (Compare
with Definition 34.3).

[Feng and Jech [1989], Theorem 2.1.]

37.5. P is stationary set preserving if and only if for every p ∈ P and every set X
of names for countable ordinals such that |X| = ℵ1, player II has a winning strategy
in the following game: I plays α̇n ∈ X, II plays βn, and II wins if ∃q ≤ p q � ∀n ∃k
(α̇n = βk). (Compare with Theorem 31.9 and Exercise 34.4.)

[Feng and Jech [1989], Theorem 2.1.]

37.6. P is semiproper if and only if for every p ∈ P , every sufficiently large λ and
every countable M ≺ (Hλ,∈, <) containing P and p, there exists a q ≤ p that is
(M, P )-semigeneric.

[As in Lemma 31.16.]

37.7. Show that the Prikry forcing is semiproper.
[Use Exercise 34.4.]

37.8. If P is semiproper and �P Q̇ is semiproper then P ∗ Q̇ is semiproper.
[As in Lemma 31.18, or use the semiproper game from Exercise 34.4.]

37.9. Let Pα be an RCS iteration, let γ < α, and let Ṗ
(γ)
α be an RCS iteration,

in V Pγ , of {Q̇β : γ ≤ β < α}. Then V Pα = V Pγ∗Ṗ (γ)
α .

37.10. For every stationary S ⊂ [Hλ]ω and every γ < ω1 there exists an elementary
chain 〈Mα : α ≤ γ〉 such that Mα ∈ S for all α ≤ γ.

[It suffices to show that such a chain exists in some V P where P collapses Hλ

with countable conditions. In V P , consider an elementary chain with limit Hλ and
apply Exercise 8.5.]

37.11. Let S ⊂ ω1 and T ⊂ Eκ
ω be stationary and let λ be sufficiently large. Then

there exists a countable M ≺ Hλ such that M ∩ ω1 ∈ S and sup(M ∩ κ) ∈ T .
[There exists N ≺ Hλ of size ℵ1 such that ω1 ⊂ N and η = sup(N ∩ κ) ∈ T

(because T is stationary). Then (because S is stationary) there exists a countable
M ≺ N with sup(M ∩ κ) = η and M ∩ ω1 ∈ S.]

37.12. MM implies that for every regular κ ≥ ω2, every stationary A ⊂ Eκ
ω contains

a closed set of order-type ω1. (Compare with Exercise 8.5.)
[Let P be the set of all continuous increasing 〈p(α) : α ≤ γ〉, γ < ω1, in A.]

37.13. RP implies that every stationary set preserving P is semiproper.
[Foreman, Magidor and Shelah [1988], Proposition 14.]

37.14. RP(λ) implies that for every stationary S ⊂ [λ]ω, the set {Y ⊂ λ : |Y | = ℵ1

and S ∩ [Y ]ω is stationary} is stationary in [λ]ℵ1 .
[Feng and Jech [1989], Theorem 3.1, (3) implies (2).]

37.15. RP(κ) implies that every stationary A ⊂ Eκ
ω reflects at some γ of cofinal-

ity ω1. (Compare with Exercise 31.9.)

37.16. Let ℵ1 < κ < λ.

(i) If S ⊂ [λ]ω is projective stationary then S�κ is projective stationary.
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(ii) If S ⊂ [κ]ω is projective stationary then the lifting of S to λ is projective
stationary.

37.17. Let κ < λ, Y ⊂ [Hκ]ω, let X be the lifting of Y to Hλ. Show that X ∪X⊥

is projective stationary.
[Feng and Jech [1998], Claim 1.2. (Or, modify the proof of Claim 37.12.)]

37.18. SRP implies that for every regular κ ≥ ω2, every stationary A ⊂ Eκ
ω con-

tains a closed set of order-type ω1.
[Apply SRP(κ) to the set {M : A ∈M and sup(M ∩ κ) ∈M}.]

37.19. If INS is ℵ2-saturated then for every stationary S ⊂ [λ]ω there exists a sta-
tionary A ⊂ ω1 such that for every stationary B ⊂ A, the set {X ∈ S : X∩ω1 ∈ B}
is stationary.

[For every stationary A ⊂ ω1, let SA = {X ∈ S : X ∩ ω1 ∈ A}, and let
W = {Aξ : ξ < ϑ}, ϑ ≤ ω1, be a maximal antichain of stationary sets A such
that SA is not stationary. For each ξ let Cξ be closed unbounded in [λ]ω such that
SAξ ∩Cξ = ∅. Let A = �ξ(ω1 −Aξ) and C = �ξ Cξ = {X : (∀α ∈ X∩ϑ) X ∈ Cα}.
Since C ∩ S is stationary, A is stationary. A is as desired.]

37.20. SRP(κ) implies that κℵ1 = κ.
[Let Aα (α < κ), f : ω1 → κ and Sα (α < ω1) be as in the proof of Theo-

rem 37.13, and prove (37.4). The set {M : (∀α ∈ M ∩ ω1) if M ∩ ω1 ∈ Sα then
sup(M ∩ κ) ∈ Af(α)} is projective stationary.]

37.21. SRP holds if and only if for all κ < λ regular uncountable, if S ⊂ [κ]ω is
stationary then there exists an elementary chain 〈Mα : α < ω1〉 such that Mα ∩ κ ∈
S for every α for which there exists a countable M such that Mα ⊂ M ≺ Hλ,
M ∩ ω1 = Mα ∩ ω1, and M ∩ κ ∈ S. (In other words, if T is the lifting of S
to Hλ then T ∪ T⊥ contains an elementary chain. This reflection principle is due
to Todorčević, see Bekkali [1991], p. 57.)

[Feng and Jech [1998], Theorem 1.2.]

37.22. MAℵ1 implies MA+
ℵ1

.

[Let P be c.c.c., |D| = ℵ1 (dense sets), and Ṡ a P -name for a stationary set. Let
Q be the (finite support) product of ω copies of P ; let Qn = P and Ṡn = Ṡ. Let
T = {α : ∃p ∈ P p � α ∈ Ṡ} and show that �Q T =

S

n<ω Ṡn. Apply MAℵ1 to Q
which is c.c.c. Let G be a filter on Q such that each Gn = G�Qn is D-generic, and
that for every α and every n, G meets {q : q decides α ∈ Ṡn}. Then T =

S

n<ω ṠG
n

and therefore there exist some n such that ṠGn
n is stationary.]

37.23. MA+(ω-closed) implies that for every stationary S ⊂ [Hλ]ω there exists an
elementary chain 〈Mα : α < ω1〉 such that {α : Mα ∈ S} is stationary.

[Apply MA+(ω-closed) to the ω-closed forcing that produces a generic chain
〈MG

α : α < ω1〉 such that
S

α<ω1
MG

α = (Hλ)V (the conditions being countable
chains) and the canonical name for the stationary set SG = {α : MG

α ∈ S}.]

Historical Notes

Martin’s Maximum was formulated by Foreman, Magidor and Shelah [1988]. The
consistency proof (Theorem 37.9) as well as the major applications (Theorem 37.13,
Theorem 37.16 and Definition 37.17) are in that paper. The method of RCS iteration
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and Theorem 37.4 are due to Shelah and appear in [1982]. The (simplified) definition
presented here follows Fuchs [1992] and Schlindwein [1993].

Theorem 37.10 was proved by Shelah in [1987].
Todorčević proved (in unpublished notes) that RP implies 2ℵ0 ≤ ℵ2; he also

formulated a strong reflection principle (see Exercise 37.21) and used it to prove
Theorems 37.21, 37.22 and 37.23, as well as SCH. The present version of SRP (Def-
inition 37.20) is due to Feng and Jech [1998]; so is the equivalence in Exercise 37.21.

MA+(ω-closed) and MM+ are discussed in Foreman, Magidor and Shelah [1988].
Theorem 37.26 was proved by Shelah in [1987].

Exercises 37.1, 37.12 and 37.23: Foreman, Magidor and Shelah [1988].
Exercise 37.3: Feng and Jech [1989].
Exercises 37.10 and 37.19: Feng and Jech [1998].
Exercises 37.18 and 37.20: Todorčević.
Exercises 37.22: Baumgartner.


