
38. More on Stationary Sets

Stationary sets play a central role in several areas of set theory. In this final
chapter we address some of the issues dealing with stationary sets.

The Nonstationary Ideal on ℵ1

The question of considerable interest is whether the ideal INS on ℵ1 can be
ℵ2-saturated. By Theorem 37.16, the saturation of INS follows from MM, and
thus is consistent relative to a supercompact cardinal. This can be improved:

Theorem 38.1 (Shelah). If there exists a Woodin cardinal then there is
a generic model in which the nonstationary ideal on ℵ1 is ℵ2-saturated.

Proof (sketch). The model is constructed by an RCS iteration (up to a
Woodin cardinal), as in the proof of Theorem 37.9, iterating the forcings
described in (37.5), for those maximal antichains for which the forcing (37.5)
is semiproper. An argument similar to the one used in the proof of Theo-
rem 34.8 shows that in the resulting model, INS is saturated. ��

Combining this result with Steel’s Theorem 35.21, it follows that the
consistency strength of the saturation of INS is approximately that of the
existence of a Woodin cardinal.

In contrast to that, the consistency strength of the precipitousness of INS

is only that of the existence of a measurable cardinal (Theorems 22.33
and 23.10).

A σ-complete ideal I on ω1 is ω1-dense if the Boolean algebra P (ω1)/I
has a dense subset of size ℵ1. Clearly, every (nontrivial) ω1-dense ideal is ℵ2-
saturated. The following result (that we state without proof) shows that the
consistency strength of “INS is ω1-dense” is exactly the existence of infinitely
many Woodin cardinals.

Theorem 38.2 (Woodin). The following are equiconsistent :

(i) INS is ω1-dense.
(ii) AD holds in L(R). ��
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The saturation of the nonstationary ideal implies (almost) that the Con-
tinuum Hypothesis fails:

Theorem 38.3 (Woodin). If INS is ℵ2-saturated and if there exists a mea-
surable cardinal, then δ1

2 = ℵ2 (and hence 2ℵ0 ≥ ℵ2). ��
Note that the construction in the proof of Theorem 34.8 yields a model

in which for some stationary set A, the ideal INS�A is ℵ2-saturated and the
Continuum Hypothesis holds.

Saturation and Precipitousness

By Theorem 23.17, the nonstationary ideal on κ is not κ+-saturated, for
any κ ≥ ℵ2. The proof of Theorem 23.17 yields a somewhat stronger result:
If κ and λ are regular cardinals such that λ+ < κ, then INS�Eκ

λ is not
κ+-saturated. Theorem 38.4 below shows that the saturation of INS�Reg is
consistent (and not particularly strong). It remains open whether for a regular
uncountable cardinal κ, INS�Eκ+

κ can be κ++-saturated.
Let κ be a regular cardinal and let α < κ+. The cardinal κ is α-Mahlo

if the order of κ (as defined in Chapter 8) is at least κ + α. (Thus 0-Mahlo
means weakly inaccessible, 1-Mahlo means weakly Mahlo, etc.)

Theorem 38.4.

(i) Let κ be an α-Mahlo cardinal, with 0 < α < κ+. If INS�Reg is κ+-
saturated then κ is a measurable cardinal of Mitchell order at least α
in the model Km.

(ii) Let κ be a measurable cardinal of Mitchell order α, with 0 < α < κ+.
There is a generic model in which κ is α-Mahlo and INS�Reg is κ+-
saturated.

Proof. Cf. Jech and Woodin [1985]. For (i), see Exercise 38.1. ��
By Theorem 23.10, the existence of a measurable cardinal is sufficient for

the construction of a generic model in which the ideal INS on ω1 is precipitous.
The construction generalizes to obtain the precipitousness of INS�Eκ+

κ , for
every regular cardinal κ. For the precipitousness of the entire ideal INS on
κ ≥ ℵ2, more than measurability is needed. For instance:

Theorem 38.5. The following are equiconsistent :

(i) INS on ℵ2 is precipitous.
(ii) There exists a measurable cardinal of Mitchell order 2.

Proof. Cf. Gitik [1984]. For the lower bound, see Exercise 38.2. ��
The consistency strength of the precipitousness of INS on κ ≥ ℵ3 is more

than o(κ) = κ+. In [1997], Gitik calculated the exact strength for successors
or regulars, and nearly optimal lower and upper bounds for inaccessible κ (in
both cases, it is the Mitchell order between κ+ and κ++). For successors of
singulars the consistency strength is in the region of Woodin cardinals.
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Reflection

Let κ ≥ ℵ2 be a regular cardinal. A stationary set S ⊂ κ reflects at α < κ if
S ∩α is stationary in α (see Definition 23.5). We shall now discuss briefly to
what extent can stationary sets reflect.

First we consider the property “every stationary set S ⊂ κ reflects (at
some α < κ).” This implies that κ is either (weakly) inaccessible or the
successor of a singular cardinal, because if κ = λ+ with λ regular, the set Eλ+

λ

does not reflect (see Exercise 23.4). Let κ be an inaccessible cardinal. If κ is
weakly compact then every stationary S ⊂ κ reflects (Corollary 17.20). If
V = L then the converse is true as well: If every stationary set reflects then
κ is weakly compact (Jensen [1972], Theorem 6.1).

Following Mekler and Shelah [1989], let us call κ a reflecting cardinal if
there exists a normal ideal I on κ such that for every X ∈ I+, {α ∈ κ :
X reflects at α} ∈ I+. Every weakly compact cardinal is reflecting, and since
being a reflecting cardinal is a Π1

1 property (see Exercise 38.3), every weakly
compact cardinal is a limit of reflecting cardinals.

Theorem 38.6. The following are equiconsistent :

(i) There exists a cardinal κ such that every stationary S ⊂ κ reflects.
(ii) There exists a reflecting cardinal.

Proof. Mekler and Shelah [1989]. ��

A cardinal κ is greatly Mahlo if κ is α-Mahlo for every α < κ+. If V = L
then every reflecting cardinal is greatly Mahlo and a limit of greatly Mahlo
cardinals (Mekler and Shelah [1989]). Thus the consistency strength of “every
stationary set reflects” is strictly between “greatly Mahlo” and “weakly com-
pact.”

Now let κ be a successor of a singular cardinal λ. The property “every
stationary set S ⊂ λ+ reflects” is a very large cardinal property. On the one
hand there is this consistency result:

Theorem 38.7. If there exist infinitely many supercompact cardinals, then
there is a generic model in which every stationary set S ⊂ ℵω+1 reflects.

Proof. Magidor [1982]. ��

On the other hand, �λ implies that there exists a stationary subset of λ+

that does not reflect (Exercise 38.5). As �λ holds in the core model Kstrong

then if (λ+)Kstrong
= λ+, �λ holds in V as well (with the same square se-

quence) and one concludes (by Theorem 35.19) that if λ is a strong limit
singular cardinal and every S ⊂ λ reflects then there exists an inner model
for a strong cardinal. This has been extended by Schimmerling and others to
show that the consistency strength of this reflection property is more than
the existence of a Woodin cardinal.
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Now consider the question of what is the largest possible extent of re-
flection. Let us recall (Definition 8.18) that S < T means that S reflects at
almost all α ∈ T . If S < T then o(S) < o(T ) and one may ask whether it is
possible that S < T holds whenever o(S) < o(T ). This is possible for κ = ℵ2:
By Magidor’s Theorem 23.23 it is consistent that every stationary S ⊂ Eω2

ω

reflects at almost all α of cofinality ω1.
For κ > ℵ2 it is impossible that S < T whenever o(S) < o(T ). If µ < λ are

regular cardinals such that λ+ < κ then there exist stationary sets S ⊂ Eκ
µ

and A ⊂ Eκ
λ such that S does not reflect at any α ∈ A (Exercise 38.7). Thus

let us restrict ourselves to reflection at regular cardinals.

Definition 38.8. A weakly inaccessible cardinal κ satisfies full reflection if
for every stationary set S ⊂ κ and every stationary set T ⊂ κ of regular
cardinals, o(S) < o(T ) implies S < T .

Obviously, the property is meaningful only if κ is at least a (weakly)
Mahlo cardinal. The consistency strength of full reflection for cardinals in
the Mahlo hierarchy has been established by Jech and Shelah. For instance:

Theorem 38.9. The following are equiconsistent, for every n ≥ 1:

(i) There exists an n-Mahlo cardinal that satisfies full reflection.
(ii) There exists a Π1

n-indescribable cardinal.

Proof. Jech and Shelah [1993]. See also Exercises 38.8 and 38.9. ��

If κ is a large cardinal such as measurable, strong, or supercompact then
there is a generic extension in which κ remains measurable (strong, super-
compact) and in addition satisfies full reflection (Gitik and Witzany [1996]).

Stationary Sets in Pκ(λ)

By Theorem 8.28, the closed unbounded filter on [λ]ω is generated by the
sets CF = {x ∈ [λ]ω : x is closed under F} where F : [λ]<ω → λ. Thus
in many applications one considers the space [Hλ]ω and stationary sets are
those S ⊂ [Hλ]ω such that for every model (Hλ,∈, . . .) there exists an M ∈ S
with M ≺ (Hλ,∈, . . .).

When κ > ℵ1, the sets CF do not generate the closed unbounded filter
on Pκ(λ) as the set {x ∈ Pκ(λ) : |x| ≥ ℵ1} is closed unbounded and does
not include any CF (which contains a countable set). A generalization of
Theorem 8.28 yields the following description of the closed unbounded filter:
it is the filter generated by the sets CF and the set {x ∈ Pκ(λ) : x ∩ κ ∈ κ}
(Exercise 38.10; see also Exercises 8.18, 8.19 and 36.17). For more on this
subject, see Exercises 38.11 and 38.12.

By Lemma 31.3, ω-closed forcing preserves stationary sets in [λ]ω . This
does not generalize to Pκ(λ) for κ > ℵ1, as <κ-closed forcing may destroy



38. More on Stationary Sets 699

stationary sets in Pκ(λ). The following concept is relevant to this problem
and has other applications:

A model M ≺ Hλ is internally approachable if there exists an elemen-
tary chain 〈Mα : α < γ〉 with M =

⋃
α<γ Mα such that for every β < γ,

〈Mα : α < β〉 ∈ M . In Pκ(Hλ), let IA denote the set of all internally ap-
proachable M . The set IA is stationary, and if κ = ℵ1 then IA contains
a closed unbounded set (since every countable M is internally approachable).
A stationary set S is preserved by <κ-closed forcing if and only if S ∩ IA is
stationary (Exercises 38.13 and 38.14).

By Theorem 8.10, every stationary subset of κ can be partitioned into
κ disjoint stationary sets. The situation is more complicated for Pκ(λ). Since
|Pκ(λ)| = λ<κ we may ask whether stationary sets in Pκ(λ) can be parti-
tioned into λ<κ disjoint stationary sets. This is generally not provable, for
two reasons. One is cardinal arithmetic and the other are large cardinals.

The cardinal arithmetic reason is that there may exist stationary, or even
closed unbounded, sets of size λ while λ<κ > λ. For instance, there exists
a stationary set S ⊂ [ω2]ω of size ℵ2 (Exercise 38.15), or a closed unbounded
set C ⊂ [ω4]ω2 of cardinality ℵℵ1

4 (Exercise 38.16).
A generalization of Solovay’s proof of Theorem 8.10 gives that every sta-

tionary set in Pκ(λ) can be partitioned into κ disjoint stationary sets (Ex-
ercise 38.18). This is best possible as Gitik [1985] constructs a model, using
a supercompact cardinal, in which there is a stationary set S ⊂ Pκ(κ+) that
cannot be partitioned into κ+ disjoint stationary sets.

In view of this discussion, the following is best possible:

Theorem 38.10. Let κ be regular uncountable and λ ≥ κ.

(i) Pκ(λ) can be partitioned into λ disjoint stationary sets.
(ii) If κ is a successor cardinal then every stationary subset of Pκ(λ) can

be partitioned into λ disjoint stationary sets.
(iii) If 0� does not exist then every stationary subset of Pκ(λ) can be par-

titioned into λ disjoint stationary sets.
(iv) If GCH holds then Pκ(λ) can be partitioned into λ<κ stationary sets,

and if moreover 0� does not exist then every stationary subset of Pκ(λ)
can be partitioned into λ<κ disjoint stationary sets.

Proof. Let us consider the following set

(38.1) E = {x ∈ Pκ(λ) : |x ∩ κ| = |x|}.

It is easy to see that E is stationary and that if κ is a successor cardinal
then E contains a closed unbounded subset (Exercise 38.19). The question
whether, for an inaccessible κ, the complement of E is stationary, involves
large cardinals; cf. the following lemma and Exercise 38.20.

Lemma 38.11. If {x ∈ Pκ(λ) : |x ∩ κ| < |x|} is stationary then 0� exists.
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Proof. By the assumption there exists a model M ∈ Pκ(Lλ) such that κ ∈
M ≺ Lλ, κM = M ∩ κ ∈ κ, and κM < |M |. Let Lα be the transitive collapse
of M . Thus there is an elementary embedding j : Lα → Lλ with critical
point κM , and since κM < |α|, 0� exists. ��

Consequently, the following two lemmas will complete the proof of Theo-
rem 38.10:

Lemma 38.12. Every stationary subset of the set E can be partitioned into
λ disjoint stationary sets.

Lemma 38.13. If GCH holds and if cf λ < κ then every stationary set
in Pκ(λ) can be partitioned into λ+ disjoint stationary sets.

Proof of Lemma 38.12. Assume that λ > κ (if λ = κ we have Theorem 8.10).
Let S be a stationary set in Pκ(λ) such that |x ∩ κ| = |x| for every x ∈ S.
For each x ∈ S, let fx : x → x ∩ κ be one-to-one. For each α < λ, let
gα(x) = fx(α), for all x ∈ S with α ∈ x. There exists a stationary set Sα

such that gα is constant on Sα, with value γα < κ.
Now if µ is any regular cardinal with κ < µ ≤ λ, there exists a γ < κ

such that γα = γ for µ many α’s. The corresponding sets Sα are pairwise
disjoint stationary subsets of S. Thus for every regular cardinal µ ≤ λ, every
stationary subset of E has µ pairwise disjoint stationary subsets. It follows
easily that every S ⊂ E can be partitioned into λ disjoint stationary sets. ��

Proof of Lemma 38.13. Assume GCH and let λ > κ be such that cf λ < κ.
First we note that |Pκ(λ)| = λ+, and that every unbounded (and there-
fore every stationary) subset of |Pκ(λ)| has size λ+: If Y is unbounded then
Pκ(λ) =

⋃
x∈Y P (x) and the assertion follows.

Let 〈fα : α < λ+〉 enumerate the set of all functions fα : [λ]<ω → Pκ(λ)
such that each function appears cofinally often. By Lemma 8.26, for every
closed unbounded set C and every γ < λ+ there exists an α > γ such that
C ⊃ C(fα) = {x : f(e) ⊂ x whenever e ⊂ x}.

Now let S be a stationary set in Pκ(λ). By induction on α < λ+ we
construct one-to-one sequences 〈xα

ξ : ξ < α〉 such that {xα
ξ : ξ < α} ⊂

S ∩ C(fα), and that {xα
ξ : ξ < α} and {xβ

ξ : ξ < β} are disjoint whenever
α �= β. If we let, for each ξ < λ+, Sξ = {xα

ξ : ξ < α < λ+}, the sets Sξ,
ξ < λ+, are pairwise disjoint, and we complete the proof by showing that
each Sξ is stationary.

If C is closed unbounded, then C ⊃ C(fα) for some α > ξ, and since
xα

ξ ∈ Sξ ∩ C(fα), we have Sξ ∩ C nonempty. ��

By Theorem 23.17 the nonstationary ideal on κ is not κ+-saturated, for
any κ ≥ ℵ2. A similar result is true for the nonstationary ideal on Pκ(λ):

Theorem 38.14. If κ is a regular uncountable cardinal and λ > κ then the
nonstationary ideal on Pκ(λ) is not λ+-saturated. ��
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The result follows easily from Theorem 23.17 when λ is regular: Let κ < λ
be regular uncountable. The proof of Theorem 23.17 shows that there are
almost disjoint stationary sets Aξ ⊂ λ, ξ < λ+, such that cf α < κ for all
α ∈ Aξ and all ξ < λ+. For each ξ let Sξ = {x ∈ Pκ(λ) : supx ∈ Aξ}.
Then Sξ, ξ < λ+, are stationary sets with Sξ ∩ Sη nonstationary if ξ �= η
(Exercise 38.21).

When λ is singular, the result is a combination of several cases, depending
on κ and cf λ. The nonsaturation of INS on [λ]ω for singular λ is an application
of the concept of mutually stationary sets that we shall briefly describe in
the next section (see Corollary 38.17).

Mutually Stationary Sets

The following definition, due to Foreman and Magidor, exploits the fact that
if κ is a regular cardinal and λ > κ then a set S ⊂ κ is stationary if and
only if for every model A = 〈Hλ,∈, . . .〉 there exists some M ≺ A such that
sup(M ∩ κ) ∈ S; i.e., if and only if the set {M ∈ P (Hλ) : sup(M ∩ κ) ∈ S}
is stationary in P (Hλ).

Definition 38.15. Let A be a set of regular cardinals and let λ = sup A.
The sets Sκ, κ ∈ A, where Sκ ⊂ κ for each κ ∈ A, are mutually stationary if
the set {M : sup(M ∩ κ) ∈ Sκ for every κ ∈ M} is stationary in P (Hλ).

Not much is known about mutual stationarity beyond the following the-
orem:

Theorem 38.16 (Foreman-Magidor). Let A be a set of regular cardi-
nals with λ = supA. If for each κ, Sκ is a stationary subset of κ such that
cf α = ω for every α ∈ Sκ, then the Sκ are mutually stationary. For every
A = 〈Hλ,∈, . . .〉 there exists a countable M ≺ A such that sup(M ∩ x) ∈ Sκ

for every κ ∈ M .

Proof. Foreman and Magidor [2001]. ��

One consequence of this result is that the nonstationary ideal on [λ]ω is
not λ+-saturated when λ is singular:

Corollary 38.17. If λ is a limit cardinal then there exist stationary station-
ary sets Sξ, ξ < λcf λ, in [λ]ω such that Sξ ∩ Sη is nonstationary whenever
ξ �= η.

Proof. Let µ = cf λ and let A = {κα : α < µ} be a set of regular cardinals
with limit λ. For each α < µ, let {Sα

β : β < κα} be a partition of Eκα
ω into

κα disjoint stationary sets. For each function f ∈
∏

α<µ κα, let Sf = {M ∈
[λ]ω : sup(M ∩κα) ∈ Sα

f(α) for all α ∈ M}. The sets Sf are stationary in [λ]ω

and if f �= g then for any α with f(α) �= g(α), the closed unbounded set
{M : α ∈ M} is disjoint from Sf ∩ Sg. ��
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Weak Squares

The theory of inner models shows that in the absence of very large cardinals,
Jensen’s principle �κ holds whenever κ is a singular cardinal. In this last
section we take a look at some weaker versions of Square.

Definition 38.18. Let κ be an uncountable cardinal, and let ν be a cardinal,
1 ≤ ν ≤ κ; �κ,ν is as follows:

(�κ,ν) There exists a sequence 〈Cα : α ∈ Lim(κ+)〉 such that
(i) Cα is nonempty and |Cα| ≤ ν, and each C ∈ Cα is a closed

unbounded subset of α;
(ii) if C ∈ Cα and β ∈ Lim(C) then C ∩ β ∈ Cβ;
(iii) if cf α < κ then |C| < κ for every C ∈ Cα.

(38.2)

The principle �κ,<ν is defined similarly, replacing |Cα| ≤ ν by |Cα| < ν.

The weakest principle of these, �κ,κ, is also denoted by �∗
κ and is called

Weak Square. By Jensen [1972], �∗
κ is equivalent to the existence of a special

Aronszajn κ+-tree, and therefore, if κ is regular, �∗
κ follows from 2κ = κ+.

The main interest in the principles �κ,ν and �κ,<ν is in the case when κ is
a singular cardinal. The failure of �∗

κ for κ singular (which, as mentioned
below, entails a Woodin cardinal) is consistent: In [1979] Shelah proved the
consistency, relative to a supercompact cardinal, of the negation of �∗

ℵω
.

The failure of Weak Square for singular κ has the consistency strength
of (roughly) at least one Woodin cardinal: If there is a measurable cardinal
and there is no inner model for the Woodin cardinal, then �κ,cf κ holds for
every strong limit singular cardinal. This follows from results of Mitchell,
Schimmerling and Steel; cf. Schimmerling [1995].

Exercise 38.5 shows that if �κ holds then κ+ has a nonreflecting sta-
tionary set. The proof is easily modified to show that �κ,<ω suffices, see
Exercise 38.23. (In contrast, �ℵω,ω is consistent with “every stationary sub-
set of ℵω+1 reflects;” cf. Cummings, Foreman and Magidor [2001].)

The proof of Theorem 31.28 can be modified to show that PFA implies
the negation of �κ,ω1 for every κ ≥ ω1; see Exercise 38.24. This, and the
afore mentioned results on �κ,cf κ and Woodin cardinals yields Schimmer-
ling’s Theorem 31.30.

As a final application of weak squares we mention the following; for sim-
plicity, let κ = ℵω. By the pcf theory there exists a scale 〈fα : α < ℵω+1〉
in

∏
n∈A ℵn (mod finite) for some A ⊂ ω. If �ℵω,ℵm holds for some m, then

there exists a scale 〈gα : α < ℵω+1〉 with this property:

(38.3) For every α < ℵω+1 such that cf α > ω there exists a closed un-
bounded set C ⊂ α and some k such that for all β < γ in C and all
n ≥ k in A, gβ(n) < gγ(n).

(See Exercise 38.25.) Such scales were used in Cummings, Foreman and Magi-
dor [2001] to prove (negative) results on stationary reflection.
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Exercises

38.1. If κ is α-Mahlo and INS� Reg is κ+-saturated, then κ has Mitchell order α
in Km.

[Use Theorem 35.16 and generic ultrapowers. Find an almost disjoint collec-
tion W of stationary subsets of Reg such that the length of < restricted to W is at
least α, and that the dual of INS�S restricted to Km is a normal measure US ∈ Km.
Then show that S < T implies K � US < UT . For details, see Jech [1984]. (The
symbol < is used both for the hierarchy of stationary sets and for the Mitchell
ordering.)]

38.2. If INS on ℵ2 is precipitous then ℵ2 is a measurable cardinal of Mitchell order 2
in Km.

[Use Theorem 35.16 and generic ultrapowers, or see Gitik [1984].]

38.3. Let I0 be the normal ideal generated by the sets that do not reflect, let
Iα+1 be the smallest normal ideal extending Iα that contains every X such that
{β : X does not reflect at β} ∈ Iα, and let Iα =

S

β<α Iα if α is limit. Then κ is
a reflecting cardinal if and only if κ /∈ S

α<κ+ Iα.

38.4. If κ is a reflecting cardinal then κ is a reflecting cardinal in L.

38.5. If �λ holds then for every stationary set S ⊂ λ+ there exists a stationary
T ⊂ S that does not reflect.

[Let 〈Cα : α < λ+〉 be a square sequence, and let f(α) be the order-type of Cα.
There is a stationary set T ⊂ S on which f is constant. Show that T does not
reflect (as in Lemma 23.6).]

38.6. If κ is supercompact and ν < κ < λ (regular cardinals) then every stationary
S ⊂ Eλ

ν reflects.
[Compare with Exercise 27.3.]

38.7. Let µ < λ < κ be regular with λ+ < κ. There exist stationary set S ⊂ Eκ
µ

and A ⊂ Eκ
λ such that S does not reflect at any α ∈ A.

[As in Exercise 23.12.]

The Π1
n filter on κ is the filter F 1

n generated by the sets {α < κ : Vα � ϕ} where
ϕ is a Π1

n formula true in Vκ; the Π1
n ideal I1

n is the dual ideal. κ is Π1
n-indescribable

if and only if the Π1
n filter is a filter, i.e., κ /∈ I1

n.

38.8. Let κ be a Mahlo cardinal, let E0 be the set of all inaccessible non Mahlo
cardinals and assume that every stationary set S ⊂ κ of singular cardinals reflects
at almost all α ∈ E0. If A ∈ L is a subset of κ such that A ∈ I1

1 in L, then A ∩E0

is nonstationary.
[Jeh and Shelah [1993], Lemma 2.1.]

As a consequence, if κ is Mahlo and satisfies full reflection, then κ is Π1
1-

indescribable in L. The following generalization implies that if κ is n-Mahlo and
satisfies full reflection, then κ is Π1

n-indescribable in L:

38.9. Let κ be an n-Mahlo cardinal that satisfies full reflection and let En−1 be
the set of all α < κ that are (n− 1)-Mahlo but not n-Mahlo. If A ∈ L is a subset
of κ such that A ∈ I1

n in L, then A ∩En−1 is nonstationary.

38.10. For every closed unbounded set C in Pκ(λ) there exists a function F :
[λ]<ω → λ such that C ⊃ {x : x ∩ κ ∈ κ and F“[x]<ω ⊂ x}.



704 Part III. Selected Topics

Let [λ]ν = {x ∈ Pν+ (λ) : |x| = ν}. A set C ⊂ [λ]ν is strongly closed unbounded
if C = CF ∩ [λ]ν for some F : [λ]<ω → λ.

38.11. If the set {x ∈ [λ]ν : x ⊃ ν} contains a strongly closed unbounded set then
every closed unbounded set C ⊂ [λ]ν contains a strongly closed unbounded set.

38.12. The following are equivalent:

(i) The closed unbounded filter on [ω2]
ℵ1 is generated by strongly closed un-

bounded sets.
(ii) Chang’s Conjecture.

38.13. If S ⊂ IA is stationary and if P is <κ-closed, then S is stationary in V P .

38.14. Let P be the forcing that collapses |Hλ| to κ (with conditions of size < κ).
In V P , the set (IA)V contains a closed unbounded set.

38.15. There exists a stationary set S ⊂ [ω2]
ω of size ℵ2.

[For each α < ω2, let f : α → ω1 be one-to-one. If α < ω2 and ξ < ω1, let
Xα,ξ = {β < α : fα(β) < ξ}. Let S = {Xα,ξ : α < ω2, ξ < ω1}.]

38.16. There exists a closed unbounded set C ⊂ [ω4]
ω2 of size ℵℵ1

4 .
[Baumgartner [1991], Corollary 3.5.]

38.17. If Xα, α < λ, are stationary sets in Pκ(λ) such that Xα∩Xβ is nonstationary
for all α �= β, then there exist pairwise disjoint stationary sets Yα with Yα ⊂ Xα

for all α < λ.
[Yα = Xα ∩ {x : α ∈ x and ∀β ∈ x if β �= α then x /∈ Xβ}.]

38.18. For every stationary set S ⊂ Pκ(λ) the ideal INS�S is not κ-saturated.
[Gitik [1985], p. 893.]

38.19. Let E = {x ∈ Pκ(λ) : |x ∩ κ| = |x|}.
(i) E is stationary.
(ii) If κ is a successor cardinal then E contains a closed unbounded subset.

38.20. If κ is supercompact and λ > κ then the set {x ∈ Pκ(λ) : |x ∩ κ| < |x|} is
stationary.

38.21. Let κ < λ be regular uncountable and let A ⊂ λ be such that cf α < κ
for all α ∈ A. A is stationary if and only if {x ∈ Pκ(λ) : sup x ∈ A} is stationary
in Pκ(λ).

38.22. If κ is supercompact then for all λ ≥ κ, �λ,<κ fails.

38.23. If �κ,<ω holds then for every stationary S ⊂ κ+ there exists a stationary
T ⊂ S that does not reflect.

[Let 〈Cα : α < κ+〉 be a �κ,<ω sequence and let f(α) = {o.t.(C) : C ∈ Cα}.
Then proceed as in Exercise 38.5.]

38.24. PFA implies that �κ,ω1 fails for every uncountable cardinal κ.
[Let 〈Cα : α < κ+〉 be a �κ,ω1 sequence, and let T be the tree of all (α, A)

with A ∈ Cα, ordered by (α, A) ≺ (β, B) if and only if α ∈ Lim(B) and A =
B ∩ α. Let P = {p ⊂ κ+ : p is closed and countable}, ordered by end-extension.
In V P , T �

S

Ġ has no ω1-branch. Let Q̇ be the c.c.c. forcing that specializes T �
S

Ġ.
Applying PFA to P ∗ Q̇ leads to a contradiction as in Theorem 31.28. For details,
see Schimmerling [1995].]
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38.25. Prove (38.3) using �ℵω,ℵm .
[Let 〈Cα : α < ℵω+1〉 be a �ℵω ,ℵm sequence, and assume that m < n for all

n ∈ A. For a limit γ, let gγ be such that gγ > gα for all α < γ, gγ(n) > fγ(n)
for all n ∈ A, and such that for all n ∈ A, gγ(n) > sup{supβ∈C gβ(n) : C ∈ Cγ ,
|C| < ℵn}.]

Historical Notes

The first consistency proof for the saturation of INS was obtained by Steel and
van Wesep [1982], forcing over a model of ZF + ADR + “Θ is regular” (ADR is
the determinacy of games where moves are real numbers). Following the proof of
Theorem 37.16 (by Foreman, Magidor and Shelah), Shelah obtained the consistency
from the existence of a Woodin cardinal (Theorem 38.1).

Theorem 38.2 will appear in the forthcoming book on AD, cf. Woodin et al. [∞].
Theorem 38.3 is proved in Woodin [1999].

Theorem 38.4: Jech and Woodin [1985].
Theorem 38.5: Gitik [1984].
Theorem 38.6: Mekler and Shelah [1989].
Theorem 38.9: Jech and Shelah [1993].
Theorem 38.10 is a combination of several results, including Jech [1972/73],

Matsubara [1987], [1988] and [1990], Di Prisco and Baumgartner.
Lemma 38.11: Baumgartner.
Lemma 38.12: Di Prisco.
Lemma 38.13: Matsubara.
Theorem 38.14 is a combination of several results, including Gitik and She-

lah [1997], Baumgartner and Taylor [1982], Donder and Matet [1993], Burke and
Matsubara [1999] and Foreman and Magidor [2001].

Mutually stationary sets are investigated in Foreman and Magidor [2001].
For weak squares, see Schimmerling [1995] and Cummings, Foreman and Magi-
dor [2001].

Exercises 38.3 and 38.4: Mekler and Shelah [1989].
Exercises 38.5: Jensen.
Exercises 38.6 and 38.22: Solovay.
Exercises 38.7: Shelah.
Exercises 38.8 and 38.9: Jech and Shelah [1993].
Exercises 38.10: Kueker.
Exercises 38.11, 38.12, 38.13 and 38.14: Foreman, Magidor and Shelah [1988].
Exercises 38.15, 38.16, 38.19 and 38.20: Baumgartner.
Exercises 38.24: Magidor.
Exercises 38.25: Cummings, Foreman and Magidor [2001].


