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d-18 TheCech-Stone Compactifications oN

and R

It is safe to say that among tiéech—Stone compactifica-
tions of individual spaces, that of the spalleof natural
numbers is the most widely studied. A good candidate for
second place i8R. This article highlights some of the most
striking properties of both compactifications.

1. Description of §N and N*

The spacgN (akafw) appeared anonymously in [10] as an
example of a&compact Hausdorffspace without non-trivial
converging sequences. The construction went as follows: for
everyx € (0,1) let 0.a;(x)az(x)...an(X) ... be its dyadic
expansion (favouring the one that ends in zeros). This gives
us a countable seA = {a,(x): n € N} of points in theTy-
chonoff cube [0, 1], The closure ofA is the required
space. To see that this closure is indg®d one checks
that the mapn — a, induces a homeomorphism ¢N
onto clA. Indeed, it suffices to observe that wheneXeis

a coinfinite subset dN one has,(x) = 1 iff n € X, where
X=2pnex 2"

The present-day description 8N is as theStone spacef
theBoolean algebraP (N). Thus the underlying set gN is
the set of alultrafilters on N with the family{X: X € N} as
a base for the open sets, whétalenotes the set of all ultra-
filters of which X is an element. The spagél is aseparable
andextremally disconnectedompact Hausdorff space and
its cardinality is the maximum possible, i.ef, 2

Most of the research oiN concentrates on iteemain-
der SN\ N, which, as usual, is denoté*. By extension
one writesX* = X \ N for subsetsX of N. The family
B = {X*: X C N} is precisely the family ofclopen sets
of N*. BecauseX* C Y* iff X\ Y is finite the algebrds is
isomorphic to the quotient algebfAN) /fin of P(N) by the
ideal of finite sets —hend§* is the Stone space #(N)/fin.
Much topological information abol* comes from knowl-
edge of the combinatorial properties of this algebra. In prac-
tice one works inP(N) with all relations taken modulo fi-
nite. We use, e.g.X C* Y to denote thatX \ Y is finite,

X C*Y to denote thalX €* Y but notY C* X, and so on.
In this context the word ‘almost’ is mostly used in place of
‘modulo finite’, thus ‘A and B are almost disjoint’ means
ANB=*0.

2. Basic properties ofN*

Many results abouN* are found by constructing special
families of subsets oN, although the actual work is often
done on a suitable countable set different frim

The proof thatgN has cardinality 2 employs anin-
dependent family, which we define on the countable set
{(n,s): ne N,s C P(n)}. For every subsek of N put
Iy ={(n,s): xNnes}. Now if F and G are finite dis-
joint subsets oP(N) then(,g Ix \ Uyeg ly is non-empty
— this is what independent means. Sending SN to the
point py € PM2, defined bypy (x) = 1 iff Iy € u, gives us a
continuous map frongN onto 2. Thus the existence of an
independent family of size easily implies the well-known
fact that theCantor cube®2 is separable; conversely,Lif is
dense in‘2 then settingl, = {d € D: d, = 0} defines an
independent family oD. Any closed subsef of N* such
that the restriction td- of the map ontd 2 is irreducible is
(homeomorphic with) thabsoluteof €2. If a pointu of N*
belongs to such arr then every compactification of the
spaceN U {u} contains a copy ofN.

Next we prove thalN* is very non-separable by working
on the tree 2N of finite sequences of zeros and ones. For
everyx € N2 let Ay = {x|n:n e N}. Then{Ay: x e N2} isan
almost disjoint family of cardinalityc and so{ A%: x € 2}
is a disjoint family of clopen sets iN*.

We can use this family also to show thdt is not ex-
tremally disconnected. Le® denote the points if'2 that
are constant on a tail (these correspond to the endpoints of
the Cantor setin [0, 1]) and letP = N2\ Q. Then Og =
Uxeo Ax andOp = [Jyp AX are disjoint open sets iN*,
yet clOg NclOp # @, for if Ais such thatA, <* A for
all x € P then theBaire Category Theorenmay be applied
to find x € Q with Ay C* A. This example shows that* is
not basically disconnected Oq is an openF,-set whose
closure is not open.

The algebraP (N)/fin has two countable (in)completeness
properties. The first states that whém,),, is a decreasing
sequence of non-zero elements there ixavith b, > x >
0 for all n; in topological terms: nonemptgs-setson N*
have nonempty interiors aid* has no isolated points. The
second property says that whél, ), is as above and, in
addition, {(an)n is an increasing sequence with < by for
all n there is arx with a, < x < by, for all n; in topological
terms: disjoint operF,;-sets inN* have disjoint closures,
i.e., N* is anF-space

We now turn to set#\ and B where no interpolating can
be found, that is, we look foA andB such that\/ A’ < A B’
wheneverA’ € [A]<? andB’ € [B]<% but for which there is
no x with a < x < bforallae Aandb e B. The minimum
cardinalities of sets like these are caltsddinal character-
istics of the continuumand these cardinal numbers play an
important role in the study @8N andN*,
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We have already seen such a situation with a countable
and aB of cardinality c: the families{A}}xcq and {N* \
Al lxep. However, this case, of a countably infinkeis best
visualized on the countable sitx N. Forn € N puta, =
(nxN)*and forf € "N putbs = {(m, n): n > f(m)}*; then
A={an: neN}andB = {bs: f € "N} are as required: if
ay < x for all n then one readily finds af such thabs < x
(make surgn} x [ f(n), co) C X). A pair like (A, B) above
is called an (unfillablelap; gap, because, as in a Dedekind
gap, one haa < bwhenevela € Aandb € B, and unfillable
because there is o such thata < x < b for all a andb.

By the Axiom of Choice every almost disjoint family can
be extended to Maximal Almost Disjoint family (aMAD
family). If A is a MAD family thenN* \ | J{A*: A€ A} is
nowhere dens@nd every nowhere dense set is contained in
such a ‘canonical’ nowhere dense set. The minimum num-
ber of nowhere dense sets whose union is denB¥ iis de-
notedh and is called theveak Novak number. It is equal to
the minimum number of MAD families without a common
MAD refinement — in Boolean terms, it is the minimum
for which P(N) /fin is not (x, oo)-distributive .

Interestingly [1], one can find a sequencé,: a < h) of

Because unfillable gaps are the most interesting one dropsvAD families, without common refinement and such that

the adjective and speaks of gaps.

One does not need the full s€N to create a gap; it
suffices to have a subset such that for allg € "N there
is f € U such that{n: f(n) > g(n)} is infinite. The mini-
mum cardinality of such a set is denoted

The properties ob and its bigger brothed are best ex-
plained using the relation<* on NN where, in keeping
with the notation established abové, <* g means that
{n: f(n) > g(n)} is finite. The definition ofb given above
identifies it as the minimum cardinality of an unbounded —
with respect to<* — subset of'N; unbounded is not the
same as dominating (cofinal), the minimum cardinality of a
dominating subset is denotedand it is called thelominat-
ing number.

If one identifiesN andN x N, as above, then one recog-
nizeso as the character of the closed $et=clJ,, A;; and

b as the minimum number of clopen sets needed to create

an open subset @f* \ F whose closure meefs. In either
characterization ob the defining family can be taken to be
well-ordered.

In case wheréA is finite one can simplify matters by let-
ting A= {0}. If B is an ultrafilter then there is n® with
0 < x < bfor all b e B, hence there are filters whose only
lower bound is 0; the minimum cardinality of a base for such
a filter is denotedb. Alternatively one can ask for chains
without positive lower bound: the minimum length of such a
chain is denoted — it is called theower number. A defin-
ing family for the cardinak can be used to create a sepa-

rable, normal, and sequentially compact spaces that is not

compact.

When we letA become uncountable we encounter two
important types of objects of cardinalif§y : Hausdorff gaps
and Lusin families. AHausdorff gap [5] is a pair of se-
guencesA = (a,: a < w1) and B = (b,: a < w1) of ele-
ments such thad, <ag < by < b, whenever < § but for
which there is nax with a, < x < b, for all «. A Lusin
family [7] is an almost disjoint family4 of cardinality 8
such that no two uncountable and disjoint subfamiliesiof
can be separated, i.e.,If andC are disjoint and uncount-
able then there is no s&tsuch thaB C€* X andXNC =*¢
for all B € B andC € C. One can parametrize thHe-space
property: anF,-spaceis one in which disjoint open sets that
are the union of fewer than many closed sets have dis-
joint closures. The two families above show tfi¥t is not
an Fy,-space.

(1) Ap refinesA, whenevew < f; (2) if Ac A, then{B e
Ag+1: B C* A} has cardinalityc; and (3) the familyZ =

U, A« is dense inP(N)/fin — topologically:{A*: A€ T}

is az -base This all implies that, with hindsight, there is an
increasing sequence of closed nowhere dense sets of lgngth
whose union is dense and thais a regular cardinal; also
note that7 is atreeunder the ordering*.

One can use such a tree, of minimal height, in induc-
tive constructions, e.g., as in [2] to show thHdt is very
non-extremally disconnected: every point ispoint, which
means that one can find a family ofmany disjoint open sets
each of which has the point in its closure. An important open
problem, at the time of writing, is whether this can be proved
for everynowhere dense set, i.e., if for every nowhere dense
subset ofN* one can find a family ot disjoint open sets
each of which has this set in its boundary — in short, whether
every nowhere dense set is-get

The latter problem is equivalent to a purely combina-
torial one on MAD families: for every MAD family.4
the family Z+(A) should have armlmost disjoint refine-
ment. HereZ(A) is the ideal generated byt andZ " (A) =
PN) \ Z(A); an almost disjoint refinement of a fam-
ily B is an indexed almost disjoint familfyAg: B € B} with
Ag C* Bforall B. Another characterization asks for enough
(on even one) MAD families of true cardinality i.e., if
X € I+(A) then X N A £* ¢ for ¢ many members ofA.

If the minimum size of a MAD family, denoted, is equal
to ¢ then this is clearly the case, however there are various
models witha < c.

3. Homogeneity

Given that the algebr® (N)/fin is homogeneous it is some-
what of a surprise to learn that the sp&€eis not ahomo-
geneous space.e., there are two points andy for which
there is no autohomeomorphigmof N* with h(x) =y.

The first example of this phenomenon is from [9]: the
Continuum HypothesigCH) implies thatN* hasP-points;
a P-point is one for which the family of neighbourhoods is
closed under countable intersections. Cle&fiyhas nonP-
points (as does every infinite compact spacel;damplies
N* is not homogeneous. To constriRipoints one does not
need the full force o€H, the equalityp = ¢ suffices.
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In [4] one finds a proof of the non-homogeneitydsf that
avoidsCH; it uses theRudin—Frolik order on N*, which
is defined byu C o iff there is an embedding : /N — N*
such thatf (u) = ». If u C v then there is no autohomeomor-
phism of N* that mapsu to ». This proof works to show that
no compactr-space is homogeneous: X is such a space
then one can embeiN into it, no autohomeomorphism of
can map (the copy of) to (the copy ofp.

That this proof avoidingCH was really necessary be-
came clear when the consistency 6f*has noP-points”
was proved. In [6] thé?-point proof was salvaged partially:
N* hasweak P-points, i.e., points that are not accumulation
points of any countable subset.

Though not all points olN* are P-points one may still
try to coverN* by nowhere densé®-sets. UndeiCH this

P-set inN*, viz. (N x {o})*, that is homeomorphic t&*
itself.

Parovienko’s ‘other theorem’ states that every compact
space of weightk1 (or less) is a continuous image b,
whence unde€H the spacéN* is a universal compactum of
weightc, in the mapping onto sense.

Virtually everything known abouN* underCH follows
from ParovEenko’s theorems. To give the flavour we show
that a compact zero-dimensional space can be embedded
into N* if (and clearly only if) it is anF-space of weight
(or less). Indeed, leX be such a space and takdPaset A
in N* that is homeomorphic t&\* and a continuous onto
map f : A— X. This induces an upper-semi-continuous de-
composition ofN* whose quotient space, tradjunction
spaceN* Ut X, can be shown to have all the properties that

cannot be done but it is consistent that it can be done. ThecharacterizeV*, hence it isN* and we have embedded

principle NCF implies thatN* is the union of a chain, of
lengtho, of nowhere densP-sets. The principl@ICF (Near
Coherence of Filterg says that any two ultrafilters dx are
nearly coherent i.e., if u,o € N* then there is a finite-to-
one f :N — N such thaipf (u) = T (v).

This in turn implies that theRudin—Keisler order is
downward directed; we say< v if there is somef :N — N
such thatu = f (v). This is a preorder oN and a partial
order on thetypes of gN: if u < v andv < u then there is
a permutation oN that sendu to ». The Rudin—Frolik and
Rudin—Keisler orders are relatad” » impliesu < v, soC
is a partial order on the types as well.

Both orders have been studied extensively; we mention

some of the more salient results. There areminimal
points in N*: weak P-points are such. Points that are
minimal in N* are calledselective ultrafilters; they exist if
CH holds but they do not exist in thendom realmodel.
There are<-incomparable points (even a family of ghany
<-incomparable points) but it is not known whether for ev-
ery point there is another point-incomparable to it. The
order C is tree-like: types below a fixed type are linearly
ordered.

4. The continuum hypothesis angsN

The behaviour offN and, especiallyN* under the assump-
tion of the Continuum HypothesisCH) is very well un-

into N*, even as &-set.

In the absence ofH very few of the consequences of
Parovtenko’s theorems remain true. The characterization
theorem is in fact equivalent toH and for many concrete
spaces, lik&N* x N*, R*, (N x (w+1))* and the Stone space
of themeasure algebrat is not a theorem oZFC that they
are continuous images f. It is also consistent witZFC
that all autohomeomorphisms Bf aretrivial , i.e., induced
by bijections between cofinite sets. This is a far cry from the
2¢ autohomeomorphisms that we got fr@H. Itis also con-
sistent thaiN* cannot be homeomorphic to a nowhere dense
P-subset of itself; this leaves open a major question: is there
a non-trivial copy ofN* in itself, i.e., one not of the form
cl D\ D for some countable discrete subseiN5f

A good place to start exploringN is van Mill's survey
[KV, Chapter 11].

5. Cardinal numbers

The cardinal numbers mentioned above are all uncountable
and not larger than, so the Continuum HypothesigKl) im-

plies that all are equal t81. More generallyMartin’s Ax-
iomimplies all are equal te. One can prove certain inequal-
ities between the characteristics, e, <p <t<h<<b <

0. Intriguingly it is as yet unknown whether=t is prov-
able, what is known is that= 81 impliest = R;.

derstood. The principal reason is that the Boolean algebra ©One proves < a but neithera <2 nord < a is provable

P(N)/fin is characterized by the properties of being atom-
less, countably saturated and of cardinality: X1. Topo-
logically, N* is, up to homeomorphism, the unique com-
pact zero-dimensional without isolated points, which is an
F-space in which nonempt;-sets have non-empty inte-
rior and which is of weight. This is known as Paro®énko’s
characterization olN* and it implies that wheneveX is
compact zero-dimensional and of weight(or less) the
remainder(N x X)* is homeomorphic taN*. This pro-
vides us with many incarnations 8, e.g., as(N x “2)*,
which immediately provides us with®2many autohomeo-
morphisms ofN*, or as(N x (@ + 1))*, which gives us a

In ZFC.

Two more characteristics have received a fair amount of
attention, thesplitting number s is the minimum cardinal-
ity of a splitting family, that is, a familys such that for every
infinite X there isSe S with XN Sand X \ Sinfinite; and
its dual, thereaping number ¢, which is the minimum car-
dinality of a family that cannot be reaped (or split), that is, a
family R such that for every infiniteX there isR € R such
that one ofX N Rand X \ Ris not infinite.

Topologicallys is the minimum for which*2 is notse-
quentially compactandt is equal to the minimunx -cha-
racter of points inN*,
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Further inequalities between these characteristics are, e.g
h<s<oandb<r.

These ‘small’ cardinals are the subject of ongoing re-
search; good introductions are [KV, Chapter 3] and [VMR,
Chapter 11].

6. Properties of fR

Instead of SR one usually considergH, whereH is the
positive half line[0, co). This is because& — —x induces
an autohomeomorphism @R that shows thaf[0, co) and
S (—o0, 0] are the same thing.

In a senseBH looks like AN in that it is a thin locally

compact space with a large compact lump at the end; this re-

mainderH* has some properties in common witti: both
are F-spaces in which nonemp(y;-sets have nonempty in-
terior, both have tree -bases and neither is &fk,-space.
UnderCH the space$l* andN* have homeomorphic dense
sets of P-points. That is where the superficial similarities
end becausgH andH* are connected anglN andN* most
certainly are not.

A deeper similarity is a version of Par@enko’s univer-
sality theorem: every continuum of weigRf (or less) is a
continuous image dfl*, so that, unde€H, the spacél* is a
universal continuum of weight A version of Parovienko’s
characterization theorem f&f* is yet to be found.

The structure ofH* as-a-continuum is very interesting.
Most references for what follows can be found in [HVM,
Chapter 9].

The following construction is crucial for our understand-
ing of the structure of the continuuli*: take a discrete se-
guence([an, bn])n of non-trivial closed intervals and an ul-
trafilter u on N. The intersection

= cI( U[an,bn])

Ueu neU

is a continuum, often called atandard subcontinuum

of H*. What is striking about this construction is not its sim-
plicity but that these (deceptively) simple continua govern
the continuum-theoretic propertiesidf. Every proper sub-
continuum (in particular every point) is contained in a stan-
dard subcontinuum — it is in fact the intersection of some

.cut point (i.e., cut point of some subcontinuum) &f*. Al-

though the continuunh, is anirreducible continuum, i.e.,

no smaller continuum contains i&nd poins a, andby, it

is definitely not an ordered continuum. It is &ispace so
the closure of an increasing sequence of points in the ultra-
product is homeomorphic t6N (in an ordered continuum it
would have to be»+ 1). The ‘supremum’ of such a sequence
of points inly is an irreducibility layer ofl,; this layer is
non-trivial (it containadN*) and indecomposable. Adding all
these facts together we can deduce that a maximal chain of
indecomposable subcontinua Bf* has a one-point inter-
section; such a point is not a weak cut pointHf. Thus

H* is shown to be not homogeneous by purely continuum-
theoretic means. There is a natural quasi-order on an irre-
ducible continuum: in the present case; y means “every
continuum that containg, andy also containx”. An irre-
ducibility layer is an equivalence class for the equivalence
relation “x < y andy < x".

The weak cut points constructed above aear points
and, in fact, every near point is a weak cut pointf. Un-
derCH one can construct different kinds of weak cut points:
far but notremoteand even remote. UndéH it is also pos-
sible to map a remote weak cut point to a near point by an
autohomeomorphism dff*. On the other hand it is consis-
tent that all weak cut points are near points and hence that
the far points are topologically invariant H*. A similar
consistency result for remote points is still wanting.

The composantof a pointx of H* meetsN* in the ul-
trafilter {U: x € cl|J,,cy [N, n + 1]} and two points froniN*
are in the same composantHf iff they are nearly coher-
ent. Therefore, the structure of the set of composani§*of
is determined by the family of finite-to-one mapshto it-
self. This implies that the number of composants may be 2
(e.g., ifCH holds), 1 (this is equivalent to théCF principle)
or 2 (in other models of set theory); whether other numbers
are possible is unknown.

The number of (homeomorphism types of) subcontinua
of H* is as yet a function of Set Theory: BFC one can
establish the lower bound of 14. UndeH there areX;
types even though in one respewitl act as an equalizer:
CH is equivalent to the statement that all standard subcon-
tinua are mutually homeomorphic. Most of theC continua
are found as intervals in al, with points and non-trivial

family of standard subcontinua. From this one shows that layers at their ends and with varying cofinalities.

H* is hereditarilyunicoherent— every finite intersection of

standard subcontinua is a standard subcontinuum or a point

— andindecomposable- standard subcontinua are nowhere
dense.

From the other direction every subcontinuum is also the
union of a suitable family of standard subcontinua. Thus, no
subcontinuum off* is hereditarily indecomposable, as stan-
dard subcontinua haveut points Indeed,|, contains the
ultraproduct] [,[an, bn]/u, as a dense set: the equivalence
class of a sequenge,), corresponds to its owa-limit, de-
notedx,. The subspace topology of this ultraproduct coin-
cides with itsorder topologyand every point of the ultra-
product (excepa, andby) is a cut point ofl, and so aveak
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