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d-18 TheČech–Stone Compactifications ofN
and R

It is safe to say that among thěCech–Stone compactifica-
tions of individual spaces, that of the spaceN of natural
numbers is the most widely studied. A good candidate for
second place isβR. This article highlights some of the most
striking properties of both compactifications.

1. Description ofβN and N∗

The spaceβN (akaβω) appeared anonymously in [10] as an
example of acompact Hausdorffspace without non-trivial
converging sequences. The construction went as follows: for
every x ∈ (0,1) let 0.a1(x)a2(x) . . .an(x) . . . be its dyadic
expansion (favouring the one that ends in zeros). This gives
us a countable setA = {an(x): n ∈ N} of points in theTy-
chonoff cube [0,1]

(0,1). The closure ofA is the required
space. To see that this closure is indeedβN one checks
that the mapn 7→ an induces a homeomorphism ofβN
onto clA. Indeed, it suffices to observe that wheneverX is
a coinfinite subset ofN one hasan(x) = 1 iff n ∈ X, where
x =

∑
n∈X 2−n.

The present-day description ofβN is as theStone spaceof
theBoolean algebraP(N). Thus the underlying set ofβN is
the set of allultrafilters onN with the family{SX: X ⊆ N} as
a base for the open sets, whereSX denotes the set of all ultra-
filters of whichX is an element. The spaceβN is aseparable
andextremally disconnectedcompact Hausdorff space and
its cardinality is the maximum possible, i.e., 2c.

Most of the research onβN concentrates on itsremain-
der βN \ N, which, as usual, is denotedN∗. By extension
one writesX∗

= SX \ N for subsetsX of N. The family
B = {X∗

: X ⊆ N} is precisely the family ofclopen sets
of N∗. BecauseX∗

⊆ Y∗ iff X \ Y is finite the algebraB is
isomorphic to the quotient algebraP(N)/fin of P(N) by the
ideal of finite sets – henceN∗ is the Stone space ofP(N)/fin.
Much topological information aboutN∗ comes from knowl-
edge of the combinatorial properties of this algebra. In prac-
tice one works inP(N) with all relations taken modulo fi-
nite. We use, e.g.,X ⊆

∗ Y to denote thatX \ Y is finite,
X ⊂

∗ Y to denote thatX ⊆
∗ Y but notY ⊆

∗ X, and so on.
In this context the word ‘almost’ is mostly used in place of
‘modulo finite’, thus ‘A and B are almost disjoint’ means
A ∩ B =

∗
∅.

2. Basic properties ofN∗

Many results aboutN∗ are found by constructing special
families of subsets ofN, although the actual work is often
done on a suitable countable set different fromN.

The proof thatβN has cardinality 2c employs anin-
dependent family, which we define on the countable set
{〈n,s〉: n ∈ N,s ⊆ P(n)}. For every subsetx of N put
Ix = {〈n,s〉: x ∩ n ∈ s}. Now if F and G are finite dis-
joint subsets ofP(N) then

⋂
x∈F Ix \

⋃
y∈G I y is non-empty

– this is what independent means. Sendingu ∈ βN to the
point pu ∈

P(N)2, defined bypu(x) = 1 iff Ix ∈ u, gives us a
continuous map fromβN onto c2. Thus the existence of an
independent family of sizec easily implies the well-known
fact that theCantor cubec2 is separable; conversely, ifD is
dense inc2 then settingIα = {d ∈ D: dα = 0} defines an
independent family onD. Any closed subsetF of N∗ such
that the restriction toF of the map ontoc2 is irreducible is
(homeomorphic with) theabsoluteof c2. If a pointu of N∗

belongs to such anF then every compactification of the
spaceN ∪ {u} contains a copy ofβN.

Next we prove thatN∗ is very non-separable by working
on the tree 2<N of finite sequences of zeros and ones. For
everyx ∈

N2 let Ax = {x�n: n ∈ N}. Then{Ax: x ∈
N2} is an

almost disjoint family of cardinalityc and so{A∗
x: x ∈

N2}

is a disjoint family of clopen sets inN∗.
We can use this family also to show thatN∗ is not ex-

tremally disconnected. LetQ denote the points inN2 that
are constant on a tail (these correspond to the endpoints of
the Cantor setin [0,1]) and let P =

N2 \ Q. Then OQ =⋃
x∈Q A∗

x andOP =
⋃

x∈P A∗
x are disjoint open sets inN∗,

yet clOQ ∩ cl OP 6= ∅, for if A is such thatAx ⊆
∗ A for

all x ∈ P then theBaire Category Theoremmay be applied
to find x ∈ Q with Ax ⊆

∗ A. This example shows thatN∗ is
not basically disconnected: OQ is an openFσ -set whose
closure is not open.

The algebraP(N)/fin has two countable (in)completeness
properties. The first states that when〈bn〉n is a decreasing
sequence of non-zero elements there is anx with bn > x >
0 for all n; in topological terms: nonemptyGδ-setson N∗

have nonempty interiors andN∗ has no isolated points. The
second property says that when〈bn〉n is as above and, in
addition,〈an〉n is an increasing sequence withan < bn for
all n there is anx with an < x < bn for all n; in topological
terms: disjoint openFσ -sets inN∗ have disjoint closures,
i.e.,N∗ is anF -space.

We now turn to setsA andB where no interpolatingx can
be found, that is, we look forA andB such that

∨
A′ <

∧
B′

wheneverA′
∈ [A]

<ω andB′
∈ [B]

<ω but for which there is
no x with a 6 x 6 b for all a ∈ A andb ∈ B. The minimum
cardinalities of sets like these are calledcardinal character-
istics of the continuumand these cardinal numbers play an
important role in the study ofβN andN∗.
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We have already seen such a situation with a countableA
and aB of cardinality c: the families{A∗

x}x∈Q and {N∗
\

A∗
x}x∈P. However, this case, of a countably infiniteA, is best

visualized on the countable setN × N. For n ∈ N put an =

(n×N)∗ and for f ∈
NN putb f = {〈m,n〉: n > f (m)}∗; then

A = {an: n ∈ N} and B = {b f : f ∈
NN} are as required: if

an < x for all n then one readily finds anf such thatb f < x
(make sure{n} × [ f (n),∞) ⊂ x). A pair like (A, B) above
is called an (unfillable)gap; gap, because, as in a Dedekind
gap, one hasa < b whenevera ∈ A andb ∈ B, and unfillable
because there is nox such thata 6 x 6 b for all a andb.
Because unfillable gaps are the most interesting one drops
the adjective and speaks of gaps.

One does not need the full setNN to create a gap; it
suffices to have a subsetU such that for allg ∈

NN there
is f ∈ U such that{n: f (n) > g(n)} is infinite. The mini-
mum cardinality of such a set is denotedb.

The properties ofb and its bigger brotherd are best ex-
plained using the relation<∗ on NN where, in keeping
with the notation established above,f <∗ g means that
{n: f (n) > g(n)} is finite. The definition ofb given above
identifies it as the minimum cardinality of an unbounded –
with respect to<∗ – subset ofNN; unbounded is not the
same as dominating (cofinal), the minimum cardinality of a
dominating subset is denotedd and it is called thedominat-
ing number.

If one identifiesN andN × N, as above, then one recog-
nizesd as the character of the closed setF = cl

⋃
n A∗

n and
b as the minimum number of clopen sets needed to create
an open subset ofN∗

\ F whose closure meetsF . In either
characterization ofb the defining family can be taken to be
well-ordered.

In case whereA is finite one can simplify matters by let-
ting A = {0}. If B is an ultrafilter then there is nox with
0 < x < b for all b ∈ B, hence there are filters whose only
lower bound is 0; the minimum cardinality of a base for such
a filter is denotedp. Alternatively one can ask for chains
without positive lower bound: the minimum length of such a
chain is denotedt – it is called thetower number. A defin-
ing family for the cardinalt can be used to create a sepa-
rable, normal, and sequentially compact spaces that is not
compact.

When we letA become uncountable we encounter two
important types of objects of cardinalityℵ1: Hausdorff gaps
and Lusin families. AHausdorff gap [5] is a pair of se-
quencesA = 〈aα: α < ω1〉 and B = 〈bα: α < ω1〉 of ele-
ments such thataα < aβ < bβ < bα wheneverα < β but for
which there is nox with aα < x < bα for all α. A Lusin
family [7] is an almost disjoint familyA of cardinalityℵ1
such that no two uncountable and disjoint subfamilies ofA
can be separated, i.e., ifB andC are disjoint and uncount-
able then there is no setX such thatB ⊆

∗ X andX ∩C =
∗
∅

for all B ∈ B andC ∈ C. One can parametrize theF -space
property: anFκ -spaceis one in which disjoint open sets that
are the union of fewer thanκ many closed sets have dis-
joint closures. The two families above show thatN∗ is not
an Fℵ2-space.

By the Axiom of Choice every almost disjoint family can
be extended to aMaximal Almost Disjoint family (aMAD
family ). If A is a MAD family thenN∗

\
⋃

{A∗
: A ∈A} is

nowhere denseand every nowhere dense set is contained in
such a ‘canonical’ nowhere dense set. The minimum num-
ber of nowhere dense sets whose union is dense inN∗ is de-
notedh and is called theweak Novák number. It is equal to
the minimum number of MAD families without a common
MAD refinement – in Boolean terms, it is the minimumκ
for whichP(N)/fin is not (κ,∞)-distributive .

Interestingly [1], one can find a sequence〈Aα: α < h〉 of
MAD families, without common refinement and such that
(1)Aβ refinesAα wheneverα < β; (2) if A ∈Aα then{B ∈

Aα+1: B ⊆
∗ A} has cardinalityc; and (3) the familyT =⋃

αAα is dense inP(N)/fin – topologically:{A∗
: A ∈ T }

is aπ -base. This all implies that, with hindsight, there is an
increasing sequence of closed nowhere dense sets of lengthh

whose union is dense and thath is a regular cardinal; also
note thatT is atreeunder the ordering⊃∗.

One can use such a tree, of minimal height, in induc-
tive constructions, e.g., as in [2] to show thatN∗ is very
non-extremally disconnected: every point is ac-point, which
means that one can find a family ofc many disjoint open sets
each of which has the point in its closure. An important open
problem, at the time of writing, is whether this can be proved
for everynowhere dense set, i.e., if for every nowhere dense
subset ofN∗ one can find a family ofc disjoint open sets
each of which has this set in its boundary – in short, whether
every nowhere dense set is ac-set.

The latter problem is equivalent to a purely combina-
torial one on MAD families: for every MAD familyA
the family I+(A) should have analmost disjoint refine-
ment. HereI(A) is the ideal generated byA andI+(A) =

P(N) \ I(A); an almost disjoint refinement of a fam-
ily B is an indexed almost disjoint family{AB: B ∈ B} with
AB ⊆

∗ B for all B. Another characterization asks for enough
(on even one) MAD families of true cardinalityc, i.e., if
X ∈ I+(A) then X ∩ A 6=

∗
∅ for c many members ofA.

If the minimum size of a MAD family, denoteda, is equal
to c then this is clearly the case, however there are various
models witha < c.

3. Homogeneity

Given that the algebraP(N)/fin is homogeneous it is some-
what of a surprise to learn that the spaceN∗ is not ahomo-
geneous space, i.e., there are two pointsx and y for which
there is no autohomeomorphismh of N∗ with h(x) = y.

The first example of this phenomenon is from [9]: the
Continuum Hypothesis(CH) implies thatN∗ hasP-points;
a P-point is one for which the family of neighbourhoods is
closed under countable intersections. ClearlyN∗ has non-P-
points (as does every infinite compact space), soCH implies
N∗ is not homogeneous. To constructP-points one does not
need the full force ofCH, the equalityd = c suffices.
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In [4] one finds a proof of the non-homogeneity ofN∗ that
avoidsCH; it uses theRudin–Frolík order on N∗, which
is defined by:u @ v iff there is an embeddingf :βN → N∗

such thatf (u) = v. If u @ v then there is no autohomeomor-
phism ofN∗ that mapsu to v. This proof works to show that
no compactF -space is homogeneous: ifX is such a space
then one can embedβN into it, no autohomeomorphism ofX
can map (the copy of)u to (the copy of)v.

That this proof avoidingCH was really necessary be-
came clear when the consistency of “N∗ has noP-points”
was proved. In [6] theP-point proof was salvaged partially:
N∗ hasweak P-points, i.e., points that are not accumulation
points of any countable subset.

Though not all points ofN∗ are P-points one may still
try to coverN∗ by nowhere denseP-sets. UnderCH this
cannot be done but it is consistent that it can be done. The
principle NCF implies thatN∗ is the union of a chain, of
lengthd, of nowhere denseP-sets. The principleNCF (Near
Coherence of Filters) says that any two ultrafilters onN are
nearly coherent, i.e., if u, v ∈ N∗ then there is a finite-to-
one f :N → N such thatβ f (u) = β f (v).

This in turn implies that theRudin–Keisler order is
downward directed; we sayu ≺ v if there is somef :N → N
such thatu = f (v). This is a preorder onβN and a partial
order on thetypes of βN: if u ≺ v andv ≺ u then there is
a permutation ofN that sendu to v. The Rudin–Frolík and
Rudin–Keisler orders are related:u @ v impliesu ≺ v, so@
is a partial order on the types as well.

Both orders have been studied extensively; we mention
some of the more salient results. There are@-minimal
points in N∗: weak P-points are such. Points that are≺-
minimal in N∗ are calledselective ultrafilters; they exist if
CH holds but they do not exist in therandom realmodel.
There are≺-incomparable points (even a family of 2c many
≺-incomparable points) but it is not known whether for ev-
ery point there is another point≺-incomparable to it. The
order @ is tree-like: types below a fixed type are linearly
ordered.

4. The continuum hypothesis andβN

The behaviour ofβN and, especially,N∗ under the assump-
tion of the Continuum Hypothesis (CH) is very well un-
derstood. The principal reason is that the Boolean algebra
P(N)/fin is characterized by the properties of being atom-
less, countably saturated and of cardinalityc = ℵ1. Topo-
logically, N∗ is, up to homeomorphism, the unique com-
pact zero-dimensional without isolated points, which is an
F -space in which nonemptyGδ-sets have non-empty inte-
rior and which is of weightc. This is known as Parovičenko’s
characterization ofN∗ and it implies that wheneverX is
compact zero-dimensional and of weightc (or less) the
remainder(N × X)∗ is homeomorphic toN∗. This pro-
vides us with many incarnations ofN∗, e.g., as(N ×

c2)∗,
which immediately provides us with 2c many autohomeo-
morphisms ofN∗, or as(N × (ω + 1))∗, which gives us a

P-set inN∗, viz. (N × {ω})∗, that is homeomorphic toN∗

itself.
Parovǐcenko’s ‘other theorem’ states that every compact

space of weightℵ1 (or less) is a continuous image ofN∗,
whence underCH the spaceN∗ is a universal compactum of
weightc, in the mapping onto sense.

Virtually everything known aboutN∗ underCH follows
from Parovǐcenko’s theorems. To give the flavour we show
that a compact zero-dimensional space can be embedded
into N∗ if (and clearly only if) it is anF -space of weightc
(or less). Indeed, letX be such a space and take aP-set A
in N∗ that is homeomorphic toN∗ and a continuous onto
map f : A → X. This induces an upper-semi-continuous de-
composition ofN∗ whose quotient space, theadjunction
spaceN∗

∪ f X, can be shown to have all the properties that
characterizeN∗, hence it isN∗ and we have embeddedX
into N∗, even as aP-set.

In the absence ofCH very few of the consequences of
Parovǐcenko’s theorems remain true. The characterization
theorem is in fact equivalent toCH and for many concrete
spaces, likeN∗

×N∗, R∗, (N×(ω+1))∗ and the Stone space
of themeasure algebrait is not a theorem ofZFC that they
are continuous images ofN∗. It is also consistent withZFC
that all autohomeomorphisms ofN∗ aretrivial , i.e., induced
by bijections between cofinite sets. This is a far cry from the
2c autohomeomorphisms that we got fromCH. It is also con-
sistent thatN∗ cannot be homeomorphic to a nowhere dense
P-subset of itself; this leaves open a major question: is there
a non-trivial copy ofN∗ in itself, i.e., one not of the form
cl D \ D for some countable discrete subset ofN∗.

A good place to start exploringβN is van Mill’s survey
[KV, Chapter 11].

5. Cardinal numbers

The cardinal numbers mentioned above are all uncountable
and not larger thanc, so the Continuum Hypothesis (CH) im-
plies that all are equal toℵ1. More generally,Martin’s Ax-
iom implies all are equal toc. One can prove certain inequal-
ities between the characteristics, e.g.,ℵ1 6 p 6 t 6 h 6 b 6
d. Intriguingly it is as yet unknown whetherp = t is prov-
able, what is known is thatp = ℵ1 impliest = ℵ1.

One provesb 6 a but neithera 6 d nor d 6 a is provable
in ZFC.

Two more characteristics have received a fair amount of
attention, thesplitting number s is the minimum cardinal-
ity of a splitting family, that is, a familyS such that for every
infinite X there isS∈ S with X ∩ S andX \ S infinite; and
its dual, thereaping number r, which is the minimum car-
dinality of a family that cannot be reaped (or split), that is, a
family R such that for every infiniteX there isR ∈R such
that one ofX ∩ R andX \ R is not infinite.

Topologicallys is the minimumκ for which κ2 is notse-
quentially compactand r is equal to the minimumπ -cha-
racterof points inN∗.



216 Section D: Fairly general properties

Further inequalities between these characteristics are, e.g.,
h 6 s 6 d andb 6 r.

These ‘small’ cardinals are the subject of ongoing re-
search; good introductions are [KV, Chapter 3] and [vMR,
Chapter 11].

6. Properties ofβR

Instead ofβR one usually considersβH, whereH is the
positive half line[0,∞). This is becausex 7→ −x induces
an autohomeomorphism ofβR that shows thatβ[0,∞) and
β(−∞,0] are the same thing.

In a senseβH looks like βN in that it is a thin locally
compact space with a large compact lump at the end; this re-
mainderH∗ has some properties in common withN∗: both
areF -spaces in which nonemptyGδ-sets have nonempty in-
terior, both have treeπ -bases and neither is anFℵ2-space.
UnderCH the spacesH∗ andN∗ have homeomorphic dense
sets of P-points. That is where the superficial similarities
end becauseβH andH∗ are connected andβN andN∗ most
certainly are not.

A deeper similarity is a version of Parovičenko’s univer-
sality theorem: every continuum of weightℵ1 (or less) is a
continuous image ofH∗, so that, underCH, the spaceH∗ is a
universal continuum of weightc. A version of Parovǐcenko’s
characterization theorem forH∗ is yet to be found.

The structure ofH∗ as-a-continuum is very interesting.
Most references for what follows can be found in [HvM,
Chapter 9].

The following construction is crucial for our understand-
ing of the structure of the continuumH∗: take a discrete se-
quence〈[an,bn]〉n of non-trivial closed intervals and an ul-
trafilter u on N. The intersection

I =

⋂
U∈u

cl

( ⋃
n∈U

[an,bn]

)
is a continuum, often called astandard subcontinuum
of H∗. What is striking about this construction is not its sim-
plicity but that these (deceptively) simple continua govern
the continuum-theoretic properties ofH∗. Every proper sub-
continuum (in particular every point) is contained in a stan-
dard subcontinuum – it is in fact the intersection of some
family of standard subcontinua. From this one shows that
H∗ is hereditarilyunicoherent– every finite intersection of
standard subcontinua is a standard subcontinuum or a point
– andindecomposable– standard subcontinua are nowhere
dense.

From the other direction every subcontinuum is also the
union of a suitable family of standard subcontinua. Thus, no
subcontinuum ofH∗ is hereditarily indecomposable, as stan-
dard subcontinua havecut points. Indeed,Iu contains the
ultraproduct

∏
n[an,bn]/u, as a dense set: the equivalence

class of a sequence〈xn〉n corresponds to its ownu-limit, de-
notedxu. The subspace topology of this ultraproduct coin-
cides with itsorder topologyand every point of the ultra-
product (exceptau andbu) is a cut point ofIu and so aweak

cut point (i.e., cut point of some subcontinuum) ofH∗. Al-
though the continuumIu is anirreducible continuum , i.e.,
no smaller continuum contains itsend points au andbu, it
is definitely not an ordered continuum. It is anF -space so
the closure of an increasing sequence of points in the ultra-
product is homeomorphic toβN (in an ordered continuum it
would have to beω+1). The ‘supremum’ of such a sequence
of points in Iu is an irreducibility layer ofIu; this layer is
non-trivial (it containsN∗) and indecomposable. Adding all
these facts together we can deduce that a maximal chain of
indecomposable subcontinua ofH∗ has a one-point inter-
section; such a point is not a weak cut point ofH∗. Thus
H∗ is shown to be not homogeneous by purely continuum-
theoretic means. There is a natural quasi-order on an irre-
ducible continuum: in the present casex 6 y means “every
continuum that containsau andy also containsx”. An irre-
ducibility layer is an equivalence class for the equivalence
relation “x 6 y andy 6 x”.

The weak cut points constructed above arenear points
and, in fact, every near point is a weak cut point ofH∗. Un-
derCH one can construct different kinds of weak cut points:
far but notremoteand even remote. UnderCH it is also pos-
sible to map a remote weak cut point to a near point by an
autohomeomorphism ofH∗. On the other hand it is consis-
tent that all weak cut points are near points and hence that
the far points are topologically invariant inH∗. A similar
consistency result for remote points is still wanting.

The composantof a point x of H∗ meetsN∗ in the ul-
trafilter {U : x ∈ cl

⋃
n∈U [n,n + 1]} and two points fromN∗

are in the same composant ofH∗ iff they are nearly coher-
ent. Therefore, the structure of the set of composants ofH∗

is determined by the family of finite-to-one maps ofN to it-
self. This implies that the number of composants may be 2c

(e.g., ifCH holds), 1 (this is equivalent to theNCF principle)
or 2 (in other models of set theory); whether other numbers
are possible is unknown.

The number of (homeomorphism types of) subcontinua
of H∗ is as yet a function of Set Theory: inZFC one can
establish the lower bound of 14. UnderCH there areℵ1
types even though in one respectCH act as an equalizer:
CH is equivalent to the statement that all standard subcon-
tinua are mutually homeomorphic. Most of theZFC continua
are found as intervals in anIu with points and non-trivial
layers at their ends and with varying cofinalities.
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