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Chapter 1

Topological Spaces

We make an inventory of those properties of metric spaces that depend on the open sets
only; its topological properties. After this we define topological spaces and look at some
examples.

Topological properties

To begin we recall the properties of the family of open sets of a metric space. First we
state the definition.

1.1. Definition. A subset U of a metric space X is open if for every point p of U there
is an ε > 0 such that B(p, ε) ⊆ U .

We denote the family of all open subsets of X, the topology of X, by T . The next
theorem is from the course Metric Topology.

1.2. Theorem. The family T satisfies the following three properties.

(i) ∅, X ∈ T ,

(ii) if U1, U2 ∈ T then U1 ∩ U2 ∈ T and

(iii) if {Ui}i ⊆ T then
⋃

i Ui ∈ T .

I1. Prove this theorem.

The following is a list of the topological properties that occurred in the course Metric
Topology.
neighbourhood: A set U is a neighbourhood of a point p if there is an open set O

with p ∈ O ⊆ U .
interior point: A point p is an interior point of a set A if A is a neighbourhood of p.
interior: The interior of a set is the set of its interior points. Notation intA.
exterior point: A point is an exterior point of a set A if it is an interior point of the

complement of A.
exterior: The exterior of a set is the set of its exterior points. Notation extA

boundary point: A point is a boundary point of a set if it is neither an interior nor
an exterior point of the set.

boundary: The boundary of a set is the set of its boundary points. Notation ∂A.
closed set: A set is closed if it is the complement of an open set.
closure: The closure of a set is the union of the set and its boundary. Notation cl A
adherent point: A point is an adherent point of a set if every neighbourhood of the

point intersects the set.
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2 Topological Spaces [ Chapter 1

accumulation point: A point p is an accumulation point of a set if every neighbour-
hood of p contains points of the set different from p..

dense subset: A subset A of a space X is a dense subset if clA = X.
Gδ-set: A set is a Gδ-set if it can be written as the intersection of a countable family

of open sets.
Fσ-set: A set is a Fσ-set if it can be written as the union of a countable family of

closed sets.

I2. Verify that the family F of all closed sets has the following properties.
a. ∅, X ∈ F ,

b. if F1, F2 ∈ F then F1 ∪ F2 ∈ F and

c. if {Fi}i ⊆ F then
⋂

i Fi ∈ F .

I3. Define for a subset A of a metric space A◦ =
⋃
{U : U is open and U ⊆ A and Ā =

⋂
{F : F is

closed and A ⊆ F . Prove that A◦ = int A and Ā = cl A.

I4. In this exercise X is a metric space and A ⊆ X. Prove the following formulas/propositions:
a. cl A = X \ ext A,

b. ext A = int(X \A),

c. ∂A = cl A \ int A,

d. x ∈ cl A if and only if x is an adherent point of A, and

e. A is dense in X if and only if U ∩A 6= ∅ for every non-empty open subset U of X.

Continuity can also be described in terms of open sets only; the first theorem is from
Metric Topology.

1.3. Theorem. A map f : X → Y is continuous if and only if for every open subset U
of Y the preimage f−1[U ] is open in X.

Continuity in a point can also be formulated in terms of the topology only.

1.4. Theorem. Let f : X → Y be a map between metric spaces. Then: f is continuous
in p ∈ X if and only if for every neighbourhood U of f(p) there is a neighbourhood V
of p such that f [V ] ⊆ U (or V ⊆ f−1[U ]).

I5. Prove this theorem.

Homeomorphism is also a topological notion; it is derived from the notion of conti-
nuity. A homeomorphism between metric spaces is a continuous bijection whose inverse
map is also continuous.

The following properties that a metric space may have are also topological.
splittable: A space X is splittable if there are two nonempty closed subsets F and G

of X such that F ∩G = ∅ and X = F ∪G.
connectedness: A space is connected if it is not splittable.
compactness: A space is compact if every open cover has a finite subcover.

The Stone-Weierstraß theorem is a topological theorem; in the proof the metric on
the space X plays no role, only the compactness of X is needed. Of course the metric on
the space C(X) of continuous real-valued functions is important because the theorem
states that for every compact space X the corresponding metric space C(X) has a certain
property.
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We finish with convergence of sequences: a sequence 〈xn〉n converges to a point x if
and only if for every neighbourhood U of x there is an N such that xn ∈ U whenever
n > N .

The following are truly metric properties.
boundedness: A metric space (X, d) is bounded if there is a real number M such that

d(x, y) 6 M for all x, y ∈ X.
total boundedness: A metric space (X, d) is totally bounded if for every ε > 0 the

open cover {B(x, ε) : x ∈ X} has a finite subcover.
completeness: A metric space (X, d) is complete if every Cauchy-sequence in X

converges.
isometry: An isometry between two metric spaces is a bijection that preserves dis-

tances.

I6. Check that these properties are not topological by finding pairs of homeomorphic spaces
where one space has the property and the other does not (this will also provide us with home-
omorphisms that are not isometries).

Topological Spaces

We will now ‘forget’ that we made open sets using metrics and we are going to study
structures where we only have a family of open sets available. First the definition of a
topology.

1.5. Definition. Let X be a set. A topology on X is a family T of subsets of X with
the following three properties (quoted directly from Theorem 1.2):

(i) ∅, X ∈ T ,
(ii) if U1, U2 ∈ T then U1 ∩ U2 ∈ T , and
(iii) if {Ui}i ⊆ T then

⋃
i Ui ∈ T .

1.6. Definition. A topological space is a pair (X, T ) where X is a set and T a topology
on X.

Before we look at a few examples of topological spaces we note that all topological
notions that were listed above can be used immediately in the context of topological
spaces; we know at once when we shall call a map between topological spaces continuous
(in a point) or how we define the closure of a subset or when a subset is dense in a
topological space.

1.7. Examples.

1. On every set X the family Ti = {∅, X} is a topology; the so-called indiscrete topology.
This is the minimal topology that we can make on X; check that an indiscrete space
is always connected and compact and that every nonempty subset is dense. Every
map to X is continuous.

2. The other extreme is the discrete topology : this is the family P(X) of all subsets
of X. This topology can also be defined using the discrete metric. If X has more
than one point then its discrete topology not connected; (X,P(X)) is compact if and
only if X is finite. Every map from X is continuous.



4 Topological Spaces [ Chapter 1

3. Let X be an infinite set. Define

Tce = {∅} ∪ {U ⊆ X : X \ U is finite}.
It is not hard to see that Tce is a topology; the so-called cofinite topology. It follows
that a set is closed if and only if it is finite or equal to X. A cofinite space is always
connected and compact.

4. The following is a classical example: define a topology Ts on R by: U ∈ Ts if and
only if for every x ∈ U there is an ε > 0 with [x, x+ ε) ⊆ U .1 Verify that Ts is indeed
a topology. We shall denote the topological space (R, Ts) by S. This space is known
as the Sorgenfrey line.

1.8. Remark. A metric space is always assumed to carry its metric topology unless we
explicitly say otherwise. In particular we always assume that R is endowed with its
natural topology.

I7. Let X be an infinite set with its cofinite topology. Prove that every continuous function
f : X → R is constant.

I8. a. Investigate whether the space S is connected or compact.

b. Show that the ‘floor’ function defined by x 7→ bxc, where bxc = max{n ∈ Z : n 6 x}, is a
continuous function from S to R.

c. Determine, in S, the interior of [0, 1] and the closure of (0, 1).

Making topological spaces

There are various ways of defining topologies in a set. One way is by specifying a base.
This notion was already defined in the course Metric Topology ; we now give its definition
in the context of topological spaces.

1.9. Definition. Let (X, T ) be a topological space. A base for the space (or for the
topology) is a subfamily B of T with the property that for every U ∈ T there is a
subfamily B′ of B such that U =

⋃
B′.

1.10. Examples.

1. In a metric space the family of all open balls is a base for the topology.
2. In the Sorgenfrey line S the family of all half-open intervals is a base.

Some families of sets can be bases for topologies and some can’t. The following
theorem tells us when a family can be a base.

1.11. Theorem. Assume B is a base for a topology T on the set X. Then B has the
following two properties.

(B1) X =
⋃
B; and

(B2) If B1, B2 ∈ B and x ∈ B1 ∩B2 then there is B ∈ B with x ∈ B ⊆ B1 ∩B2.

Conversely, if a family B satisfies these two properties then there is a topology T for
which B is a base.

1In this topology one can approximate numbers only from above; this of trying on shoes: a bit too
big is OK, too small is never OK.
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Proof. The first property is clear: X ∈ T .
The second property follows from the fact that the intersection of two open sets is

again open: if B1, B2 ∈ B then there is a subfamily B′ of B with B1 ∩B2 =
⋃
B′. Then

choose, given x ∈ B1 ∩B2, a B ∈ B′ with x ∈ B.
Is B satisfies properties (B1) and (B2) then we let T be the family of all possible

unions of subfamilies of B, so T = {
⋃
B′ : B′ ⊆ B}. It is not too difficult to verify that

T is a topology on X. To see that B ⊆ T observe that B =
⋃
{B} for every B ∈ B.

Also, we have defined T in such a way that B is automatically a base for T . �

I9. Check that the family
{
[a, b) : a, b ∈ R and a < b

}
satisfies (B1) and (B2).

A second way of creating topologies is via local bases.

1.12. Definition. Let (X, T ) be a topological space and x ∈ X. A local base at x is a
family Bx of open neighbourhoods of x with the property that for every neighbourhood U
of x there is B ∈ Bx with B ⊆ U .

A local base is also called a neighbourhood base.

1.13. Examples.

1. The standard example of a local base is the family of all balls centered at a point in
a metric space. If x ∈ X, where (X, d) is a metric space then

{
B(x, ε) : ε > 0

}
and{

B(x, 2−n) : n ∈ N
}

local bases at x.
2. If x ∈ S then

{
[x, x + 1

n ) : n ∈ N
}

is a neighbourhood base at x.
We can also make topologies by choosing for every point x in a set X a family Bx

and using these as local bases. For this we need to find out what properties such an
‘assignment of local bases’ must have.

1.14. Theorem. Assume that in the space (X, T ) we have chosen for every x ∈ X a
local base Bx. Then the following properties hold.

(LB1) For every x the family Bx is nonempty and x ∈ B for every B ∈ Bx.

(LB2) If B1, B2 ∈ Bx then there is a B ∈ Bx such that B ⊆ B1 ∩B2.

(LB3) If y ∈ B ∈ Bx then there is a D ∈ By such that D ⊆ B.

I10. Prove this theorem.

Property (LB3) codes the fact that every element of Bx is open; it is a neighbourhood
of each of its points.

Now assume we have chosen for every point x in a set X a family of subsets such
that (LB1), (LB2) and (LB3) of Theorem 1.14 hold. Define T by: U ∈ T if and only if
for every x ∈ U there is a B ∈ Bx with B ⊆ U .

We verify that T is indeed a topology and that for every x the family Bx is a local
base (for T ) at x.

That ∅ ∈ T is clear (why?) and to see that X ∈ T we use (LB1). Property (LB2)
helps in establishing that the intersection of two elements of T belongs two T . That
unions of subfamilies of T again belong to T is not very hard to check.

Property (LB3) implies that for every x every element of Bx belongs to T and it
then follows from the definition of T that Bx is indeed a local base at x.
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1.15. Example. We take X =
{
(x, y) ∈ R2 : y > 0

}
, the upper half plane. We assign to

every point X a local base. For every (x, y) in X we set B(x,y) = {B(x, y, n) : n ∈ N},
where the sets B(x, y, n) are defined as follows.

For a point (x, y) with y > 0 and for n ∈ N we define

B(x, y, n) =
{
(s, t) ∈ X : ‖(s, t)− (x, y)‖ < 2−n

}
,

the ordinary open disc around (x, y) with radius 2−n.
For a point of the form (x, 0) and for n ∈ N we define

B(x, 0, n) =
{
(x, 0)

}
∪

{
(s, t) ∈ X : ‖(s, t)− (x, 2−n)‖ < 2−n

}
,

the set that consists of the point (x, 0) and the open disc with radius 2−n that touches
the x-axis at (x, 0).

This topological space is known as the Niemytzki plane.

Figure 1. Basic neighbourhoods in the Niemytzki plane

I11. a. Show that the assignment (x, y) 7→ B(x,y) in the Niemytzki plane satisfies the properties
from Theorem 1.14.

b. Prove that the Niemytzki plane is connected and that every subset of the x-axis is closed.

1.16. Example. Consider the following subset of R2:

X =
{
(0, 0)

}
∪

{
(2−n, 0) : n ∈ N

}
∪

{
(2−n, 2−m) : n, m ∈ N

}
.

We assign to every point a local base: the points different from (0, 0) get their natural
neighbourhoods. For the point (0, 0) we do something different: for every n ∈ N and
every function f : N → N we set

B(f, n) =
{
(0, 0)

}
∪

{
(2−m, 0) : m > n

}
∪

{
(2−m, 2−l) : m > n, l > f(m)

}
.

Then B(0,0) =
{
B(f, n)

}
f,n

.

I12. a. Show that the assignment Example 1.16 is a valid assignment of local bases.

b. Prove that (0, 0) is in the closure of A =
{
(2−n, 2−m) : n, m ∈ N

}
but that no sequence

from A converges to (0, 0).



Chapter 2

New Topological Properties

In this chapter we will introduce a number of new topological properties. The first
few properties are about the possibility of separating points; these are therefore called
separation properties or separation axioms.

Separation Axioms

When we work with the indiscrete topology then we cannot distinguish points in any way:
there is only one nonempty open set and so all points share the same neighbourhoods.
We shall formulate a few properties that enable us to separate points better and better.

Separating points from points

The simplest separation property is the following:

2.1. Definition. A topological space X is a T0-space if different points have different
families of neighbourhoods. In other words: if x 6= y then there is a neighbourhood of x
that does not contain y or vice versa.

2.2. Examples.

1. The simplest T0-space is X = {0, 1} with as its open sets ∅, {0} and X.
2. We get an other example by taking the set R and the family

{
(a,∞) : a ∈ R

}
as a

base for a topology.
The following theorem implies that in a T0-space there are at least as many open

sets as there are points.

2.3. Theorem. A space X is a T0-space if and only if cl{x} 6= cl{y} whenever x 6= y
in X.

Proof. If X is a T0-space and x 6= y then there is, say, a neighbourhood of y that does
not contain x; in that case y /∈ cl{x}.

Conversely, let x, y ∈ X and assume x ∈ cl{y}. It follows immediately that cl{x} ⊆
cl{y}. If also y ∈ cl{x} then cl{y} ⊆ cl{x} and so cl{x} = cl{y} and hence, by
assumption, x = y. We find: if x 6= y then x /∈ cl{y} or y /∈ cl{x}; in both cases there is
an open set that contains one of the points x and y but not the other. �

I1. Find cl{x} for the points in the spaces in examples 2.2.

A better way of separating points is by replacing the word ‘or’ by ‘and’ in Defini-
tion 2.1.

2.4. Definition. A topological space X is a T1-space if for every two distinct points x
and y in X there are neighbourhoods U of x and V of y with x /∈ V and y /∈ U .

7



8 New Topological Properties [ Chapter 2

A useful characterization of T1-spaces is the following.

2.5. Theorem. A space X is a T1-space if and only if {x} is closed for every x ∈ X.

Proof. We leave the implication from left to right to the reader.
The other implication follows, given x and y, by taking U = X\{y} and V = X\{x}

respectively. �

The next theorem follows straight from the definitions or from the characterizations.

2.6. Theorem. Each T1-space is a T0-space.

2.7. Examples.

1. Every cofinite topology is T1; it is in fact the smallest T1-topology that one can make
on a set.

2. A finite T1-space is discrete (verify).
3. Every metric space is a T1-space: if x 6= y then let U = B(x, r) and V = B(y, r),

where r = d(x, y).

I2. Let (X, T ) be a topological space. Prove: the space (X, T ) is T1 if and only if Tce ⊆ T .

I3. Show that the spaces in examples 2.2 are not T1-spaces.

A still better separation of points is obtained as follows.

2.8. Definition. A topological space X is a T2- or Hausdorff space if every two distinct
points have disjoint neighbourhoods; so if x 6= y then there are a neighbourhood U of x
and a neighbourhood V of y such that U ∩ V = ∅.

It should be clear that every T2-space is a T1-space. The following two characteri-
zations make the distinction a bit clearer.

2.9. Theorem. Let X be a topological space.

(i) X is a T1-space if and only if for every x ∈ X we have {x} =
⋂
{U : U is a

neighbourhood of x}.
(ii) X is a T2-space if and only if for every x ∈ X we have {x} =

⋂
{cl U : U is a

neighbourhood of x}.

2.10. Examples.

1. Every metric space is a Hausdorff space: if x 6= y then B(x, r) ∩ B(y, r) = ∅ where
r = d(x, y)/2.

2. The Sorgenfrey line S is a Hausdorff space: if x < y then (−∞, y) and [y,∞) are
disjoint neighbourhoods of x and y respectively.

3. Verify that the Niemytzki plane and the space from Example 1.16 are Hausdorff
spaces.

4. An infinite set with the cofinite topology is not a Hausdorff space.
The following theorem appears in Metric Topology for metric spaces.

2.11. Theorem. Let f and g be continuous maps from a topological space X to a
Hausdorff space Y . Then the set

{
x ∈ X : f(x) = g(x)

}
is closed in X.
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I4. Prove this theorem. Hint: Prove that the complement of the set is open.

I5. Make a continuous map f from R with its natural topology to (R, Tce) with {x : f(x) =
x} = Q.

I6. a. Prove that in a Hausdorff space every sequence has at most one limit.

b. Show that in (N, Tce) the sequence 〈nn〉n converges to every point of N.

Separating points and closed sets

We extend our list of separation properties a bit further. To begin we separate points
from closed sets.

2.12. Definition. A space X is a T3-space if for every closed set F in X and every
point x ∈ X \ F there are disjoint open sets U and V with x ∈ U and F ⊆ V .

By looking at complements one can characterize the T3-property in terms of neigh-
bourhoods only.

2.13. Theorem. A space X is a T3-space if and only if for every x ∈ X and every
neighbourhood U of x there is a neighbourhood V of x such that cl V ⊆ U .

I7. Prove this theorem.

2.14. Examples.

1. Every metric space has the T3-property: if U is a neighbourhood of x and B(x, r) ⊆ U
then cl B(x, r/2) ⊆ U .

2. The Sorgenfrey line S is a T3-space: if U is a neighbourhood of x is and [x, x+ε) ⊆ U
then take V = [x, x + ε), for clV = V .

I8. a. Show that the Niemytzki plane is a T3-space. Hint: Show that cl B(x, y, n+1) ⊆ B(x, y, n)
for every point (x, y) and every n.

b. Show that the space from Example 1.16 is a T3-space. Hint: Every basic neighbourhood
is open-and-closed.

The T3-property becomes more interesting when we add the T0-property to it:

2.15. Definition. A topological space X is regular if it is both a T0- and a T3-space.

In this way we get a strengthening of the Hausdorff property.

2.16. Theorem. Every regular space is a Hausdorff space.

Proof. Assume x 6= y in the regular space X, say with x /∈ cl{y}; now use the T3-
property. �

2.17. Examples.

1. Let X = [0, 1] be the unit interval. Every point x > 0 gets its natural neighbourhoods.
For the point 0 and each n ∈ N we put B(0, n) = [0, 2−n) \ {2−m : m ∈ N}. This
gives a valid assignment of neighbourhood bases. The resulting space a Hausdorff
space. Because cl B(0, n) = [0, 2−n] for every n the space is not regular (check this).

2. Let X = R and put

T = {U \ C : U is open in the natural topology and C is countable }.
Verify that T is a non-regular Hausdorff topology.
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Separating closed sets

The next separation property is the strongest that we shall deal with for the time being.
Its definition will not come as a surprise.

2.18. Definition. A space X is a T4-space if for every pair F and G of disjoint closed
subsets in X there are disjoint open sets U and V with F ⊆ U and G ⊆ V .

2.19. Examples.

1. Every metric space has the T4-property: let F and G be disjoint closed subsets
in the metric space X. Choose for every x ∈ F a number r(x) > 0 such that
B(x, 3r(x)) ∩ G = ∅ and likewise choose r(x) > 0 for every x ∈ G. Then put
U =

⋃{
B(x, r(x)) : x ∈ F

}
and V =

⋃{
B(x, r(x)) : x ∈ G

}
. Check that U ∩ V = ∅

(even clU ∩ cl V = ∅).
2. The spaces from Example 2.2 are T4-spaces because they have no disjoint closed

subsets.
3. The Sorgenfrey line S is a T4-space: If F and G are closed and disjoint then choose

for x ∈ F (x ∈ G) an εx > 0 such that [x, x + εx) ∩G = ∅ (or [x, x + εx) ∩ F = ∅).
Check that U =

⋃{
[x, x + εx) : x ∈ F

}
and V =

⋃{
[x, x + εx) : x ∈ G

}
are disjoint.

As can be seen from the examples above the combination of T4 and T0 is not very
interesting. The combination of T4 and T1 gives a much richer class of spaces.

2.20. Definition. A topological space X is normal if it is both a T1- and a T4-space.

Because in a T1-space points are closed sets the following theorem is clear.

2.21. Theorem. Every normal space is regular.

Not every regular space is normal.

2.22. Example. The Niemytzki plane is not normal. To see this we take the following
two closed and disjoint sets: Q =

{
(x, 0) : x ∈ Q

}
and P =

{
(x, 0) : x ∈ P

}
(we use P

to denote the set of irrational numbers). Let U ⊇ Q and V ⊇ P be open subsets; we
must show that U ∩ V 6= ∅. This will require some effort.

We begin by writing P as the union of countably many sets: for each n put

Pn = {x ∈ P : B(x, 0, n) ⊆ V }.
We claim: if x ∈ cl Pn (with respect to the natural topology of R) then (x, 0) ∈ cl V (in
the Niemytzki plane).

For let 〈xi〉i be a sequence in Pn with limit x. We show that B(x, 0, n) \
{
(x, 0)

}
is

covered by the family
{
B(xi, 0, n) : i ∈ N

}
. Let (p, q) ∈ B(x, 0, n)\

{
(x, 0)

}
and put ε =

2−n−
∥∥(x, 2−n)−(p, q)

∥∥. For every i with |xi−x| < ε we have
∥∥(xi, 2−n)−(p, q)

∥∥ < 2−n

(triangle inequality) and so (p, q) ∈ B(xi, 0, n). We see that B(x, 0, n) \
{
(x, 0)

}
⊆ V

and hence that (x, 0) ∈ cl V .
Now all we have to do is to show that clPn ∩Q 6= ∅ for some n: for take q in that

intersection and choose m > n with B(q, 0,m) ⊆ U .
Assume clPn ∩Q = ∅ for all n. We shall apply Cantor’s Nesting theorem to reach

a contradiction.
Let 〈qn〉n be an enumeration of the rational numbers. Choose a closed interval I1

around q1 with I1 ∩ P1 = ∅ (possible because q1 /∈ cl P1). Next choose a subinterval J1
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of I1 with q1 /∈ J1. We continue the recursion: once Jn is found choose a rational
number q in the interior of Jn and, because q /∈ cl Pn+1, a closed interval In+1 around q
and disjoint from Pn+1, finally then shrink In+1 to an interval Jn+1 with qn+1 /∈ Jn+1.

By Cantor’s Nesting theorem there is a point x in
⋂

n In. Because we avoided all
rational numbers we have x /∈ Q; also

⋂
n In ∩

⋃
n Pn = ∅ and so x /∈ P . This is a clear

contradiction.

I9. In Example 2.22 we, implicitly, used the Baire Category Theorem. This theorem states: if
〈Fn〉n is a sequence of nowhere dense subsets of R then the complement of

⋃
n Fn is a dense

subset of R.
A set A is nowhere dense if int cl A = ∅.

a. Prove the Baire Category Theorem. Hint: Study the proof in Example 2.22 carefully.

b. Prove, using the Baire Category Theorem, that Q is not a Gδ-set in R.

c. Use the Baire Category Theorem to show that the Niemytzki plane is not normal.

Normal spaces

Normal spaces have many properties that regular spaces do not have; the most important
one, for us, is that normal spaces admit many continuous real-valued functions.

Before we formulate the theorem that supplies us with these continuous functions
we must reformulate the T4-property a bit.

First we have a formulation that is analogous to the formulation of the T3-property
in Theorem 2.13.

2.23. Lemma. A space X is a T4-space if and only if for every closed set F and every
open set U with F ⊆ U there is an open set V such that F ⊆ V ⊆ cl V ⊆ U .

Proof. Given F and U consider the closed and disjoint sets F and X \ U . If O1 ⊇ F
and O2 ⊇ X \ U are open and disjoint then cl O1 ⊆ U .

Conversely, if F and G are disjoint and closed take U ⊇ F with clU ⊆ X \ G and
let V = X \ cl U . �

We can strengthen the T4-property somewhat.

2.24. Lemma. If X is a T4-space and F and G are closed and disjoint in X then there
are open sets U ⊇ F and V ⊇ G such that cl U ∩ cl V = ∅.

Proof. First choose disjoint open sets O1 ⊇ F and O2 ⊇ G. Then choose U ⊇ F with
cl U ⊆ O1 and let V = O2. �

The next theorem is known as Urysohn’s Lemma.

2.25. Theorem. A space X is a T4-space if and only if for each pair of closed and disjoint
sets F and G there is a continuous function f : X → [0, 1] with f � F ≡ 0 and f � G ≡ 1.

Proof. From right to left is clear: given the continuous function f we take U =
f−1

[
[0, 1

2 )
]

and V = f−1
[
( 1
2 , 1]

]
.

The other implication will take more effort. First we see what we will actually need.
If f : X → [0, 1] is a function as required then for every r ∈ (0, 1) we have an open set:
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Ur = f−1
[
[0, r)

]
. This family of open sets completely determines the function f because

for every x and every r we have

f(x) < r if and only if x ∈ Ur,

and so

f(x) =

{
inf{r : x ∈ Ur}, if x ∈

⋃
r Ur and

1, if x /∈
⋃

r Ur.
(∗)

The family {Ur : 0 < r < 1} has another property, namely:

if s < r then cl Us ⊆ Ur. (∗∗)
Thus we see: a continuous function from X to [0, 1] determines a family of open sets
with property (∗∗) and this family determines the function via formula (∗).

Inspired by this we try and make a family {Ur : 0 < r < 1} of open sets that
satisfies (∗∗), then define a function via formula (∗) and then show that this function is
continuous.

We begin by making Ur for each r ∈ Q∩(0, 1). For this we take an enumeration 〈qn〉n
of Q∩ [0, 1] with q0 = 0 and q1 = 1. To start the construction we pick two open sets U0

and U1 such that
F ⊆ U0 ⊆ cl U0 ⊆ U1 ⊆ X \G.

Next we choose an open set Uq2 such that

cl U0 ⊆ Uq2 ⊆ cl Uq2 ⊆ U1.

Now assume n > 2 and that Uqi is found for all i < n such that

if i, j < n and qi < qj then cl Uqi ⊆ Uqj . (†)
We determine Uqn

in such a way that (†) also holds for i, j 6 n. To this end we look
where qn lies with respect to the qi with i < n; take i0, i1 < n with qi0 < qn < qi1 and
such that no qi met i < n lies in the interval (qi0 , qi1). Now we can choose an open set
Uqn with

cl Uqi0
⊆ Uqn ⊆ cl Uqn ⊆ Uqi1

.

In the end we have a family
{
Uq : q ∈ Q∩ [0, 1]

}
of open sets with property (∗∗). Define

Ur =
⋃

q6r Uq all other r ∈ [0, 1]. This family also satisfies (∗∗): if r < s then pick p
and q in Q with r < p < q < s, then cl Ur ⊆ cl Up ⊆ Uq ⊆ Us.

Now define f : X → [0, 1] via formula (∗). We claim that f is continuous. Let x ∈ X
and let (r, s) be an interval around f(x). Choose p and q with r < p < f(x) < q < s
and set U = Uq \ cl Up; U is open and because p < f(x) < q we have x ∈ U . Also
f [U ] ⊆ (r, s): if y ∈ U then p 6 f(y) 6 q.

Finally: if x ∈ F then x ∈ Ur for all r, so f(x) = 0 and if x ∈ G then x /∈
⋃

r Ur

hence f(x) = 1. �

I10. For metric spaces it is easy to find a function as in Theorem 2.25; verify that

f(x) =
d(x, F )

d(x, F ) + d(x, G)

is as required.

Using Urysohn’s Lemma we can give a nice description of closed Gδ-sets (and hence
also of open Fσ-sets).
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I11. Let X be a T4-space. A closed set F in X is a Gδ-set if and only if there is a continuous
function f : X → R such that F = {x : f(x) = 0}. Hint: From right to left is easy. From left to
right: assume F =

⋂
n On and choose for each n a continuous fn : X → [0, 1] with fn � F ≡ 0

and fn � (X \On) ≡ 1. Consider f =
∑

n 2−nfn.



Chapter 3

Compactness and Products

In this chapter we discuss two things: the class of compact Hausdorff spaces and prod-
ucts of topological spaces. The definition of compactness is just as in the course Metric
Topology ; however, on its own compactness is not that interesting, combined with Haus-
dorffness it becomes a very powerful topological property.

Compactness

First we repeat the definition of compactness.

3.1. Definition. A topological space is compact if every open cover of that space has a
finite subcover.

3.2. Examples.

1. Every finite space is compact.
2. Every space with the cofinite topology is compact.
3. The Sorgenfrey line, the Niemytzki plane and the space from Example 1.16 are not

compact.
4. Every closed and bounded interval in R is compact, with respect to the natural

topology.

Simple properties

Some of the following properties of compact spaces are already known from Metric
Topology.

3.3. Theorem. Let f : X → Y be a continuous and surjective map, where X is a
compact space, then Y is compact too.

3.4. Theorem. Every closed subspace of a compact space is compact.

The theorem that compact subspaces of metric spaces are closed does not hold for
general topological spaces.

3.5. Example. Consider N with the cofinite topology and take the subspace 2N. The
2N is compact (because it also has the cofinite topology) but is not closed.

We do have the following theorem.

3.6. Theorem. Let X be a Hausdorff space and Y a compact subspace of X, then Y is
closed in X.

14
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Proof. The proof is instructive enough to go through completely.
Let x ∈ X \ Y ; we seek a neighbourhood U of x that is disjoint from Y . Choose for

every y ∈ Y a neighbourhood Uy of x and a neighbourhood Vy of y such that Uy∩Vy = ∅.
This gives us an open cover of Y : the family {Vy : y ∈ Y }. Take a finite subcover,

say {Vy1 , . . . , Vyk
}.

Now let U =
⋂k

i=1 Uyi
and V =

⋃k
i=1 Vyi

; then U and V are disjoint, x ∈ U and
Y ⊆ V .

Not only did we find a neighbourhood of x that is disjoint from Y , but we even
found disjoint neighbourhoods of x and Y . �

The proof of this theorem gives us the following result almost for free.

3.7. Theorem. Every compact Hausdorff space is regular.

If we study the proof even better then we will also be able to prove the following.

3.8. Theorem. Every compact Hausdorff space is normal.

Another theorem from Metric Topology says that a continuous bijection from a
compact metric space to any other space is automatically a homeomorphism; this results
holds, with the same proof, also for compact Hausdorff spaces.

3.9. Theorem. Let f : X → Y be a continuous bijection, where X is compact and Y a
Hausdorff space. Then f is a homeomorphism.

Proof. To prove continuity of f−1 we must show that f [A] is closed in Y whenever A is
closed in X.

Well, A is compact hence f [A] is compact and so f [A] is closed. �

This theorem tells us something about the location of compact Hausdorff topologies
among other topologies. Indeed, let T and S be topologies on the same set X. Assume
T is compact, that S is Hausdorff and that S ⊆ T . The the theorem implies T = S
because the identity map is a continuous bijection from (X, T ) to (X,S).

I1. Derive from the remark above that a compact Hausdorff topology is minimal Hausdorff and
maximal compact : every topology that is a proper subfamily is no longer Hausdorff and every
topology of which it is a proper subfamily is no longer compact.

Subspaces

The class of compact Hausdorff spaces has many more pleasant properties. To be able
to formulate these we must introduce a few more notions.

First a topological property that is characteristic of all subspaces of compact Haus-
dorff spaces: every subspace of every compact Hausdorff space has this property and
every space with this property is in fact a subspace of a (suitable) compact Hausdorff
space.

The property is not obvious, until it is pointed out to you. Take a subspace A of a
compact Hausdorff space X. Take in A a closed subset F (closed in A) and a point x in
A \ F . There is a closed subset F+ of X with F = A ∩ F+. Next, because Xis normal,
we can find a continuous function f : X → [0, 1] such that f(x) = 0 and f � F+ ≡ 1.
The restriction of f to A does the same for x and F .
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It follows that every subspace of every compact Hausdorff space has the property
from the following definition.

3.10. Definition. A topological space X is a T3 1
2
-space if for every closed set F in X

and every point x in X \ F there is a continuous function f : X → [0, 1] with f(x) = 0
and f � F ≡ 1.

A space that is both a T0- and a T3 1
2
-space is called completely regular or a Tychonoff

space.

I2. Prove that every normal space is completely regular and that every completely space is
regular.

3.11. Examples.

1. Every normal space is completely regular (why?), hence every metric space is com-
pletely regular; prove this directly.

2. The Sorgenfrey line is therefore also completely regular; this can be seen directly: if
F is closed and x 6∈ F then take y > x with [x, y) ∩ F = ∅. The function f defined
by

f(p) =

{
0 if x 6 p < y and
1 otherwise

clearly is as required.

3.12. Example. The Niemytzki plane is completely regular; because the space is not
normal we must show this directly. For points above the x-axis we can use the natural
metric on R2 to define the needed continuous functions.

Take a point (x, 0) on the x-axis and define for every r ∈ (0, 1]

Ur =
{
(x, 0)

}
∪

{
(p, q) : ‖(p, q)− (x, r)‖ < r

}
.

verify that each Ur is open and that clUr ⊆ Us whenever r < s. As in the proof of
Urysohn’s Lemma we define

f(u) =

{
inf{r : u ∈ Ur}, if u ∈

⋃
r Ur and

1, if u 6∈
⋃

r Ur.

This gives is a continuous function f with f(x, 0) = 0 and f(p, q) = 1 for (p, q) 6∈ U1.
By rescaling this function we can find for every neighbourhood U of (x, 0) a function g
with g(x, 0) = 0 and g(p, q) = 1 for (p, q) 6∈ U .

3.13. Example. We complete the picture by describing a space that is regular but not
completely regular. For this we define a topology on the upper half plane.

The points above the x-axis will be isolated, i.e., if z is not on the x-axis then
{
{z}

}
is a local base at z.

For a point (x, 0) on the x-axis we make basic neighbourhoods as follows: first put
L1(x) =

{
(x, y) : 0 6 y 6 1

}
(the vertical line segment of length 1 based at (x, 0)) and

L2(x) =
{
(x + y, y) : 0 6 y 6 1

}
(the line segment from (x, 0) to (x + 1, 1)). Next

we set Lx = L1(x) ∪ L2(x). As a local base at (x, 0) we take Bx = {Lx \ F : F is
finite and x 6∈ F}. The space we obtain in this way is regular, even completely regular,
because every basic neighbourhood is open-and-closed.
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We add one more point ∞ to our space, with basic neighbourhoods

Un(∞) = {∞} ∪
{
(x, y) : x > n

}
n ∈ N.

Check that cl Un+1 = Un+1 ∪
{
(x, 0) : n < x 6 n + 1

}
; the space M that we get is still

regular: clUn+1 ⊆ Un.

(x, 0)

L1(x) L2(x) ∞

Un(∞) and its closure

The space is not completely regular. For let f : M → [0, 1] be continuous with
f(x, 0) = 0 x 6 0. We prove that f(∞) = 0.

To this end we first observe the following: for every x ∈ R there is a countable
subset of Ax of Lx such that if p ∈ Lx \Ax then f(p) = f(x, 0); indeed, for every n there
is a finite set Fn such that |f(p)− f(x, 0)| < 2−n for p ∈ Lx \ Fn, let Ax =

⋃
n Fn.

Using this we prove: for every n there are at most countably many x ∈ (−∞, n]
with f(x, 0) 6= 0. This is true, by assumption, for n = 0. Assume the statement is true
for some n > 0 and, using this, choose a sequence 〈xi〉i in (n− 1, n) that converges to n
and satisfies f(xi, 0) = 0 for all i.

The set
⋃

i

(
L2(xi)∩Axi

)
is countable and hence so is its projection A onto the x-axis.

Take x ∈ [n, n + 1) \A; the line L1(x) intersects L2(xi) \Axi
for all but finitely many i.

Therefore every neighbourhood of (x, 0) intersects all but finitely many L2(xi)\Axi
, that

is, every neighbourhood of (x, 0) has points p with f(p) = 0; this implies f(x, 0) = 0.

I3. Add an extra point −∞ to the space M from Example 3.13, with basic neighbourhoods
Un(−∞) = {−∞} ∪

{
(x, y) : x 6 −n

}
. This new space we call M+.

Prove that f(∞) = f(−∞) for every continuous function f : M+ → R.

I4. Now study the article [1972] by van Douwen or do Problem 2.7.17 in Engelking’s book
[1989].

Products

We repeat: every subspace of every compact Hausdorff space is completely regular and
for every completely regular space there is a compact Hausdorff space that contains the
given space as a subspace.

For the proof of the second part of the last sentence will require some new notions,
one of which is the product of a family of topological spaces. Finite products are easiest,
they are defined much like Rn.

Finite products

First we define the product of finitely many sets, then we bring the topologies into play.

3.14. Definition. Let X1, X2,. . . , Xn be a finite number of sets. The product of these
sets is the set of all ordered n-tuples (x1, x2, . . . , xn) with xi ∈ Xi (1 6 i 6 n).

We write this product as X1 ×X2 × · · · ×Xn or
∏n

i=1 Xi.
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3.15. Examples.

1. According to this definition Rn is indeed the product of n copies of R.
2. R×Q is the set of points in the plane whose second coordinate is rational.

The natural topology of Rn has the family of all open blocks as a base. We use this
idea to define a topology on other products.

3.16. Definition. Let (X1, T1), (X2, T2), . . . , (Xn, Tn) be a finite family of topological
spaces.

An open block in
∏n

i=1 Xi is a set of the form
∏n

i=1 Ui where Ui is open in Xi.

3.17. Lemma. The family of all open blocks is a base for a topology on
∏n

i=1 Xi.

Proof. Verify that the intersection of two open blocks is again an open block and that
the open blocks cover the whole product. Then apply Theorem 1.11. �

This topology is the product topology.

3.18. Definition. Let (X1, T1), (X2, T2), . . . , (Xn, Tn) be a finite family of topological
spaces.

The product topology on
∏n

i=1 Xi is the topology that has the family of all open
blocks as a base.

The set
∏n

i=1 Xi with the product topology is called the product of the spaces
(X1, T1), . . . , (Xn, Tn).

We used the situation in Rn as inspiration for the definition of the product topology.
There is an other reason to define the product topology the way we did: the projections
from the product to the factors are continuous and the product topology is the smallest
topology that does this.

3.19. Definition. Let X =
∏n

i=1 Xi be a product of n many sets and i 6 n. The map
πi : X → Xi defined by πi(x1, . . . , xn) = xi is the projection on the i-th coordinate or
factor.

3.20. Theorem. Let X =
∏n

i=1 Xi be a product of n many topological spaces. Then
every projection πi : X → Xi is continuous. Every other topology that makes the
projections continuous is larger than the product topology.

Proof. It is easy to see that each πi is continuous: if U ⊆ Xi is open then π−1
i [U ] is an

open block (what are the factors?).
Conversely, assume T is a topology that makes the projections continuous. It follows

at once that for every i and every open subset U of Xi the open block π−1
i [U ] belongs

to T . Every intersection of finitely many such open blocks also belongs to T (because
T is a topology); but in this way we see that all open blocks belong to T . But then
arbitrary unions of open blocks belong to T as well, which is what we were trying to
prove.. �

Using this theorem we can show that continuity of a map to a product is the same
as coordinate-wise continuity.

3.21. Theorem. Let X =
∏n

i=1 Xn be a product of n many topological spaces. Then:
a map f : Y → X is continuous if and only if all compositions πi ◦ f are continuous.
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Proof. If f is continuous, then certainly every composition πi ◦ f is continuous.
Conversely, assume each composition πi ◦ f is continuous. Let y ∈ Y , and let

U =
∏

i Ui be a basic neighbourhood of f(y). Now for z ∈ Y we have: f(z) ∈ U if
and only if for each i the i-th coordinate of f(z) belongs to Ui. That i-th coordinate is
πi

(
f(z)

)
.

Thus we find

f−1[U ] =
n⋂

i=1

(πi ◦ f)−1[Ui],

which shows that f−1[U ] is a neighbourhood of y. �

In general we shall denote the composition πi ◦ f by fi.
Conversely we can make, given maps fi : Y → Xi, a map f from Y to X: define

f(y) =
(
f1(y), f2(y), . . . , fn(y)

)
. The map f is called the diagonal of the maps f1, f2,

. . . , fn. We denote the diagonal as f = 4n
i=1 fi or f = f1 M f2 M · · · M fn.

From Metric Topology we know that every closed and bounded block in Rn is
compact. A careful analysis of the proof of that result yields the following theorem.

3.22. Theorem. The product of a finite number of compact spaces is compact.

One of the proofs that R2 is connected can be generalised.

3.23. Theorem. The product of finitely many connected spaces is connected.

I5. Prove for each of the following properties that the product has it if each of the factors has
it.

T0, T1, T2, regular, completely regular and ‘having a countable base’.

I6. The product of the Sorgenfrey line with itself is not normal. Hint: Consider the subsets
Q =

{
(q,−q) : q ∈ Q

}
and P =

{
(p,−p) : p ∈ P

}
of the anti-diagonal. Show that Q and P are

closed. Modify the argument for the Niemytzki plane from Example 2.22.

I7. The product of finitely many metrizable topological spaces is metrizable. Hint: Define, by
analogy with Rn, a metric on

∏n
i=1 Xi by

d
(
(x1, . . . , xn), (y1, . . . , yn)

)
=

n∑
i=1

di(xi, yi),

where di is a metric on Xi that induces the topology.

Infinite products

Our first task is to define what a product of an arbitrary family of spaces should be.
The answer is, after some thought, fairly obvious; if we have finitely many sets, n say,
then their product consists of ordered n-tuples of points where the i-th coordinate comes
from the i-th set.

Such an n-tuple is in fact a function with domain {1, 2, . . . , n} that picks for every i
a point in Xi — a choice function.

3.24. Definition. Let {Xt}t∈T be a family of sets. The product of these sets is defined
as the set of all choice functions for that family; we denote the product as

∏
t∈T Xt.

Thus, x ∈
∏

t∈T Xt if and only if x is a function with domain T and such that
x(t) ∈ Xt for all t. To reinforce the idea of coordinates we write xt in stead of x(t) and
x = (xt)t∈T .
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Next we assume that each Xt is a topological space, with topology Tt. The question
now is how we shall topologize

∏
t∈T Xt. We let a natural demand guide us, namely

that the projections should be continuous and that we should use a few open sets as
possible; compare Theorem 3.20.

3.25. Definition. Let X =
∏

t∈T Xt be a product of a family of sets and let s ∈ T .
The map πs : X → Xt defined by πs

(
(xt)t∈T

)
= xs is called the projection onto the s-th

coordinate or factor.

If we want every projection to be continuous then the preimage π−1
t [U ] should be

open for every t and every open subset U of Xt we shall call a set of this form an open
strip. Furthermore finite intersection of open strips should be open as well. We are lead
to consider a special kind of open blocks that we shall call finite open blocks.

3.26. Definition. Let X =
∏

t∈T Xt be the product of a family of topological spaces.
A finite open block in X is a set of the form

∏
t∈T Ut, where Ut is an open subset of Xt

for every t and where for at most finitely many t we have Ut 6= Xt.

I8. Verify that a set is an open block if and only if it is the intersection of finitely many open
strips.

Observe that the full product is a finite open block and that the intersection of two
finite open blocks is again a finite open block. The family of all finite open blocks is
therefore a base for a topology — this will be the product topology.

3.27. Definition. Let X =
∏

t∈T Xt be the product of a family of topological spaces.
The product topology on X is the topology that has the family of finite open blocks as
a base.

The set X with the product topology is called the product of the family of the spaces{
(Xt, Tt) : t ∈ T

}
.

The validity of the next theorem was simply forced by the definition.

3.28. Theorem. Let X =
∏

t∈T Xt be the product of a family of topological spaces.
Then every projection πt : X → Xt is continuous. Every other topology that makes all
projections continuous is larger than the product topology.

The proof can be found above and is completely analogous to that of Theorem 3.20.
Theorem 3.21, in appropriate form, is also valid.

3.29. Theorem. Let X =
∏

t∈T Xt be the product of a family of topological spaces.
Then: a map f : Y → X is continuous if and only if all compositions πt ◦ f are
continuous.

The proof offers no new problems because we used finite open blocks to define the
topology.

Finally we can turn a family of maps ft : Y → Xt into a map f from Y to X via
f(y) =

(
ft(y)

)
t∈T

. We call f the diagonal of the maps {ft}t∈T . The notation is the
same: f = 4t∈T ft.

I9. Prove, for each of the following properties, that a product has it if every factor has it.
T0, T1, T2, regular and completely regular.
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I10. Let X =
∏

n∈N Xn be the product of a countable family of topological spaces. Prove:
a. If every Xn has a countable base then so does X.

b. If every Xn is metrizable then so is X.

I11. Prove that every product connected spaces is connected.

I12. There is another, seemingly obvious, way of topologizing a product. Here we use all open
blocks, i.e., unrestricted products of the form

∏
t∈T Ut where each Ut is open Xt. This topology

is called the box topology.
a. Verify that the family of all open blocks does indeed serve as a base for a topology.

This topology does not have as many nice properties as the product topology. Consider the
product X =

∏
n∈N Xn, where Xn = [0, 1] for each n.

b. The diagonal 4n∈N Idn is not continuous; Idn : [0, 1] → Xn is the identity map. Hint: The
range carries, as a subspace of X, the discrete topology.

c. The box topology on X is not connected and not metrizable.



Chapter 4

Tychonoff’s Theorem

Tychonoff’s Theorem, which states that the product of compact spaces is again compact,
is one of the most important theorem from topology. It appears in many places in
mathematics; we will use it in the construction of the Čech-Stone compactification.

Before we can prove Tychonoff’s theorem we must know a bit more about compact
spaces and we also need to introduce a few extra notions.

To see what we need we go through the proof for the case of finitely many spaces.
Let X and Y be compact spaces and let {Ui × Vi : i ∈ I} be a cover of X × Y by

open blocks. The crucial step is to find, for each x ∈ X, a neighbourhood Ux of x such
that the strip Ux × Y can be covered by finitely many of the blocks Ui × Vi.

This uses compactness of Y : there are finitely many i, say i1, i2, . . . , in, such that
{x} × Y ⊆

⋃n
k=1 Uik

× Vik
. Then take Ux =

⋂
k Uik

; the strip is also covered by these
blocks.

The open cover {Ux : x ∈ X} of X then has a finite subcover; using this we can find
a finite subcover of {Ui × Vi : i ∈ I}.

What happened is that we turned an arbitrary open cover, via blocks, into a cover
by strips and a cover by strips is in fact a cover of one of the factors.

This works for more than two factors as well. A cover of X × Y × Z will first be
reduced to a cover by strips of the form U×Z, with U open in X×Y ; then the resulting
cover of X × Y is reduced to a cover by strips of the form V × Y and we are done.

We would like to do the same for arbitrary products, but this will not be as easy as
in the case of finitely many factors: there is usually no ‘last’ factor that we can use as
a starting point.

There is an important tool that will enable us to reduce the case for arbitrary
products to the case of finitely many factors: this tool is called filter.

Filters and ultrafilters

We shall reach Tychonoff’s Theorem in a roundabout way. First we show how to do
convergence in arbitrary topological spaces, then we prove the analogue of the theorem
that a metric space is compact if and only if every sequence has a converging subsequence,
and we finish by showing that this convergence property is preserved under products.

The proper generalisation of sequences is given by filters — see Definition 4.7 and
Example 4.8.1 for the connection.

Filters

4.1. Definition. Let X be a set. A family F of subsets of X is a filter on X if

(i) ∅ 6∈ F ,

22
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(ii) if F1, F2 ∈ F then there is F3 ∈ F with F3 ⊆ F1 ∩ F2, and
(iii) if F ∈ F and F ⊆ G then G ∈ F .

4.2. Examples.

1. If 〈xn〉n is a sequence X then the family F defined by, F ∈ F if and only if there is
an N ∈ N with {xn : n > N} ⊆ F , a filter on X.

2. If X is an infinite set then F = {F : X \ F is finite} is a filter on X, the cofinite or
Fréchet filter.

3. If x ∈ X then Fx = {F : x ∈ F} is a filter on X.
4. If X is a topological space and x ∈ X then the family Ux of all neighbourhoods of x

is a filter, the neighbourhood filter of x.
We can also describe a filter by specifying a base for it.

4.3. Definition. Let X be a set. A family B of subsets of X is a filter base on X if
the family F = {F : there is a B ∈ B with B ⊆ F} is a filter. We call B a base for the
filter F .

We indicate a base for each filter from 4.2.

4.4. Examples.

1. The family of all ‘tails’ of the sequence 〈xn〉n is a base for the corresponding filter; a
tail is a set of the form {xn : n > N}.

2. The cofinite filter has no obvious base, except when X = N: then we can take the
tails of N.

3. The family
{
{x}

}
is a base for Fx.

4. Every local base at x is a base for Ux.

I1. Show that a family B is a filter base if and only if it satisfies (i) and (ii) of Definition 4.1.

An example that is important in connection with compactness is the following.

4.5. Example. Let {Ai : i ∈ I} be a cover of a set X without finite subcover; then
the family of all sets of the form X \

⋃
i∈F Ai, with F finite, a filter base on X. The

corresponding filter F has an empty intersection because
⋂
F = X \

⋃
i∈I Ai = ∅. A

filter whose intersection is empty is called a free filter.

Using this example it is not hard to see that the following theorem must be true.

4.6. Theorem. A space X is compact if and only if for every filter F on X we have⋂
{cl F : F ∈ F} 6= ∅.

Proof. If F is a filter then consider U = {X \ cl F : F ∈ F}; no finite subfamily of U
covers X (why?). because X is compact the family U cannot be an open cover. But
X \

⋃
U =

⋂
F .

Conversely, if X has an open cover U without a finite subcover then we make a filter
F as in Example 4.5. But then we’d have

⋂
{cl F : F ∈ F} = ∅. �

I2. Let 〈xn〉n be a sequence in a space X and F the associated filter. Prove that 〈xn〉n converges
to x if and only Ux ⊆ F .

This inspires the following definition.
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4.7. Definition. Let X be a topological space, F a filter on X and x ∈ X. We say the
the filter F converges to the point x if Ux ⊆ F .

4.8. Examples.

1. Exercise 2 now says: a sequence 〈xn〉n converges to a point x if and only if the
corresponding filter converges to x.

2. Certainly the filter Ux converges to x; it is the smallest filter to do so.
3. The filter Fx converges to x too.

I3. Let F be a filter on a space X and let x ∈ X. Prove
a. If x ∈

⋂
{cl F : F ∈ F} then there is a filter G with G ⊇ F that converges to x.

Hint: G = {U ∩ F : U ∈ Ux, F ∈ F}
b. If there is a filter G with G ⊇ F that converges to x then x ∈

⋂
{cl F : F ∈ F}.

We call a filter G finer than the filter F if F ⊆ G; we also call F coarser than G.
Exercise 3 proves following theorem.

4.9. Theorem. Let F be a filter on a topological space X and x ∈ X. Then x ∈
⋂
{cl F :

F ∈ F} if and only if there is a filter G that is finer than F and that converges to x.

Now we can formulate and prove the promised analogue of the theorem that a
metric space is compact if and only if every sequence in that space has a converging
subsequence.

4.10. Theorem. A topological space is compact if and only if for every filter on the
space there is a finer filter that converges.

Proof. Combine Theorems 4.6 and 4.9. �

Using convergence of filters we can describe other topological notions as well.

I4. Let A be a subset of a topological space X and x ∈ X. Prove: x ∈ cl A if and only if there
is a filter F with A ∈ F that converges to x.

Next we look at continuity. For this we define what the image of a filter under a
map is. This is quite straightforward: if f : X → Y is a map and F a filter on X then{
f [F ] : F ∈ F

}
a filter base on Y (check this); we denote the filter that it generates as

f(F) and we call it the image of F under f .

I5. Let f : X → Y be a map between topological spaces. Then:
a. If x ∈ X then f is continuous at x if and only if for every filter on X that converges to x

its image under f converges to f(x).

b. The map f is continuous if and only if for every convergent filter on X its image under f
converges too (to the correct limit).

We also need to know that convergence in a product is the same as coordinatewise
convergence.

4.11. Theorem. Let F be a filter on a product X =
∏

t∈T Xt of topological spaces.
Then: F converges to x = (xt)t∈T if and only if for every t the filter πt(F) converges
to xt.
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Proof. Because projections are continuous we clearly have ‘only if’.
Conversely, assume πt(F) converges to xt for all t. Let U be a basic neighbourhood

of x, determined by Ut1 , Ut2 , . . . , Utn
.

For each i we have Uti
∈ πti

(F), so there is an Fi ∈ F with πti
(Fi) ⊆ Uti

. But then
Fi ⊆ π−1

ti
[Uti

] and so π−1
ti

[Uti
] ∈ F for each i.

It follows that U ∈ F , because U =
⋂n

i=1 π−1
ti

[Uti ]. �

I6. Prove that a topological space is a Hausdorff space if and only if every filter converges to at
most one point.

Ultrafilters

We need a special kind of filters: ultrafilters.

4.12. Definition. An ultrafilter is a filter for which there is no finer filter.
In other words: if for every filter G with F ⊆ G we have F = G (F is a maximal

filter) then we call F an ultrafilter.

We need some characterizations of ultrafilters.

4.13. Theorem. Let F be a filter on a set X; then the following are equivalent.

(i) F is an ultrafilter;

(ii) for every subset A of X we have: if A ∩ F 6= ∅ for all F ∈ F then A ∈ F ;

(iii) for any two subsets A and B of X we have: if A ∪ B ∈ F then A ∈ F or B ∈ F ;
and

(iv) for every subset A van X either A ∈ F or X \A ∈ F .

Proof. (i) ⇒ (ii): assume A ∩ F 6= ∅ for all F ∈ F . Then {A ∩ F : F ∈ F} is a filter
base (check) and the filter G that it generates is finer than F and A ∈ G; but then G = F
and so A ∈ F .

(ii) ⇒ (iii): assume A 6∈ F . Then there is no F ∈ F with F ⊆ A and so F ∩X \A 6=
∅ for all F ∈ F . But then X \ A ∈ F and so (X \ A) ∩ A ∪B ∈ F . Now observe
(X \A) ∩A ∪B = B \A ⊆ B.

(iii) ⇒ (iv): apply (iii) to A and X \A.
(iv) ⇒ (i): let G be a filter that is finer than F and let A ∈ G be arbitrary. Then

X \ A /∈ F because A intersects every element of F and it does not intersect X \ A. It
follows that A ∈ F . We see that G ⊆ F . �

I7. Prove: if F is an ultrafilter on X and f : X → Y a map then the image f(F) is also an
ultrafilter.

The following theorem now follows easily from Theorem 4.10.

4.14. Theorem. In a compact space every ultrafilter converges.

The converse is also true: if in a topological space every ultrafilter converges then
this space is compact. The proof of this is not as easy as that of Theorem 4.10; making an
ultrafilter is much harder than making just a finer filter. There is one kind of ultrafilter
with a simple description.

4.15. Example. If x ∈ X then Fx = {A ⊆ X : x ∈ A} is an ultrafilter.
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This is the only type of ultrafilters that have an ‘easy’ description. The other
ultrafilters — the free ultrafilters — are in some sense almost indescribable. To illustrate
this we mention the following theorem, where we use the map φ : P(N) → [0, 1], defined
φ(A) =

∑
n∈A 2−n, to transform an ultrafilter into a subset of [0, 1].

4.16. Theorem. Let U be a free ultrafilter on N. Then the subset U =
{
φ(A) : A ∈ U

}
of [0, 1] is not Lebesgue-measurable.

The Axiom of Choice

In order to create ultrafilters we need something that enables us to get from ‘finite’ to
‘infinite’ in one step. That ‘something’ is the Axiom of Choice.

Axiom of Choice. If {Xt : t ∈ T} is a nonempty family of nonempty sets then the
product

∏
t∈T Xt is nonempty as well.

This looks like it should be true (obviously), but that is not really the case. The
point is that the axiom does not tell is how to make even one single point of

∏
t∈T Xt.

I8. Let A be the family of all nonempty subsets of R. Exhibit one point of
∏
{A : A ∈ A}.

4.17. Remark. The Axiom of Choice is not a theorem. We shall not make any attempt
at proving it and since the 1960’s we know that that cannot be done, nor is it possible
to prove that it is false. The following is an attempt at elucidating how this can be.

The original definition of a set was, in the words of Georg Cantor: Unter einer
“Menge” verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen
Objekten m unsrer Anschauung oder unseres Denkens (welche die “Elemente” von M
genannt werden) zu einem Ganzen. In spite of this essentially empty definition a lot
of useful work was done with sets but certain contradictions started to creep into the
theory of sets: the entity A = {x : x /∈ x} is a set according to Cantor’s definition but
it gives rise to a contradiction: neither A ∈ A nor A /∈ A can be true.

In the beginning of the twentieth century mathematicians started to think about
what one can and what one cannot do with sets. The result was a list of rules (axioms)
that one should abide by when dealing with sets.

For example, given two sets x and y one can form a new set that has precisely x and
y as its elements: {x, y}. Another rule says that for every set x there is a set z such that
z =

⋃
x. These two together allow us to form x ∪ y for any two sets: x ∪ y =

⋃
{x, y}.

When you work within these (fairly natural) rules then you will not encounter weird
entities like A above or ‘the set of all sets’ anymore; these simply cannot occur anymore.

The Axiom of Choice takes a special place among these axioms because it is, unlike
the other ones, clearly not constructive. As in the case of Euclid’s Fifth Postulate a
lot of work went into attempts to derive the Axiom of Choice from the others as well
into attempts at disproving it. As mentioned above these attempts were doomed to
fail: adding the Axiom of Choice or its negation to the other axioms will not lead to
contradictions.

The majority of mathematicians uses the Axiom of Choice without any reservations
and we join them. If you want to know more: get a book on Set Theory from the Library
and start reading.
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We give two other statements that are equivalent to Axiom of Choice and that have
proved very useful in mathematics. We need a few more definitions.

4.18. Definition. Let X be a set. A partial order on X is a relation on X, written
suggestively as 4, with the following three properties.

(i) x 4 x for every x ∈ X;
(ii) if x 4 y and y 4 x then x = y for all x and y; and
(iii) if x 4 y and y 4 z then x 4 z for all x, y and z.

These properties are common to the relations 6 on R and ⊆ on families of sets.
The order 6 on R has an extra property that ⊆ misses:

4.19. Definition. A linear order is a partial order with the following extra property:
if x, y ∈ X then x 4 y or y 4 x.

The best we can have is a linear order as on N.

4.20. Definition. A well-order is a partial order with the property that every nonempty
subset has a smallest element. (A well-ordered set is automatically a linearly ordered
set.)

4.21. Examples.

1. Every family of sets is partially ordered by ⊆.
2. The set R is linearly ordered by 6.
3. The set N well-ordered by 6.
4. Define 4 on R2 by (x, y) 4 (u, v) if and only if x 6 u and y > v; then 4 is a partial

order that is not linear.
5. Define 4 on R2 by (x, y) 4 (u, v) if and only if x < u of x = u and y 6 v; then 4 is

a linear order on R2. It is called the lexicographic order.
6. The set N2 is well-ordered by the lexicographic order.

We get the following two statements.

Wellordering Theorem. Every set can be well-ordered.

Zorn’s Lemma. If X is a partially ordered set in which every linearly ordered subset
has an upper bound then X has a maximal element, which is an element x such that
there is no y 6= x with x 4 y.

Just like the Axiom of Choice the Well-ordering Theorem and Zorn’s Lemma are
not constructive; they do not say where the well-order or the maximal element come
from. They just say that they are there.

The words ‘theorem’ and ‘lemma’ are used because the statements were derived
from the Axiom of Choice. One can prove (using only the other axioms of set theory)
that the Axiom of Choice, the Well-ordering Theorem and Zorn’s lemma are equivalent.

Some of the consequences of the Axiom of Choice are:

I. Every vector space has a base.
II. In a ring with 1 every ideal is contained in a maximal ideal.
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III. The Hahn-Banach Theorem: if V is a vector space, C a convex subset of V and W
a subspace of V with W ∩C = ∅ then there is a subspace U of V of codimension 1
such that W ⊆ U and U ∩ C = ∅ (codimension 1 means that there is a vector x
in V \ U such that U ∪ {x} spans V ).

We need the following theorem:

4.22. Theorem (Ultrafilter Theorem). Let X be a set and F a filter on X. Then there
is an ultrafilter U on X that is finer than F .

Proof. We apply Zorn’s Lemma. For this we consider the family

F = {G : G is a filter that is finer than F}.

The family F is partially ordered by ⊆. Let F′ ⊆ F be nonempty and linearly ordered
by ⊆ and put G =

⋃
F′.

Clearly H ⊆ G for every H ∈ F′; we claim that G is a filter.

(1) ∅ 6∈ G because ∅ 6∈ H for every H ∈ F′.
(2) If G1, G2 ∈ G then choose H1 and H2 in F′ with G1 ∈ H1 and G2 ∈ H2. Now either

H1 ⊆ H2 or H2 ⊆ H1 holds, for example the former. Then G1, G2 ∈ H2 and so
G1 ∩G2 ∈ H2. But then G1 ∩G2 ∈ G.

(3) If G ∈ G and G ⊆ H then pick H ∈ F′ with G ∈ H; then H ∈ H and so H ∈ G.
We see that G is a filter and hence an upper bound for F′.

The partially ordered set F satisfies the assumptions of Zorn’s Lemma, hence there
is a maximal element G. Then G is a filter, G is finer than F and every other filter that
is finer than G belongs to F and must be equal to G.

Conclusion: G is an ultrafilter that is finer than F . �

Now we can prove the converse of Theorem 4.14.

4.23. Theorem. If in a topological space every ultrafilter converges then the space is
compact.

Proof. All difficulties are behind us. By the Ultrafilter Theorem for every there is a
finer ultrafilter that, by assumption, converges. Now apply Theorem 4.10. �

Tychonoff’s Theorem

Now we can prove Tychonoff’s Theorem.

4.24. Theorem (Theorem). A product of topological spaces is compact if and only if
every factor is compact.

Proof. The continuity of the projections ensures that every factor is compact if the
whole product is.

Now assume every factor Xt of the product X =
∏

t∈T Xt is compact. Let F be
an ultrafilter on X. For every t the image filter πt(F) is an ultrafilter (Exercise 7) and
hence convergent, say with limit xt.

By Theorem 4.11 F converges to the point (xt)t∈T . �
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We shall give another proof of Tychonoff’s Theorem; this proof will be more involved
but it will teach us a few new things. In the proof we reduce the case of a general open
cover of the product to that of a cover by open strips.

Second proof of Tychonoff’s Theorem. Let U be a family of finite open blocks
in X =

∏
t∈T Xt such that no finite subfamily of U covers X. Make a filter F as

in Example 4.5, so a base for F is the family {X \
⋃
U ′ : U ′ is a finite subfamily of U}.

Let G be an ultrafilter that is finer than F .
Let U ∈ U ; U is the intersection of finitely many open strips: U =

⋂n
i=1 π−1

ti
[Uti

].
As G is an ultrafilter and X \U ∈ G there must be a ti with X \π−1

ti
[Uti

] ∈ G. It follows
that for every U ∈ U we can find a strip U+ such that U ⊆ U+ and X \ U+ ∈ G.

Make such a simultaneous choice U 7→ U+ of strips (Axiom of Choice) and consider
the family U+ = {U+ : U ∈ U}.

Because U ⊆ U+ for all U we get
⋃
U ⊆

⋃
U+.

For every finite subfamily V of U+ we have X \
⋃
V ∈ G, so no finite subfamily of

U+ is a cover.
For t ∈ T let Ut be the subfamily of U+ that consists of strips of the form π−1

t [O]
with O open in Xt and let Vt = {O : π−1

t [O] ∈ Ut}. Because no finite subfamily of Ut

covers the product X no finite subfamily of Vt will cover the space Xt. Because Xt is
compact Vt does not cover Xt.

Choose (simultaneously) xt ∈ Xt \
⋃
Vt for every t. The point x = (xt)t∈T is not

covered by U+ and hence certainly not by U . �

This proof actually proves another theorem; to formulate that result we need another
definition.

4.25. Definition. A subbase for a topology T is a subfamily S of T such that the family
of intersections of finite subfamilies of S is a base for T .

Note that ∅ is finite and a subfamily of every family; if S is a subbase then
⋂

∅
will also belong to the corresponding base. Now⋂

∅ =
{
x ∈ X : ∀S ∈ ∅ [x ∈ S]

}
= X,

so: whether S covers the space or not, the family of finite intersections is always a cover.

4.26. Examples.

1. The family of all open strips is a subbase for the product topology.
2. The family of all intervals of the form (−∞, b) and (a,∞) is a subbase for the natural

topology of R.
A subbase is usually employed to create a topology out of a family of sets that one

really wants to be open. For this one first takes all finite intersections of elements of the
family and uses the family thus obtained as a base for the desired topology. This is in
fact the way we constructed the product topology: the open strips needed to be open
for the projections to be continuous.

The theorem alluded to above is Alexander’s Subbase Lemma.

4.27. Theorem (Alexander’s Subbase Lemma). Let X be a topological space and S a
subbase for the topology. Then: X is compact if and only if every open cover of X by
elements of S has a finite subcover.
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Proof. The proof parallels that of our second proof of Tychonoff’s Theorem: let B
denote the family of all intersections of finite subfamilies of S. Then B is a base. Let
U ⊆ B be a cover without finite subcover and make a filter F as before. Take an
ultrafilter G that is finer than F and choose, using G, for every U ∈ U a SU ∈ S such
that U ⊆ SU and X \ SU ∈ G.

Then {SU : U ∈ U} is a cover of X by elements of S without a finite subcover. �

This theorem enables us to give a very short proof that every closed and bounded
interval in R is compact.

I9. Let [a, b] be a closed and bounded interval in R and let

U =
{
[a, xλ) : λ ∈ Λ

}
∪

{
(yµ, b] : µ ∈ M

}
.

be a subbasic open cover of [a, b].
a. Verify that Λ and M are not empty.

Let x = supλ xλ.
b. There must be a µ with yµ < x.

c. There must be a λ with xλ > yµ.

d.
{
(xλ, b], [a, yµ)

}
is a finite subcover of U .
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The Čech-Stone compactification

We now have all the ingredients that we need to make the Čech-Stone compactification.
We first show how to make for every completely regular space a compact space of which
it is a subspace. Next we will see how to recognize the Čech-Stone compactification
among all other compactifications.

The construction

We already know that every subspace of every compact Hausdorff space is completely
regular. We now prove the converse.

For a completely regular space X, we let CX denote the set of all continuous functions
from X to [0, 1].

5.1. Theorem. Let X be a completely regular space. There are a compact Hausdorff
space Y and an embedding F : X → Y .

Proof. We abbreviate CX by C. We take, for every f ∈ C a copy [0, 1]f of [0, 1].
This gives us a family of maps f : X → [0, 1]f , with its diagonal map

F = 4
f∈C

f : X → [0, 1]C .

Because F is a diagonal map of continuous maps, it is continuous. The space [0, 1]C is
compact by Tychonoff’s Theorem and Hausdorff by Exercise 9. It remains to prove that
F : X → F [X] is a homeomorphism.

First: F is injective. For if x 6= y in X then there is a continuous function f : X →
[0, 1] with f(x) = 0 and f(y) = 1. Then the f -th coordinate of F (x) is 0 and the f -th
coordinate of F (y) is 1, so F (x) 6= F (y).

Second: U be open in X, to show F [U ] is open in F [X] we take x ∈ U and seek an
open set O in [0, 1]C such that F (x) ∈ O∩F [X] ⊆ F [U ]. Take a continuous f : X → [0, 1]
such that f(x) = 0 and f(y) = 1 for y ∈ X \ U and let O = π−1

f

[
[0, 1)

]
.

The f -th coordinate of F (x), which is f(x), is 0, so F (x) ∈ O. If y is such that
F (y) ∈ O then we must have f(y) < 1, hence y ∈ U ; we find O ∩ F [X] ⊆ F [U ]. �

We have seen that a space is completely regular if and only if it can be embedded
into a compact Hausdorff space. If i : X → Y is such an embedding then the points
of Y that are not in the closure of i[X] are not very important: such a point has a
neighbourhood that is disjoint from i[X].

This brings us to the following definition.

5.2. Definition. A compactification of a completely regular space X consists of compact
Hausdorff space Y and an embedding i : X → Y such that i[X] is a dense subset of Y .

31
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In the situation of Definition 5.2 the spaces X and i[X] are homeomorphic, so we
never make a formal distinction between these two spaces and simply assume that X is
a subspace of Y .

In Theorem 5.1 we implicitly constructed one compactification:

5.3. Definition. Let X be a completely regular space and β = 4f∈C f the embedding
of X into [0, 1]CX .

The closure of β[X] in [0, 1]CX is a compactification of X; we call it the Čech-Stone
compactification of X and we denote it as βX.

Properties of βX

We shall derive some properties of βX, such as its place among the other compactifica-
tions and some of its characterizations.

βX is the largest compactification

The word ‘largest’ in this sentence requires some explanation.

5.4. Definition. Let Y and Z be two compactifications of the completely regular
space X. We call Y a larger compactification of X than Z if there is a continuous
map f from Y to Z such that f(x) = x for all x ∈ X. We write Y D Z or Z E Y .

I1. Prove: if Y D Z and f : Y → Z is the continuous map with f(x) = x for x ∈ X then
f [Y ] = Z.

The relation D is almost a partial order but not quite.

5.5. Theorem. Assume Y and Z are compactifications of X with Y D Z and Z D Y .
Then Y and Z are homeomorphic and the homeomorphism h can be chosen in such a
way that h(x) = x for all x ∈ X.

Proof. There are continuous maps f : Y → Z and g : Z → Y with the properties that
f(x) = x and g(x) = x for all x ∈ X.

Consider f ◦g, this is a map from Z to Z such that (f ◦g)(x) = x for all x in X. But
f ◦g is continuous and X is dense in Z, so (f ◦g)(z) = z for all z ∈ Z; see Theorem 2.11.

Likewise (g◦f)(y) = y for all y ∈ Y . The map f is the desired homeomorphism. �

We call two compactifications equivalent if the situation of the theorem above occurs.
We never distinguish between equivalent compactifications.

Now we prove that βX is the largest compactification.

5.6. Theorem. Let Y be a compactification of the completely regular space X. Then
βX D Y .

Proof. The point of the proof is that every continuous function from Y to [0, 1] deter-
mines a continuous function from X to [0, 1]: its restriction to X.

For every f ∈ CY the restriction f � X belongs to CX . We can use this to make a
projection from [0, 1]CX onto [0, 1]CY :

πX,Y : (xf )f∈CX
7→ (xf�X)f∈CY

.

(This looks pretty impressive but it is quite straightforward.)
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Consider also the diagonal map i = 4f∈CY
: Y → [0, 1]CY and carefully check that

i(x) = πX,Y

(
β(x)

)
for all x ∈ X.

Let F be the restriction of πX,Y to βX. We already know that F
(
β(x)

)
= i(x) for

all x ∈ X (upon identification of X, β[X] and i[X] this means F (x) = x for all x).
It remains to prove that F [βX] ⊆ i[Y ] (Exercise 1 will then imply F [βX] = i[Y ].
So let x ∈ βX and consider the filter G = {U ∩ X : U ∈ Ux} on X. In βX this

generates a filter Gβ that converges to x. The image filter F (Gβ) converges, in [0, 1]CY ,
to F (x); but X ∈ G, so F (x) ∈ cl F [X] = cl i[X]. Thus F [βX] ⊆ cl i[X] To finish we
note that i[Y ] is compact, hence closed in [0, 1]CY . We find that cl i[X] ⊆ i[Y ]. �

This gives us the first characterization of βX: if Y is a compactification of X such
that Y D Z for every other compactification of X then Y is (equivalent with) βX.

Extending functions

The next theorem gives us one of the most important characterizations of βX. To avoid
misunderstanding: unless explicitly mentioned otherwise, X is always assumed to be a
completely regular space.

5.7. Theorem. If f is a continuous function from X to [0, 1] then there exists a contin-
uous function βf : βX → [0, 1] such that βf � X = f .

Conversely: every compactification with this extension property is equivalent to βX.

Proof. The first part is easy: restrict the projection onto the f -th coordinate to βX.
The second part is also not very difficult. Let Y be a compactification with the

extension property. Denote, for every f ∈ CX the (unique!) extension of f to Y by f̂ .
Verify that the diagonal map 4f∈CX

f̂ : Y → [0, 1]CX maps Y onto βX. This shows
that Y D βX and hence that Y and βX are equivalent. �

The next theorem is proved by rescaling closed intervals in R down to [0, 1].

5.8. Theorem. If f : X → R is a bounded continuous function then f has a continuous
extension βf : βX → R.

By checking the proof of Theorem 5.6 carefully we get the following theorem.

5.9. Theorem. Let f : X → K be a continuous map, where K is a compact Hausdorff
space. Then f has a continuous extension βf : βX → K.

We can summarize the results above in one theorem.

5.10. Theorem. Let X be a completely regular space and Y a compactification of X.
Then the following are equivalent.

(i) Y = βX.

(ii) For every continuous function f : X → [0, 1] there is a continuous extension f̂ :
Y → [0, 1].

(iii) For every bounded continuous function f : X → R there is a continuous extension

f̂ : Y → R.

(iv) For every continuous map f : X → K, where K is compact Hausdorff, there is a

continuous extension f̂ : Y → K.
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We can characterize normal spaces by the way they are embedded in βX.

5.11. Theorem. A completely regular space X is normal if and only if for each pair of
disjoint closed sets F and G in X their closures in βX are disjoint.

Proof. Sufficiency is clear.
For the proof of necessity we use Urysohn’s Lemma: choose a continuous function

f : X → [0, 1] with f �F ≡ 0 and f �G ≡ 1 and consider the values of βf on the closures
of F and G. �

For normal spaces we can characterize βX in terms of closed sets. The following
exercise may come in useful in the following proof.

I2. Let D be a dense subset of a space X. Then cl O = cl(U ∩D) for every open subset O of X.

5.12. Theorem. Let X be a normal space and Y a compactification of X. Then the
following are equivalent.

(i) Y = βX.
(ii) For any two closed subsets F and G of X we have clY F ∩ clβX G = clY (F ∩G).
(iii) For any two disjoint closed subsets F and G of X we have clY F ∩ clY G = ∅.

Proof. We already know that (i) ⇒ (iii).
We prove that (iii) ⇒ (ii). Assume y 6∈ clY (F ∩G).
Choose a neighbourhood U of y and a neighbourhood V of clY (F ∩ G) such that

U ∩ V = ∅. The sets F \ V and G \ V are closed in X and disjoint, hence their closures
in Y are disjoint. So, for example, y 6∈ clY (F \ V ). But then also y 6∈ clY F .

Finally we show that (ii) ⇒ (i) by showing that Y D βX. We define f : Y → βX
as follows: let y ∈ Y and consider the filter Fy = {U ∩X : U ∈ Uy} on X.

We claim that there is exactly one point in
⋂
{clβX F : F ∈ Fy}. Assume x and z

are distinct points in the intersection and choose neighbourhoods U of x and V of z with
disjoint closures. In X we have: F ∩ U 6= ∅ and F ∩ V 6= ∅ for all F ∈ Fy. This holds
in Y as well and so y ∈ clY U ∩ clY V . But clU ∩ cl V = ∅ in X, a contradiction.

We define f(y) to be the unique point in
⋂
{clβX F : F ∈ Fy}. Observe that x ∈ F

for all F ∈ Fx and hence f(x) = x for all x ∈ X.
It remains to prove that f is continuous. Let y ∈ Y and let O 3 f(y) be open.

Choose an open neighbourhood U of f(y) with clβX U ⊆ O and then an open neigh-
bourhood V of y such that clβX(V ∩ X) ⊆ U (why is this possible?). Now show
f [V ] ⊆ clβX U . �

For an arbitrary completely regular spaces we can do something similar where we
replace closed sets by zero-sets.

5.13. Definition. A subset A of a topological X is called a zero-set if there is a con-
tinuous function f : X → [0, 1] with A = {x : f(x) = 0}. The complement of a zero-set
is called a cozero-set1

We get the following theorem.

5.14. Theorem. Let X be a completely regular space and Y a compactification of X.
The following are equivalent:

1Engelking [1989] calls these sets functionally closed and functionally open respectively.
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(i) Y = βX.

(ii) For any two zero-sets F and G of X we have clY (F ∩G) = clY F ∩ clY G.

(iii) For any two disjoint zero-sets F and G of X we have clY F ∩ clY G = ∅.

I3. a. Prove: if x is a point in a completely regular space X and U is a neighbourhood of x then
there is a zero-set F such that x ∈ int F and F ⊆ U .

b. Prove: if F and G are disjoint zero-sets then there is a continuous function f : X → [0, 1]
with F = {x : f(x) = 0} and G = {x : f(x) = 1}.

c. Prove Theorem 5.14.



Chapter 6

Applications in combinatorics

In this chapter we show how ultrafilters and βN can be used to prove combinatorial
results. We shall give proofs of three well-known theorems. Each of these says, in its
own way: if you put infinitely many things in finitely many pots then (at least) one of
these will be very full.

Ramsey’s Theorem

For Ramsey’s Theorem we need some notation and a definition. For a set X and r ∈ N
we let [X]r denote the family of all r element subsets of X.

6.1. Definition. The expression
ω → (ω)r

m

means: If we divide [N]r into m pieces I1, . . . , Im then then are an infinite subset X
of N and an i 6 m such that [X]r ⊆ Ii.

Here ω is the cardinal number of N (the number of elements, countably infinite).
We could have put natural numbers, M and k say, in place of the two ω’s. The meaning
remains the same, with N replaced by {0, . . . ,M − 1} and ‘infinite’ by ‘k element’.

Intuitively the formula M → (k)r
m says this: if we colour each choice of r elements

from M = {0, 1, . . . ,M−1} with one of m colours then there is a subset A of M of size k
such that all choices from A have the same colour. A set like A is called a homogeneous
set for the colouring.

I1. Prove that 6 → (3)22.

Ramsey’s Theorem says that the formula from Definition 6.1 always holds.

6.2. Theorem (Ramsey, infinite version). For every r and m in N the formula

ω → (ω)r
m.

holds.

Proof. We prove this by induction on r. For r = 1 there is nothing to prove: if
N = I1 ∪ · · · ∪ Im then at least one of the sets Ii is infinite.

The step from r to r+1 will be a bit more complicated. Assume [N]r+1 = I1∪· · ·∪Im.
We shall divide [N]r into m pieces and apply the induction hypothesis to this. To do
this we choose a free ultrafilter u on N.

For F = {x1, . . . xr} ∈ [N]r (with x1 < · · · < xr) and define AF,i (for 1 6 i 6 m) as
follows:

AF,i =
{
n > xr : {x1, . . . , xr, n} ∈ Ii

}
.

36
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Then
⋃

i AF,i = {n : n > xr}, so there is an i such that AF,i ∈ u. Let iF be the smallest
index with this property.

We make a strictly increasing sequence 〈hn〉n in N, as follows: for n 6 r put hn = n.
Once h1, h2, . . . , hn are found consider the intersection of all sets AF,iF

with F ∈[
{h1, . . . , hn}

]r; this set belongs to u and hence it is infinite. Choose hn+1 in this
intersection. In the end put H = {hn : n ∈ N}.

Let F ∈ [H]r. Then all r + 1-element subsets from H that have F as their initial
segment belong to the same set: namely IiF

. We use this to divide [H]r in m pieces:
F goes into JiF

.
The induction hypothesis gives us an infinite subset K of H and an i 6 m such that

iF = i for all F ∈ [K]r; but that means that every r + 1-element subset from K belongs
to Ii. �

There is also a finite form of Ramsey’s Theorem.

6.3. Theorem (Ramsey, finite version). For every k, r and m there is a natural num-
ber M such that

M → (k)r
m.

Proof. Assume there are r, k and m for which no such M exists. So, for every M there
is a colouring [M ]r = IM

1 ∪ · · · ∪ IM
m without a homogeneous set with k elements.

For each such colouring we make a colouring of [N]r: if maxF < M then it keeps
its colour, otherwise F gets colour 0.

This defines a function xM : [N]r → {0, 1, . . . ,m}, which is also a point in the
product of [N]r many factors {0, 1, . . . ,m}. This product is a compact and metrizable
space. The sequence 〈xM 〉M has a converging subsequence 〈xMp

〉p, say with limit x.
This point determines a colouring of [N]r with only the colours 1, . . . , m.

This colouring has no k-element homogeneous set, leave alone an infinite one. This
contradicts Theorem 6.2. �

I2. Prove: for every k ∈ N we have
(
2k−2
k−1

)
→ (k)22.

Hindman’s Theorem

Hindman’s Theorem reads as follows:

6.4. Theorem (Hindman). If N = A1 ∪ · · · ∪ An then there are an i and an infinite
subset B of Ai such that for every finite number of different elements b1, . . . , bp of B
the sum b1 + · · ·+ bp belongs to Ai.

The proof of this theorem requires a fair amount of machinery. It will give us the
opportunity to get better acquainted with βN.

βN as a space of ultrafilters

To begin we show that the points of βN are, in fact, nothing but the ultrafilters on N.
To see this we must realize that N is normal and that every subset of N is closed (with
respect to the natural topology). From this point on clA always denotes the closure
of A in βN.
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6.5. Lemma. Let x ∈ βN. Then ux = {A ⊆ N : x ∈ cl A} is an ultrafilter on N.

Proof. Because cl(A∩B) = clA∩ cl B for any two subsets of N, it follows at once that
A ∩ B ∈ ux if A,B ∈ ux. Certainly if A ∈ ux and A ⊆ B then B ∈ ux. Also cl ∅ = ∅,
so ∅ 6∈ ux. We see that ux is a filter.

Because A ∩ (N \ A) = ∅ and cl A ∪ cl(N \ A) = βN we find that either x ∈ cl A or
x ∈ cl(N \A). It follows that ux is an ultrafilter. �

The converse is also true.

6.6. Lemma. If u is an ultrafilter on N then
⋂

A∈u cl A consists of exactly one point xu.

Proof. If x 6= y in βN then choose neighbourhoods U 3 x and V 3 y with U ∩ V = ∅.
Then, for example, U ∩ N 6∈ u and so N \ U ∈ u. But then x 6∈ cl(N \ U) and so
x 6∈

⋂
A∈u cl A. �

6.7. Theorem. The operations from the previous two lemma’s are each other’s inverses:
x = xux

and u = uxu
for every x ∈ βN and every ultrafilter u on N.

Proof. Left to the reader. �

There is also a canonical base for βN.

6.8. Theorem. The family {cl A : A ⊆ N} is a base for the topology of βN.

Proof. To begin: because clA∩ cl(N \A) = ∅ and clA∪ cl(N \A) = βN the set cl A is
open, being the complement of a closed set.

Now let x ∈ βN and let O be a neighbourhood of x. Take an open neighbourhood V
of x with cl V ⊆ U and let A = N ∩ V . Then clA = clV , so x ∈ cl A ⊆ U . �

The considerations above lead to an alternative description of βN: the underlying
set is the set of all ultrafilters on N. For A ⊆ N we define Ā = {u : A ∈ u}. The family
{Ā : A ⊆ N} serves as a base for the topology of βN.

I3. Verify that the operations from Lemmas 6.5 and 6.6 transform cl A into Ā and conversely.

I4. What ultrafilters correspond to the points of N?

Adding ultrafilters

For the proof of Hindman’s Theorem we need to know how to add the elements of βN.
This in fact quite straightforward: let n ∈ N and consider the map ρn from N to N

defined by ρn(m) = m + n. We can extend this to a map βρn : βN → βN. We simply
write u + n instead of βρn(u) for u ∈ βN.

Next we take, for a fixed u ∈ βN, the map λu : N → βN defined by λu(n) = u + n;
this map we also extend to a map βλu and we simply write u + v for βλu(v).

We also write ρn and λu instead of βρn and βλu respectively.
This addition is associative.

6.9. Theorem. For every three elements u, v and w of βN we have u + (v + w) =
(u + v) + w.
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Proof. We use the continuity of the maps λ. First observe that

u + (v + w) = λu(v + w) = λu

(
λv(w)

)
= (λu ◦ λv)(w)

and

(u + v) + w = λu+v(w).

So by continuity of the λs it suffices to prove that u+(v +n) = (u+v)+n for all n ∈ N.
Fix n. Now we have

u + (v + n) = λu

(
ρn(v)

)
= (λu ◦ ρn)(v)

and

(u + v) + n = ρn

(
λu(v)

)
= (ρn ◦ λu)(v).

Because ρn is also continuous, it suffices to show that (λu ◦ ρn)(m) = (ρn ◦ λu)(m) for
every m. But (λu ◦ ρn)(m) = u + (m + n) and (ρn ◦ λu)(m) = (u + m) + n. We also
fix m and recalculate u + (m + n) and (u + m) + n:

u + (m + n) = ρm+n(u)

and

(u + m) + n = ρn

(
ρm(u)

)
= (ρn ◦ ρm)(u).

We see that we must check that ρm+n(l) = (ρn ◦ρm)(l) for all l. But this is easy because
ρm+n(l) = l + (m + n) = (l + m) + n = (ρn ◦ ρm)(l). �

I5. Prove that u + n = n + u for every n ∈ N and every u ∈ βN.

Unfortunately + is not commutative on βN.
Let T = {2n : n ∈ N} and choose two distinct free ultrafilters u and v with T ∈ u

and T ∈ v. Also choose disjoint sets A,B ⊆ T with A ∈ u and B ∈ v.

I6. Prove u + v 6= v + u.
a. (T + n) ∩ (T + m) is finite when n 6= m.

Define An = (A + n) \
⋃

i<n(T + i) and similarly Bn = (B + n) \
⋃

i6n(T + i).
b. An ∩Am = ∅, An ∩Bm = ∅ and Bn ∩Bm = ∅ for all n and m.

c. u + n ∈ cl An and v + n ∈ cl Bn for all n.

Let A+ =
⋃

n An and B+ =
⋃

n Bn.

d. u + v ∈ cl{u + n : n ∈ N} ⊆ cl A+.

e. v + u ∈ cl{v + n : n ∈ N} ⊆ cl B+.

f. u + v 6= v + u.

I7. a. Prove: if ρu is continuous then u + v = v + u for all v.

b.Deduce that, with T as in the previous exercise, the map ρu is not continuous for any
u ∈ cl T \ N.
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Idempotents βN \ N
We concentrate on the points in N∗ = βN \ N. We will look for a point u ∈ N∗ with
u = u + u; such a point we call an idempotent ultrafilter.

We can find such a point in very general situations.

6.10. Definition. A semigroup is a set with an associative binary operation.

6.11. Examples.

1. N with + is a semigroup.
2. {n ∈ N : n > 25 and n is even } is with the operation + also a semigroup.
3. N∗ with the operation + is a semigroup.

6.12. Definition. Let X be a compact Hausdorff space with an associative binary
operation ∗. We call X a semi-topological semigroup if for every x ∈ X the map λx :
X → X defined by λx(y) = x ∗ y is continuous.

The semigroup N∗ is semi-topological. The next theorem says that we can expect
to find many idempotent elements

6.13. Theorem. Every semi-topological semigroup X has an idempotent element.

Proof. We shall apply Zorn’s Lemma to the collection

A = {A ⊆ X : A is closed and nonempty and A ∗A ⊆ A}.
The family A is nonempty: X ∈ A. If A′ is a chain in A then A =

⋂
A′ is nonempty

(by compactness) and closed. Take x, y ∈ A; for every B ∈ A′ we have x, y ∈ B and
hence also x ∗ y ∈ B, we find that x ∗ y ∈ A.

By Zorn’s Lemma (applied upside-down) there is a minimal element A in A. We
show that A consists of one point only.

Let x ∈ A and consider x ∗ A = λx[A]. This set is closed (λx is continuous and
X is compact Hausdorff) and a subset of A. We show x ∗ A ∈ A; take y, z ∈ A, then
(x ∗ y) ∗ (x ∗ z) = x ∗ (y ∗ x ∗ z) ∈ x ∗ A. We get x ∗ A = A by minimality of A. In
particular there is a y ∈ A with x ∗ y = x.

Consider C = {y ∈ A : x ∗ y = x}. We have just seen that C is nonempty, C is
closed because λx is continuous. If y, z ∈ C then also x ∗ (y ∗ z) = (x ∗ y) ∗ z = x ∗ z = x,
so y ∗ z ∈ C. We find that C ∈ A and by minimality of A we get C = A. But then, in
particular, x ∗ x = x and, by minimality again A = {x}. �

6.14. Corollary. There is a u ∈ N∗ with u + u = u.

The proof of the theorem

Now we can prove Hindman’s Theorem. First a bit of notation. For A ⊆ N and k ∈ N
we write

A− k = {n : n + k ∈ A}.
I8. If u ∈ βN and k ∈ N then u + k = {A : A− k ∈ u}.

The next proposition finishes the proof of Hindman’s Theorem.

6.15. Proposition. Let u ∈ N∗ be an idempotent ultrafilter and A ∈ u. Then A has
an infinite subset B, such that every finite sum of elements of B belongs to A.
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Proof. For each element C of u we write C# = {n : C − n ∈ u}. Verify that C# ∈ u
for every C ∈ u (use that u + u = u).

We make a sequence of elements of u and a sequence of natural numbers as follows.
Put A0 = A and choose b0 ∈ A0 ∩A#

0 .
When An and bn ∈ An∩A#

n are found we put An+1 = An∩(An−bn) and we choose
bn+1 ∈ An+1 ∩A#

n+1 larger than bn. Observe that An+1 ∈ u because bn ∈ An ∩A#
n .

In the end put B = {bn : n ∈ N}. We prove: if n0 < n1 < · · · < nk then
bn0 + bn1 + · · · + bnk

∈ An0 . We use induction on k. If k = 0 then it says bn0 ∈ An0 ,
which holds by construction.

If k > 0 then, by the inductive assumption, b = bn1 + · · · + bnk
∈ An1 . Further

An1 ⊆ An0+1 ⊆ An0 − bn0 , so b ∈ An0 − bn0 , in other words bn0 + b ∈ An0 . �

Use the ideas in the proof of Theorem 6.3 to prove the following theorem.

6.16. Theorem. For every two natural numbers k and l there is a natural M such that
whenever M = A1∪· · ·∪Ak then there are an i 6 n and a subset B of Ai with l elements
with the property that the property that every sum of different elements of B belongs
to Ai.

Van der Waerden’s Theorem

Van der Waerden’s Theorem reads as follows.

6.17. Theorem. If N = A1 ∪ · · · ∪ An then there is an i 6 n such that Ai contains
arbitrarily long arithmetic progressions.

An arithmetic progression is a sequence of the form {a + bi : i 6 n}.
Again we shall use idempotent elements in semigroups to get the result. We shall

need a special kind of idempotents.

Minimal idempotent elements in semigroups

Let X be a semi-topological semigroup (X is compact Hausdorff). We define a partial
order on the idempotent elements.

6.18. Definition. Let x and y be idempotent elements of X and define

x 4 y is and only if x = x ∗ y = y ∗ x.

6.19. Lemma. The relation 4 is a partial order on the set of idempotent elements of X.

Proof. Clearly x 4 x. If x 4 y and y 4 x then x = x ∗ y = y ∗ x = y. If x 4 y and
y 4 z then x = x ∗ y = x ∗ (y ∗ z) = (x ∗ y) ∗ z = x ∗ z and x = y ∗ x = (y ∗ z) ∗ x =
(z ∗ y) ∗ x = z ∗ (y ∗ x) = z ∗ x and so x 4 z. �

We shall prove that for every idempotent x there is a minimal idempotent y (with
respect to 4) with y 4 x. It follows that semigroups as N∗ have minimal idempotent
elements. We shall also show that every element of every minimal idempotent ultrafilter
contains arbitrarily long arithmetic progressions. This then will complete the proof of
Van der Waerden’s Theorem.

We need to investigate a special kind of subsets of semigroups.
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6.20. Definition. A subset I of a semigroup X is called a left ideal (right ideal) if for
every x ∈ X we have x ∗ I ⊆ I (I ∗ x ⊆ I). An ideal that is both a left and a right ideal
is called a two-sided ideal.

I9. For every x ∈ X the set x ∗X = {x ∗ y : y ∈ X} is always a right ideal and X ∗ x is always
a left ideal.

I10. N∗ is a two-sided ideal in βN.

We need minimal right ideals. These exist in abundance. We assume tacitly that
every ideal under consideration is nonempty.

6.21. Lemma. Every right ideal contains a minimal right ideal.

Proof. Let R be a right ideal. For any x ∈ R the set x ∗ X = λx[X] is a closed right
ideal and x ∗X ⊆ R, so every right ideal contains a closed right ideal.

As in the proof of Theorem 6.13 we take a minimal element A in the family R of
all closed right ideals that are contained in R.

Then A is also a minimal right ideal: any smaller ideal would contain another closed
right ideal. �

The proof of this lemma gives us some more information.

6.22. Proposition. Every minimal right ideal is closed and x ∗X = x ∗ R = R for all
x ∈ R.

Proof. That R is closed is clear. The second part of the proposition follows from the
facts that x ∗ R ⊆ x ∗X ⊆ R and that x ∗ R is a right ideal: if y ∈ R and z ∈ X then
(x ∗ y) ∗ z = x ∗ (y ∗ z) ∈ x ∗R. �

We can recognize minimal idempotents by their position in the semigroup.

6.23. Theorem. The following are equivalent for an idempotent element x.

(i) x is minimal.

(ii) x belongs to a minimal right ideal.

(iii) x ∗X is a minimal right ideal.

Proof. (i) ⇒ (iii): We know that x∗X is a right ideal. Assume R ⊆ x∗X is a minimal
right ideal. Then R is a semi-topological semigroup and so it contains an idempotent
element y. Put z = y ∗ x. Then z ∈ R because R is a right ideal. We show that z is
an idempotent element and z 4 x. Choose r ∈ X with x ∗ r = y (because R ⊆ x ∗X).
Then z = y ∗ x = x ∗ r ∗ x and so

z ∗ z = (y ∗ x) ∗ (x ∗ r ∗ x) = y ∗ x ∗ r ∗ x = y ∗ z = y ∗ y ∗ x = y ∗ x = z.

Next
z ∗ x = y ∗ x ∗ x = y ∗ x = z

and
x ∗ z = x ∗ x ∗ r ∗ x = x ∗ r ∗ x = z,

hence z 4 x. But this implies z = x and so x ∗X ⊆ R (because x = z ∈ R).
(iii) ⇒ (ii): This follows because x ∗ x = x and so x ∈ x ∗X.
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(ii) ⇒ (i): Let R be a minimal right ideal with x ∈ R and assume y 4 x. Because
y = x ∗ y it follows that y ∈ R and also y ∗X = R. Choose r ∈ X with x = y ∗ r, then
x = y ∗ r = y ∗ y ∗ r = y ∗ x = y. �

Now we can prove that there are enough minimal idempotent elements:

6.24. Theorem. For every idempotent element x there is a minimal idempotent ele-
ment y with y 4 x.

Proof. Take a minimal right ideal R ⊆ x ∗X and an idempotent y in R. Take z = y ∗x
and follow the proof of (i) ⇒ (iii) in Theorem 6.23; z is idempotent, z ∈ R so z is
minimal and z 4 x. �

The final ingredient that we need is the following theorem.

6.25. Theorem. If R is a minimal right ideal and I some two-sided ideal then R ⊆ I.

Proof. First take x ∈ R and y ∈ I, then x ∗ y ∈ R ∩ I because R is a right ideal and
I is a two-sided (hence left) ideal. So R∩ I is a nonempty right ideal; but R is minimal
so R ⊆ R ∩ I. �

In particular every two-sided ideal contains every minimal idempotent elements.
This is exactly the fact that we need for the proof of Van der Waerden’s Theorem.

The proof of the theorem

We have seen that it suffices to prove the following proposition.

6.26. Proposition. If u ∈ N∗ is a minimal idempotent element then every element of u
contains arbitrarily long arithmetic progressions.

Let k ∈ N. We prove in a sequence of lemmas that every element of u contains an
arithmetic progression of length k.

We work in the semigroup S = βNk and consider the following subsets:

(i) E− =
{(

a, a + d, . . . , a + (k − 1)d
)

: a, d ∈ N
}
,

(ii) I− =
{(

a, a + d, . . . , a + (k − 1)d
)

: a, d ∈ N, d > 0
}
,

(iii) E = (N∗)k ∩ cl E− and
(iv) I = (N∗)k ∩ cl I−.
(We take closures in βNk.) Observe that I− contains all ‘true’ arithmetic progressions
and E− also the constant ones. Also observe that we only have to show that the
point ~u = (u, . . . , u) belongs to I. For, in that case whenever A ∈ u the set Ak is a
neighbourhood of ~u, this intersects I− and every point in the intersection gives us an
arithmetic progression.

This we do as follows:
We prove that E is a semi-topological semigroup, that I is a two-sided ideal of E

and that ~u is a minimal idempotent element of E. Application of Theorem 6.25 gives
the desired result

6.27. Lemma. E is a semi-topological semigroup and I is a two-sided ideal of E.
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Proof. Because E is closed S it is compact.
Let ~p, ~q ∈ E. We prove that ~p+~q ∈ E and show simultaneously that ~p+~q ∈ I when

~p ∈ I or ~q ∈ I.
Let U be a neighbourhood of ~p + ~q and choose, because λ~p is continuous, a neigh-

bourhood V of ~q such that λ~p[V ] ⊆ U . Choose a and d in N such that ~x =
(
a, . . . , a +

(k − 1)d
)
∈ V (if ~q ∈ I we choose d > 0). This shows ~p + ~x ∈ U . Continu-

ity of ρ~x gives us a neighbourhood O of ~p such that O + ~x ⊆ U . Next choose b
and e in N such that ~y =

(
b, . . . , b + (k − 1)e

)
∈ O (if ~p ∈ I take e > 0). Then

~y + ~x =
(
b + a, . . . , (b + a) + (k − 1)(e + d)

)
is an element of U ∩ E−. If ~p ∈ I or ~q ∈ I

then e + d > 0 and so ~y + ~x even belongs to U ∩ I−.
Because U was arbitrary we find ~p + ~q ∈ E (and ~p + ~q ∈ I if ~p ∈ I or ~q ∈ I). �

6.28. Lemma. Every point of the form (x, . . . , x), with x ∈ N∗, is in E.

Proof. This is clear because every point of the form (n, . . . , n), with n ∈ N, belongs
to E−. �

6.29. Lemma. The point ~u is a minimal idempotent element of E.

Proof. This also clear: if (r1, . . . , rk) is an idempotent then every ri is an idempotent
and if (r1, . . . , rk) 4 ~u then ri 4 u for everyi and so ri = u. �

I11. Formulate and prove the finite version of Van der Waerden’s Theorem.
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